Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аэродинамика несущего винта

В современных вихревых теориях задачу определения индуктивных скоростей, нагрузок и аэродинамических характеристик несущего винта решают численно, используя сложные схемы следа. К таким схемам относятся представление следа дискретными концевыми вихрями и зачастую даже схемы, учитывающие деформацию свободных вихрей. Поэтому современные теории имеют практическое значение только при использовании быстродействующих цифровых ЭВМ. Хотя численные решения в принципе ближе к действительности, чем классические, попытки усовершенствовать на их основе расчет аэродинамических характеристик несущего винта на режиме висе-ния оказались нелегкими. Часто усовершенствование заключается лишь в небольшом, но важном уточнении, но чтобы его найти, нужно использовать более подробную схему течения, которая требует тщательного исследования. Однако многие сложные явления, связанные с аэродинамикой несущего винта, еще недостаточно выяснены, а другие явления трудно исследовать. Кроме того, усовершенствование расчетной схемы должно быть совместным, т. е. должно затрагивать одновременно аэродинамическую, динамическую и конструктивную схемы несущего винта. В методах расчета аэродинамических характеристик винта на висении был достигнут определенный прогресс, но и теперь эти методы имеют ряд недостатков. Подробное  [c.98]


Теория несущей линии представляет собой основу аэродинамики несущего винта, но она не пригодна для концевой части лопасти и тех частей, где к лопасти близко подходит вихрь, а нагрузки этих участков лопасти имеют важное значение. Качание и установочное движение лопасти (помимо определяемого управлением), а также ее изгиб в плоскости взмаха важны с точки зрения вибраций, нагрузок и аэроупругой устойчивости лопасти, но при расчете аэродинамических характеристик винта и характеристик управления ими обычно можно пренебречь. Аналогично высшие гармоники махового движения важны с точки зрения вибраций и нагрузок лопасти, но при указанных расчетах ими также можно пренебречь. Зону обратного обтекания можно не учитывать в интервале О ц 0,5, соответствующем  [c.201]

Как и в случае самолета, максимальная скорость вертолета в горизонтальном полете ограничена располагаемой мощностью, но для винтокрылого летательного аппарата имеется и целый ряд других ограничений скорости, обусловленных, в частности, эффектами срыва, сжимаемости и аэроупругости. Основным ограничением для многих современных вертолетов является срыв потока на отстающей лопасти, приводящий на больших скоростях полета к резкому увеличению нагрузок на несущий винт и систему управления и росту вибраций вертолета. Вследствие этого расчетная крейсерская скорость вертолета без вспомогательных движителей при современном уровне развития техники лежит в пределах 280—370 км/ч. Для достижения более высоких скоростей требуется либо улучшение аэродинамики несущего винта и фюзеляжа, либо существенное изменение конфигурации вертолета.  [c.304]

Аэродинамика несущего винта I  [c.429]

Аэродинамика несущего винта / 447  [c.447]

Аэродинамика несущего винта 1 451  [c.451]

Аэродинамика несущего винта 1 461  [c.461]

Аэродинамика несущего винта / 471  [c.471]

Аэродинамика несущего винта /  [c.477]

Аэродинамика несущего винта I...............429  [c.501]

Аэродинамика несущего винта II  [c.502]

Аэродинамика несущего винта  [c.509]

Одновременно с указанным упрощением пренебрегается обратным обтеканием и членами с/ и Полученные формулы для сил в сечении лопасти выражают основные закономерности аэродинамики несущего винта и в то же время допускают аналитическое интегрирование.  [c.514]

Предлагаемая вниманию читателей монография известного американского специалиста по вертолетам представляет собой наиболее полное на сегодняшний день изложение теории вертолета, включающее целую иерархию математических моделей аэродинамики, динамики, аэроупругости, управляемости и устойчивости движения вертолета. При изложении аэродинамики несущего винта много места отведено классическим схемам импульсной теории винта. Рассмотрены модели вихревой теории, которые допускают аналитическое решение, хотя бы приближенное. Впервые так полно излагаются теория обтекания лопасти нестационарным потоком с учетом повторного влияния вихревого следа и методы расчета шума, создаваемого вертолетом. Вопросы динамики лопастей несущего винта рассмотрены в книге весьма подробно вгОють до использования наиболее сложного представления движения дифференциальными уравнениями с периодическими коэффициентами. При исследовании динамики несущего винта и вертолета в целом автор, отступая от традиционной формы изложения, широко пользуется весьма уместным здесь математическим аппаратом теории автоматического управления.  [c.5]


Висение — это режим полета, при котором вертикальная и горизонтальная составляющие скорости несущего винта относительно невозмущенного воздуха равны нулю. В общем случае вертикального полета набегающий поток направлен вдоль оси винта. Обтекание несущего винта в вертикальном полете предполагается осесимметричным, так что скорости и нагрузки лопастей не зависят от азимута. Осевая симметрия сильно упрощает исследование вопросов динамики и аэродинамики несущего винта вертолета, как это станет ясным позже при рассмотрении полета вперед. Теория винта в осевом потоке была в основном создана в XIX в. применительно к корабельным винтам. Позже ее применили к пропеллерам самолетов. Главная задача теории несущего винта на режиме висения состоит в определении сил, создаваемых лопастями, и требуемой для их вращения мощности, что обеспечивает основу для проекти-рювания высокоэффективных несущих винтов.  [c.42]

Некоторые усовершенствования теории сохраняют возможность аналитического определения характеристик. Например, если коэффициент сопротивления сечения задать в виде Са = = So + Si t + то расчет профильной мощности будет уточнен и в то же время соответствующие интегралы можно найти аналитически. Но получаемые формулы оказываются все-таки весьма сложными, и потому результаты часто представляют в виде графиков характеристик, построенных для какого-либо типичного винта. Вследствие сложности аэродинамики несущего винта большинство методов расчета характеристик, кроме тех, которые основаны на простейших формулах, сопряжено с большим объемом вычислений. Поэтому результаты таких расчетов удобно и экономично представлять в виде графиков или таблиц характеристик. Если использовать быстродействующие ЦВМ, то численный анализ характеристик практически приемлем и для конкретных винтов. Такой анализ необходим, когда в нем учитываются многие конкретные особенности данного винта, такие, как форма лопасти в плане и набор ее профилей.  [c.288]


Смотреть страницы где упоминается термин Аэродинамика несущего винта : [c.74]    [c.133]    [c.307]    [c.429]    [c.465]    [c.485]   
Смотреть главы в:

Теория вертолета  -> Аэродинамика несущего винта



ПОИСК



Аэродинамика

Вал несущего винта

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте