Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о тензоре деформаций

Первое показывает, что тензор, обозначенный е, есть деформация лагранжева вектора X на Oi последний должен быть равен заданному здесь вектору перемещения, и ничто не препятствует, отождествив К с вектором перемещения и в объеме V, вернуться к определению тензора е как к величине, задаваемой полем перемещений. В самом принципе минимума дополнительной работы понятие о тензоре деформации отсутствует, поэтому отождествление векторов % н и должно быть привнесено нами, так как принцип об этом не знает .  [c.159]


ПОНЯТИЕ О ТЕНЗОРЕ ДЕФОРМАЦИИ  [c.43]

Деформации твердого тела. Понятие о тензоре деформаций. Абсолютно упругое тело и его деформации. Коэффициент Пуассона. Упругие напряжения. Модули Юнга и сдвига. Деформации при изгибе и кручении. Устойчивость тел при деформациях. Энергия упругих деформаций.  [c.5]

Понятие о тензоре деформаций.  [c.6]

В заключение рассмотрим понятие о тензоре скоростей деформации и интенсивности скоростей деформации сдвига (уг). Если через е, гу, бг обозначить скорости относительных удлинений элементарного объема в направлении координатных осей, а через у г/. Уг — скорости угловых деформаций, то тензор скоростей деформаций примет вид  [c.100]

Этот важнейший вывод из теоремы Гельмгольца, конечно, относится к бесконечно малым деформациям и мог быть сделан уже после введения понятия о тензоре бесконечно малых деформаций ( 2). Более ого, поскольку этот тензор по структуре и физическому смыслу сходен с тензором скоростей деформаций, то и физическая интерпретация компонент тензора скоростей деформаций может быть получена путем процедуры, аналогичной относительно компонент U.J ( 2), Диагональные компоненты тензора представляют собой скорости относительных удлинений по координатным осям, а недиагональные — половину скоростей угловой деформации в соответствующих координатных плоскостях, так что в криволинейных координатах имеем  [c.187]

В заключение заметим, что введенные в 4, 8, 12 и 14 понятия о тензорах и девиаторах напряжений и деформаций позволяют выразить обобщенный закон Гука в более компактной тензорной форме. Действительно, построим выражения компонентов девиатора напряжений (1.47) через деформации, пользуясь зависимостями (3.13). Учитывая соотношение (3.15). получим  [c.75]

Главы I и II содержат основные уравнения механики сплошной среды и основные законы пластичности. Введены понятия о тензорах и девиаторах напряжения, деформации и скорости деформации, а затем сформулированы их основные свойства.  [c.3]

Так, более подробно разобраны понятия тензоров напряжений и деформаций и их разложение на шаровой тензор и девиатор, добавлен закон Гука в тензорной форме. В новой, V главе рассматриваются простейшие задачи теории упругости чистый изгиб прямого призматического стержня и кручение круглого стержня постоянного сечения. В главе VI добавлен расчет балки-стенки. Далее добавлены следую-ш,ие параграфы Понятие о действии сосредоточенной силы на упругое полупространство , Понятие о расчете гибких пластинок , Понятие о расчете гибких пологих оболочек . Переработан раздел о математическом аппарате теории пластичности, добавлено понятие о теории пластического течения, дано понятие о несущей способности балок и плит на основе модели жесткопластического материала. Вновь написаны главы ХП1 и XIV об основных- зависимостях теории ползучести и даны простейшие задачи теории ползучести.  [c.3]


В кинематике сплошных сред, наряду с принятыми в кинематике дискретной системы точек понятиями перемещений, скоростей и ускорений, появляется характерное для сплошной среды представление о бесконечно малой деформации среды, определяемой тензором деформаций. Если рассматривается непрерывное движение текучей среды, то основное значение приобретает тензор скоростей деформаций, равный отношению тензора бесконечно малых деформаций к бесконечно малому промежутку времени, в течение которого деформация осуществилась. Как с динамической, так и с термодинамической стороны модель сплошной среды отличается от дискретной системы материальных точек тем, что вместо физических величин, сосредоточенных в отдельных ее точках, приходится иметь-дело с непрерывными распределениями этих величин в пространстве — скалярными, векторными и тензорными полями. Так, распределение массы в сплошной среде определяется заданием в каждой ее точке плотности среды, объемное силовое действие — плотностью распределения объемных сил, а действие поверхностных сил — напряжениями, определяемыми отношением главного вектора поверхностных сил, приложенных к ориентированной в пространстве бесконечно малой площадке, к величине этой площадки. Характеристикой внутреннего напряженного состояния среды в данной точке служит тензор напряжений, знание которого позволяет определять напряжения, приложенные к любой произвольно ориентированной площадке. Перенос тепла или вещества задается соответствующими им векторами потоков.  [c.9]

В следующем пункте мы займемся анализом понятия давления жидкости, после чего в заключении раздела о жидкостях, удовлетворяющих постулатам Стокса, будет рассмотрен интересный пример полиномиальной зависимости компонент T j тензора напряжений от компонент тензора деформаций.  [c.200]

С понятием тензора читателю неоднократно придется встречаться в нашей книге наиболее подробно оно будет освещено в главе И, 14. В качестве предварительного замечания следует сразу же отметить, что тензор нельзя отождествлять с его компонентами (подобно тому как вектор нельзя отождествлять с его проекциями). Рассмотренный выше тензор деформации Г есть сложное геометрическое понятие, заключающее в себе представление о деформации бесконечно малой окрестности произвольной точки сплошной среды и полностью эту деформацию характеризующее. Поскольку деформация, разумеется, никак не зависит от выбора системы координат, от этого выбора не зависит и тензор Г (аналогично тому как, например, векторы скорости или силы не зависят от того, в какой системе координат они рассматриваются).  [c.31]

Вместе с этим часто забывают, что все субстанциональные характеристики, такие как скорость, ускорение, тензор скоростей деформаций и т. п., вводятся при помощи системы наблюдателя при существенном использовании понятия о сопутствующей системе координат.  [c.466]

Понятие о нагружении. Основными определяющими параметрами для твердых тел являются , , Т, р. Будем для Простоты считать температуру неизменной, а все рассмотрения локальными. Если еа) - заданное изменение деформаций со временем, а б (<) - результирующее изменение напряжений во времени, то такого рода задание зтих тензоров называется реализацией нагружения.  [c.89]

Для построения конечноэлементных моделей тепловых явлений нам надо вернуться к понятиям энтропии, скорости нагрева и температуры, рассмотренным в 12. Естественно возникает вопрос о том, какую из имеющихся в нашем распоряжении термодинамических переменных (абсолютная температура, тепловой поток, градиент температуры, поток энтропии и т. д.) избрать в качестве первичной, независимой переменной. Всюду в дальнейшем этот вопрос решается исходя из следующего соглашения. При построении конечноэлементных моделей физического явления в качестве первичных независимых переменных мы выбираем те, которые в этом явлении наиболее естественным образом наблюдаются или измеряются. Например, в таком чисто механическом явлении, как деформация твердого тела, очевидной и простейшей характеристикой является перемещение частиц относительно друг друга. Если известны поле перемещений и законы поведения материала, то можно вычислить все остальные механические величины, например тензор деформаций, скорость, градиенты деформации. Для тепло-  [c.218]


В основе перечисленных теорий механики сплошных сред лежат фундаментальные понятия о напряжении и деформации. Последние в рассматриваемой точке тела выражаются тензорами второго ранга.  [c.14]

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются еще некоторыми гипотезами, общий вид которых устанавливается с помощью качественных физических рассуждений или же подбирается из соображений простоты. Принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения постоянных, входящих в используемые полуэмпирические соотношения.  [c.14]

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются затем еще некоторыми гипотетическими закономерностями, общий вид которых устанавливается с помощью качественных физических рассуждений или же просто подбирается наудачу из соображений простоты. Далее принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения неопределенных постоянных, входящих в используемые полуэмпирические соотношения. Если результаты проверки оказываются удовлетворительными, то полученные выводы распространяются на целый класс турбулентных течений, родственный тем, к которым относились выбранные для проверки теории эмпирические данные.  [c.19]

Помимо только что рассмотренного процесса рассеяния могут происходить переходы электронов между вырожденными минимумами в зоне проводимости. Такой переход называется междо-линным рассеянием. Для исследования таких процессов можно пользоваться методом потенциала деформации, если обобщить понятие о тензоре потенциала деформации. Такое обобщение было описано в п. I 6 гл. П.  [c.441]

В гл. 1 были введены понятия тензоров, хнаровых тензоров и де-виаторов напряжений и деформаций. Там н е отмечено, что тензоры напряжений и деформаций полностью определяются их направляющими тензорами DD , средними значениями напряжений Оср и деформаций Вср (или объемной деформацией 0) и интенсивностями напряжений о и деформаций е .  [c.299]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]


В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]

Понятие особенностей, определяемых силовым тензором, было использовано Лауричелла (1895) для представления компонент тензора деформации упругого тела через внешние силы. Вывод формул Лауричелла основан на применении теоремы взаимности Бетти к двум состояниям 1) первое состояние создается поверхностными силами F (при отсутствии объемных), причем через и, Т обозначаются вектор перемещения и тензор напряжения в этом состоянии 2) второе состояние и, Т задается а) действием в точке Q силового тензора, определяющего вектор перемещения и тензор напряжения Т и и б) наложением на это действие напряженного состояния Нг, Та снимающего нагружение поверхности О тела. Вектор перемещения в этом состоянии и тензор напряжения равны  [c.212]

Коши ( au hy) Огюстен Луи (1789 - 1857) — известный французский математик, один и.э основоположников теории аналитических функций. Окончил Политехническую школу (1807 г.), Школу дорог и мостов (1810 г.) в Париже. В 1810 1813 гг. работал инженером на постройке порта в Шербуре. С 1816 г. профессор Политехнической школы, Сорбонны, Колеж де Франс (1848 - 1857 гг.). Написал более 700 фундаментальных работ по теории функций, математическому анализу, математической физике. Создал теорию функцнй комп-лексного переменного. Заложил основы теории сходимости рядов. Ему принадлежит постановка одной из ос новных задач теории дифференциальных уравнений, метод интегрирования уравнений с частными произвол ными первого порядка. В теории упругости ввел понятие напряжения, расширил понятие деформации и ввел соотношения между компонентами тензора напряжений и тензора деформаций для изотропного тела. Исследовал задачи о деформации стержней, в частности задачу о кручении. В оптике развил математические основания теории Френеля и дисперсии.  [c.242]

Рассматриваемый здесь подход к вычислению эффективных модулей композиционных материалов основан на понятии представительного элемента объема, т. е. такого элемента, в котором все усредненные по объему компоненты тензоров напряжений и деформаций равны соответствующим величинам, вычисленным для композита в целом. Из-за математических трудностей решение задачи в микромеханической постановке обычно доводится до конца только для сравнительно простых композитов, например для бесконечной упругой матрицы, армированной одинаковыми параллельными упругими волокнами, образующими двоякопериодическую систему. Исключением из этого общего правила является работа Сендецки [17], в которой решена задача о продольном сдвиге матрицы, армированной произвольно расположенными волокнами произвольного диаметра. Поскольку приведенное выше математическое определение эффективных модулей отличается от физического определения, основанного на экспериментально наблюдаемых усредненных по поверхности значениях компонент тензоров напряжений и деформаций, важно понимать, что между этими двумя определениями существует связь, устанавливаемая в результате микро-.адеханического исследования (см. разд. V).  [c.15]

В П. т. используется понятие пространства напряжений. В шестимерном пространстве напряжений П декартовы координаты соответствуют компонентам тензора напряжений Oij. Любому напряжённому состоянию в пространстве П соответствует вектор нанряже-вий о с компонентами о . В пространстве П определяется поверхность нагружения 2, ограничивающая все упругие состояния данного элемента тела т. е. все состояния, к-рые могут быть достигнуты из начального без приобретения остаточных деформаций). Напряжённые состояния, соответствующие точкам поверхности нагружения 2, соответствуют пределам текучести при сложном напряжённом состоянии. При изменении напряжённого состояния поверхность нагружения изменяет свою форму.  [c.629]

Другой подход к определению деформаций, распространенный в гидродинамике, основан на понятии тензора скоростей деформаций. Пусть на рис. 124 точка О теперь не постоянная физическая точка тела (частица), а неподвижная точка пространства, через которую протекают различные физические точки (частицы), а в момент времени t находится определенная физическая точка, и пусть OMPN — опре> деленный постоянный элементарный объем пространства, в котором в момент времени t находится некоторый определенный физический элемент. Через будем обозначать компоненты скорости дви>  [c.198]

Рейнольдса Тг = —рщи], являющихся лишними неизвестными в уравнениях Рейнольдса (1.3). Вид этих неизвестных (т. е. их зависимость от пространственных координат и времени), по-видимому, должен в значительной мере определяться крупномасштабными особенностями течения, т. е. в первую очередь полем средней скорости и. При определении общего характера зависимости от и можно опереться на внешнюю аналогию между беспорядочными турбулентными пульсациями и молекулярным хаосом и попытаться использовать методы кинетической теории газов. Поскольку в кинетической теории газов очень большую роль играет понятие средней длины свободного пробега молекул 1т, в теории турбулентности при таком подходе прежде всего вводится понятие пути перемешивания I (независимо друг от друга предложенное двумя создателями полу-эмпирического подхода к исследованию турбулентности Дж. Тейлором и Л. Прандтлем), определяемого как среднее расстояние, проходимое отдельным турбулентным образованием ( молем жидкости), прежде чем оно окончательно перемешается с окружающей средой и потеряет свою индивидуальность. Другим важным понятием кинетической теории газов является понятие средней скорости движения молекул в полуэмпирической теории турбулентности ему соответствует понятие интенсивности турбулентности — средней кинетической энергии турбулентного движения единицы массы жидкости. Наконец, ньютоновой гипотезе о линейности зависимости между вязким тензором напряжений (Тц и тензором скоростей деформации ди дх] + дщ1дх1 (причем коэффициентом пропорциональности в этой зависимости является коэффициент вязкости р1тЬт) в полуэмпирической теории турбулентности Прандтля отвечает гипотеза о линейности зависимости между напряжениями Рейнольдса и скоростями деформации осредненного течения.  [c.469]



Смотреть страницы где упоминается термин Понятие о тензоре деформаций : [c.9]    [c.69]    [c.564]    [c.36]    [c.384]    [c.212]   
Смотреть главы в:

Теория обработки металлов давлением Издание 2  -> Понятие о тензоре деформаций



ПОИСК



Деформация Понятие

Тензор Понятие

Тензор деформаций



© 2025 Mash-xxl.info Реклама на сайте