Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамические характеристики. опор

ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОПОР  [c.301]

ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОПОР И ВИБРОУСТОЙЧИВОСТЬ СТАНКОВ  [c.42]

Эксплуатационные параметры опор с АСП. Большинство характеристик опор рассчитываются аналогично опорам с обычными системами питания. Исключение составляют расчет жесткости масляного слоя, несущей способности и динамических характеристик опор. При расчете этих параметров, кроме уравнения равновесия опоры и неразрывности потока масла, необходимо использовать уравнение, определяющее соотношение давлений, устанавливаемых АСП.  [c.100]


Выбор типов механизмов и типа стенда определяется следующими основными задачами исследования решением вопросов синтеза механизмов, выбором структуры и системы управления автомата (например, ограничение угла поворота ведущего звена механизма на участке холостого хода автомата или обеспечение заданного соотношения времени движения и выстоя) повышением быстроходности или быстродействия при соблюдении заданных невысоких требований к точности конечных положений, координат, углов поворота повышением быстроходности и быстродействия при высоких требованиях к точности конечных положений— координат, углов поворота (здесь предъявляются особо высокие требования к закону движения) увеличением грузоподъемности или нагрузочной способности улучшением равномерности движения повышением надежности срабатывания получением данных для усовершенствования методов моделирования и расчета уточнением способов регулировки механизмов торможения ведомых звеньев или разгрузки его опор отбором механизмов, удовлетворяющих комплексу заданных параметров и характеристик (из нескольких вариантов) уточнением области применения данного механизма прогнозированием измерения динамических характеристик по мере износа деталей механизма.  [c.56]

Задачами этого исследования являлись обоснование и выбор основных критериев качества механизма поворота и механизма двойной фиксаций выявление влияния различных параметров, изменяемых при эксплуатации и наладке поворотного стола (вес и момент инерции приспособлений, разгрузка опор, давление при повороте и реверсе, путь реверса), на его динамические характеристики исследование факторов, влияющих на точность и стабильность фиксации и ограничивающих быстроходность поворотного стола получение данных, необходимых для исследований динамики механизмов этого типа на математической модели.  [c.68]

Для второго этапа уравновешивания с учетом влияния гибкости ротора необходимы специальные балансировочные машины или стенды. Скорость враш,ения здесь существенно выше, может изменяться в диапазоне до рабочей и даже до угонной скорости вращения. Опоры балансировочных машин или стендов должны быть изотропными, т. е. обладать одинаковыми динамическими характеристиками для всех радиальных направлений.  [c.161]


При таком представлении мы приходим к задаче, подобной поставленной, т. е. к расчету вынужденных колебаний, но уже не всей системы, а лишь оставшейся части ее. Решив эту задачу в общем виде, можно определить податливости правой части системы в месте деления. В применении к левой части эти податливости могут рассматриваться как динамические характеристики крепления ее конца, т. е. расчет вынужденных колебаний сложной системы может быть заменен двумя более простыми расчетами ее частей. Продолжим такое деление, преследуя цель свести расчет по определению податливостей многопролетной балки со ступенчатым изменением сечения, лежащей на податливых опорах, к группе простых и сходных по своей структуре и используемым формулам расчетов.  [c.250]

На основе амплитудно-частотных характеристик опор, полученных при испытаниях, строят кривые динамических податливостей (рис. 132).  [c.301]

Опоры турбоагрегата — Динамические характеристики 301, 302  [c.541]

Погрешность е возникает в связи с износом опор и других ответственных поверхностей СП. Износ опор СП зависит от их конструкции, размеров, материала и термической обработки материала, твердости, массы заготовки и состояния ее технологических баз способа установки заготовки на опоры и съема обработанной детали с опор динамических характеристик процесса резания основного технологического времени оснащаемых операций.  [c.176]

Расчет гидроопор силового агрегата последовательно сводится к расчету жесткости опоры, внутреннего демпфирования и динамических характеристик гидроопоры в зависимости от частоты и амплитуды кинематического возмущения.  [c.55]

Динамические характеристики аэростатических опор и направляющих значительно ниже характеристик гидростатических направляющих. Демпфирующая сила в первом приближении пропорциональна вязкости смазочной среды, а так как вязкость масла индустриального 45 примерно в 10 ООО раз больше вязкости воздуха, то соответственно различается и демпфирование. Амплитудно-частотные характеристики колебаний узлов на аэростатических направляющих фиксируют резонансные пики преимущественно в диапазоне частот 50—150 Гц. В закрытых направляющих амплитуда вынужденных колебаний обычно значительно меньше, чем амплитуда колебаний в открытых направляющих.  [c.161]

Число карманов и их форму выбирают экспериментально и по опыту эксплуатации гидростатических опор в шпиндельных узлах станков. Предпочтительным является четное (четыре и более) число карманов, которое обеспечивает хорошие динамические характеристики станков. При малом числе карманов проявляется неравномерность жесткости и нагрузочной способности (рис. 168) в зависимости от направления внешней силы на середину кармана (кривые 1) или на середину перемычки (кривые 2).  [c.194]

Динамические характеристики. В процессе сборки опытного образца гидроусилителя на плоском золотнике не применялся вязкий демпфер и при подаче небольшого возмущения в любой точке системы наблюдались колебания с возрастающей амплитудой. В дальнейшем, чтобы обеспечить требуемую устойчивость системы, плоский золотник был соединен с вязким демпфером. Вязкое демпфирование создавалось при помощи небольшой пластины, установленной на вертикальных подвесных пружинах таким образом, что она закрывала, но не касалась расположенных рядом вертикальных опор, как показано на фиг. 8.18.  [c.321]

Основным назначением упруго-демпферных опор является снижение общего уровня вибраций роторов и всего двигателя в целом и устранение опасных резонансных колебаний. С этой целью основные параметры и характеристики опор — коэффициенты жесткости, демпфирующие способности, место расположения—должны быть согласованы наилучшим образом с динамическими характеристиками роторов в системе двигателя. Такое согласование должно производиться весьма совершенными методами с привлечением современной вычислительной техники еще в процессе проектирования двигателя. Изменение динамических характеристик уже построенного двигателя в процессе доводки весьма затруднительно и требует существенной переделки его конструкции.  [c.368]


Рассмотрим расчет динамических характеристик радиальных шпиндельных опор с дроссельной системой питания. При расчете параметров опор вращение шпинделя, его перекос и деформацию не учитывают. Систему уравнений, описывающих динамическое состояние (см. рис. 25,6), можно представить  [c.47]

При вибрационных обследованиях проводили измерение вибрации подшипниковых опор электродвигателей, редукторов, нагнетателей, элементов фундаментов и трубной обвязки нагнетателя выявление амплитудно-частотных характеристик при пусках и остановках агрегатов снятие спектральных характеристик редукторов, нагнетателей и подшипниковых опор динамическую балансировку роторов электродвигателей в собственных подшипниках выявление расцентровок электродвигатель—редуктор-нагнетатель и др. В результате выявлены как механические, так и электрические причины повышенной вибрации остаточная неуравновешенность ротора электродвигателя, о чем свидетельствуют многочисленные пуски двигателя без редуктора остаточная неуравновешенность колеса редуктора неуравновешенность, вызванная смещением текстолитовых клиньев и смещением пазовых латунных клиньев от чрезмерного нагрева нарушения жесткости подшипниковых опор из-за разрушения текстолитовых изоляционных шайб большие зазоры в подшипниках (0,45—0,6 мм), что приводило к срыву масляного клина (масляное биение) осевое давление ротора на вкладыш вследствие несовпадения магнитных осей ротора и статора в переходных процессах при работе агрегата под нагрузкой межвитковое замыкание в обмотке возбуждения.  [c.28]

В образцах в зависимости от их форм и размеров, типа возбудителя и приемника, способа крепления и схемы приложения динамической нагрузки можно возбуждать продольные, изгибные, крутильные и более сложные виды колебаний. Данный метод можно использовать также при вибрационных испытаниях крупногабаритных изделий, однако при этом существенно изменяется методика испытаний, способы приложения нагрузок, а также способы возбуждения и регистрации колебаний. Метод используется также при оценке интегральной жесткости крупногабаритных конструкций [11, 22] и не может быть использован при локальном определении физико-механических характеристик в изделии. Для практического применения этого метода необходимо знать геометрические размеры изделия и плотность материала, обеспечить условия закрепления изделия на опорах и преобразователей на изделии, а также нормальные температурно-влажностные условия окружающей среды.  [c.87]

Динамические графы эквивалентных одно- и двухступенчатых планетарных передач соответствуют схематизации, принятой при рассмотрении этих передач с учетом упругих свойств подшипниковых опор сателлитов. Планетарная передача представляется в виде условной с безынерционным водилом, которое связано с конструктивным водилом передачи, соединением, эквивалентным по своей упругой характеристике подшипниковым опорам сателлитов. Динамический граф эквивалентной планетарной передачи характеризует динамическое поведение условной передачи с безынерционным водилом. Динамическую схему полной планетарной передачи (с конструктивным водилом) получим в виде трехмассовой разветвленной схемы (рис. 61, а—в). Эта схема, помимо динамического графа соответствующей эквивалентной передачи, включает массу 3 и ветвь 3, 3. Масса 3 с коэффициентом инерции Js> является схемным динамическим образом конструктивного водила. Ветвь 3, 3 характеризует упругие свойства подшипниковых опор сателлитов. Коэффициент инерции /з- представляет собой массовый момент инерции конструктивного водила передачи относительно собственной оси вращения. Коэффициент жесткости ветви 3, 3 определяется по формуле  [c.136]

При учете упругих свойств подшипниковых опор сателлитов будем рассматривать условный конический дифференциал с безынерционным водилом, связанным с конструктивным водилом конического дифференциала соединением, эквивалентным по своей упругой характеристике подшипниковым опорам сателлитов. При такой схематизации конический дифференциал по числу звеньев и структуре уравнений связей не отличается от планетарного ряда. Динамическое поведение условного конического дифференциала будет характеризоваться схемным эквивалентом или динамическим графом, структурно не отличающимся от графа планетарного ряда (см. рис. 60). Как и для планетарного ряда, для конического дифференциала можно получить три динамических графа, соответствующие трем возможным базам графа — основным звеньям 1,2,3 (см. рис. 60, б—г).  [c.144]

Как правило, перепад уровней вибрации между опорными поверхностями амортизатора составляет 10 дБ и более, поэтому его характеристики достаточно определить в условиях жесткого закрепления одной из опорных поверхностей. Входная динамическая жесткость амортизатора, равная отношению амплитуды гармонической силы или момента на входной опорной поверхности к комплексной амплитуде перемещения этой же поверхности, существенно влияет на колебания механизма только в области низких частот. С повышением частоты входная динамическая жесткость амортизатора определяется в основном инерцией его арматуры. Поэтому, если масса арматуры присоединяется к массам механизма и фундамента, при расчете в этом диапазоне частот жесткость можно не учитывать. Потери же колебательной энергии в резиновом массиве составляют существенную часть от общих потерь в системе в широком диапазоне частот. Демпфирующие свойства амортизатора можно характеризовать потерями энергии, отнесенными к квадрату амплитуды перемещения одной из опор-  [c.89]


Эти характеристики позволяют наглядно представить динамические свойства вала, имеющего нелинейные упругие опоры. Амплитудная характеристика (III. 16) представлена на фиг. 59.  [c.121]

Волновые механизмы, работающие на основе использования поперечной бегущей волны на гибкой связи, сцепленной с опорой, могут выполнять те же функции, что и механизмы, использующие продольную волну. Различия здесь будут заключаться лишь в характере кинематических и динамических зависимостей, величинах параметров, силовых характеристиках, величинах к. п. д., в возможностях технической реализации. Если представить себе поперечную и продольную бегущие волны, у которых эпюры продольных деформаций е или линейной плотности рд. (см. рис. 5.7) одинаковы, и проанализировать горизонтальные движения их точек, то можно прийти к выводу, что эти волны вызовут одинаковые горизонтальные перемещения деформируемых тел, т. е. функции этих волн как движителей совпадут.  [c.146]

В работе рассмотрены вопросы построения корректных динамических схем различных типов планетарных редукторов и дифференциальных механизмов. При построении схем учтены упругие свойства подшипниковых опор сателлитов и механические связи, наложенные на звенья передач. Предполагается, что оси сателлитов передач располагаются на безынерционном водиле, которое связано с конструктивным водилом упругим соединением, эквивалентным по своей характеристике (в отношении крутильных колебаний) подшипниковым опорам сателлитов.  [c.428]

Динамические характеристики опор с воздушной смазкой связаны с появлением и возможным развитием колебаний с частотой, равной половине частоты вращения (полускоростной вихрь), и колебаний с частотой, равной частоте вращения (синхронный вихрь). Первый вид колебаний обусловлен некруглостью шейки шпинделя, а второй остаточным дисбалансом шпинделя и связанных с ним деталей. Малые эксцентриситеты (е < 0,2) колебаний типа полускоростного или синхронного вихря приводят к тому, что центр вала совершает движение с траекторией, весьма близкой к окружности. Лишь при больших нагрузках и соответственно больших значениях относительного эксцентриситета траектория движения центра шпинделя видоизменяется в эллипс. Основными способами устранения вредного влияния колебаний является ослабление самих источников появления полускоростного и синхронного вихрей — повышение точности формы шейки шпинделя и тщательная балансировка шпиндельного узла вместе с комплектом сопряженных деталей. В качестве примера конструктивного оформления шпинделя на воздушных опорах на рис. 172 приведена  [c.199]

При значениях параметра выше критического (при котором i 2 = 0) система неустойчива. Это иллюстрируют кривые рис. 7, построенные для 7V = 4, га = 1,4. Сплошные линии соответствуют I = 10, пунктирные — i = 100. Средством возможного увеличения запасов устойчивости является увеличение N, что может представлять интерес в области низких I. На рис. 8 показано, как деформируются при этом границы устойчивости статических опор С2 (пунктирные линии) по сравнению с астатическими А2 (сплошные линии). Кривые построены для В = 2000 кгс, га = 1,4, ho = 5 см, = 0,1, i = 100 (штрихпупктирная кривая соответствует ho == 0,5 см). Влияние остальных параметров на динамические характеристики рассматриваемой системы остается прежним, т. е. таким же, как и для системы А2.  [c.125]

При исследовании мальтийских механизмов с криволинейными пазами [48] размеры шестипазовых мальтийских крестов были выбраны такими же, как и у мальтийских механизмов с внешним зацеплением. У креста с пазами, образованными сопряжением дуг окружности с прямолинейными участками, удалось увеличить углы выстоя с 240° до 270—280 без ухудшения кинематических и динамических характеристик (при опорах скольжения). Однако эти механизмы не имеют особых преимуществ по быстроходности  [c.66]

Влияние предварительного нагружения на динамические свойства материалов было показано на рис. 3.8. Во многих случаях, например для опор двигателя, этот эффект довольно важен, особенно когда требуется достичь хороших изолирующих характеристик при высоких частотах колебаний. Здесь также учитывается влияние температуры окружающей двигатель среды. Так, для того чтобы изготовить резиноподобные материалы с разнообразными изолирующими и демпфирующими характеристиками, необходимо изучить их свойства как функции динамических и статических деформаций. Однако, поскольку здесь возможно большое число комбинаций параметров, становится трудным организовать испытания материалов. С другой стороны, можно использовать подход, при котором влияние различных внешних условий можно разграничить так, что будет достаточно провести испытания заданного материала для определения как статических, так и динамических характеристик порознь, а затем воспользоваться аналитическими методами для оценки их совместного влияния. В работе [3.11] была предложена общая теория комбинированного линейного динамического и нелинейного статического поведения вязкоупругих материалов. Аналогичный подход, дающий более простые результаты и основанный на уравнении Муни — Ривлина [3.12, 3.13], обсуждается ниже. Сначала рассматривается нелинейное статическое представление на основе уравнения Муни — Ривлина, а затем оно распространяется на динамическое поведение  [c.124]

Виброизолирующие опоры. ЭНИМС совместно с НИИ резиновой промышленности разработал конструкции резино-металлическпх виброизолирующих опор ОВ-30 и ОВ-31 и резиновых виброизолирующих ковриков КВ-1 и КВ-2. Опоры и коврики изготовляют из резины с высокой маслостойкостью, малой ползучестью и с хорошими динамическими характеристиками.  [c.479]

Гидроупругие настроенные виброизоляторы для турбовентиляторных двигателей. Шум в кабинах и салонах самолетов, оборудованных турбовентиляторными двигателями, включает доминирующие дискретные частоты, соответствующие оборотам роторов и кратным гармоникам. Гидроупругие настроенные виброизоляторы (гидроопоры) улучшают комфорт пассажиров путем уменьшения или исключения этих гармоник. Эти опоры двигателя специально проектируются для уменьшения величины структурно порождаемых возмущений от двигателя на этих частотах. Они настраиваются для каждого самолета, чтобы оптимизировать эту характеристику, и могут быть спроектированы так, чтобы предложить широкий диапазон динамических характеристик, чаще всего без изменения размеров опор или устройств крепления. Лорд спроектировал гидроупругие настроенные виброизоляторы (гидроопоры) для двигателей FM-56, PW2037 и JT15D. Эти виброизоляторы закрыты внутри корпуса и жидкость находится в замкнутых герметичных объемах. Система не требует дополнительного обслуживания.  [c.133]

В астоящее время все прецизионные станки поставляются с комплектом виброопор. Отечественные виброизолирующие опоры ОВ-30 и ОВ-31 и резиновые виброизолирующие коврики КВ-1 и КВ-2 позволяют осуществлять виброизоляцию и бесфундаментную установку большинства типов металлорежущих станков, а также и других машин и приборов. Опоры п коврики изготавливаются из резины высокой маслостойкости, малой ползучести и с хорош ими динамическими характеристиками.  [c.200]

На Московском заводе автоматических линий и специальных станков спроектировано и изготовлено устройство для динамической балансировки шпиндельного узла непосредственно на бесцентровом круглошлифовальном станке. Составные части балансирующего устройства представлены на рис. 4.16, а. Узлы корректировки масс 1 располагаются вне опор шлифовального круга 2. Такая компоновка обеспечивает хороший доступ к балансировочному устройству и не изменяет динамических характеристик шпиндельного узла. Редуктор 3 механизма корректировки масс располагается со стороны свободного торца шпинделя и приводится в действие в зависимости от показаний датчиков вибраций 4, регистрируемых блоками измерения 5. Балансировочные массы представляют собой два неуравновешенных кольца, встроенных в вьггочки кулачковой полумуфты и опорного подшипника соответственно со стороны привода и со стороны свободного торца шпинделя.  [c.156]


Наибольшее влияние гидростатические опоры шпинделя оказывают на динамические характеристики. Виброустойчивость при растачивании на черновых и чистовых операциях повышается более чем в 2 раза и 1,3 раза соответственно (по сравнению с виброустойчивЬ-стью шпинделя на опорах качения).  [c.696]

Значения давлений и скоростей рабочего тела в различных элементах проточной части ТНА даже на установившемся, расчетном режиме работы распределяются неравномерно. На выходе из колеса насоса имеется высокая степень пульсации давления в потоке, вихревое взаимодействие с потоком в боковой пазухе насоса. В открытых и полуоткрытых центробежных колесах и импеллерах пульсации и неравномерность давления сушествуют в радиальном направлении. Пульсации давления, возбуждаемые в потоке любым элементом гидравлического тракта, передаются в соседние полости, усиливаясь или ослабевая, и оказьшают существенное влияние на работу узлов, устройств насосного агрегата и на их динамические характеристики. Например, пульсации давления, возникающие при вращении лопаток импеллера, вызывают колебания давления в полостях щелевого уплотнения с плавающим кольцом и нарушают его устойчивую работу, влияют на направление потока жидкости, охлаждающего подшипник, а также значение и характер осевой и радиальной сил, что изменяет нагрузку на ротор и его опоры. Это влияние приводит к нерасчетному режиму работы элементов ТНА, изменяет характеристики и работоспособность агрегата в целом.  [c.266]

Однако в действительности это не так странно. Рассмотрим, например, самолет, формы и частоты колебаний которого можно установить с помощью стендовых испытаний, о чем мы упоминали выше. Основной интерес представляют динамические характеристики самолета в воздухе, но испытания приходится проводить на земло. Поэтому необходимо обеспечить соответствующее опира-ние самолета, т. е, характеристики опор должны быть такими, чтобы не допустить существенного влияния установки на результаты испытаний. Установлено, что это требование выполняется, если самолет установлен на мягких пружинах — обычно при испытаниях понижают давление в его шинах. Самолет в воздухе, т. е. лишенный опор, можно рассматривать как часть системы, содержащей самолет и те опоры, которые имеются при резонансных испытаниях на земле.  [c.69]

Опорно-рамное подвешивание ТЭД (рис. 1.9) применяется в основном на пассажирских тепловозах. На тепловозе ТЭП70 вращающий момент передается через редуктор, большая шестерня которого вращается в подшипниках на полой опоре. Ступица большой шестерни соединена поводками с фланцем полого карданного вала. На противоположном конце вала укреплен приводной фланец. Пальцы приводного фланца соединяются поводками с пальцами колесных центров. Поводки образуют шарнирно-рьиаж-ную муфту с резинометаллическими шарнирами, соединяющую полый вал с колесной парой. При опорно-рамном подвешивании ТЭД опирается на раму тележки, что значительно снижает массу неподрессоренных частей тепловоза и улучшает его динамические характеристики.  [c.13]

Динамические характеристики регулятора для замкнутых опор. Выбором параметров и конструктивной схемы регулятора можно влиять на характер переходного процесса, который в большинстве случаев является монотонным вследствие большого усилия демпфирования кольца регулятора, возникающего при выдавливании масла из щели большой протяженности. При этом постоянная времени т=6д//С и полоса пропускания /п = 1/(т2я), где 6д — коэффициент демпфирования, определяемый по (25) К — коэффициент гидравлической жесткости кольца регулятора, численно равный изменению усилия, действующего на кольцо при его смещении (если статическое смещение кольца равно нулю, /С—18,5flpTi (рн—Pi)/(2Ap).  [c.89]

При диагностировании гидросистемы контролируются параметры пл — угловая скорость планшайбы — давление у насоса — давление на входе гидромотора Qq — расход насоса Ок.вых — расход на сливе предохранительного клапана Мгм — момент на валу гидромотора Рзаж, раз — давления в системе зажима и разгрузки планшайбы соответственно . Si зол и б зоя — перемещения золотников гидропанели. Знак + свидетельствует о том, что величины указанного параметра находятся в пределах, близких к нормальным знак — указывает на значительное отклонение параметра от нормальных значений. Анализ данной схемы подтверждает, что при выполнении проверок и измерении указанных параметров представляется возможным обнаружение основных дефектов. На схеме основная цепочка работоспособности проходит но линии параметров СОпл дв, Pi, Рзат, Р раз, Мгм- в этом случае гидравлическая и электрическая системы работоспособны и дефекты находятся в механической системе стола. Обозначенные связи предлагают возможную последовательность поиска дефектов гидросистемы поворотного стола. Для дальнейшего поиска дефектов и анализа работоспособности гидросистемы целесообразно провести проверку электрической системы. При наличии нескольких конечных выключателей ВК, электромагнитов, реле давлений и электрических реле, управляющих работой электропривода и гидроаппаратуры, а также взаимных блокировок, полная схема диагностических проверок представляется достаточно сложной. Однако, для обнаружения причин отсутствия функционирования может использоваться упрощенная схема, показанная на рис. 3, б. Наличие дефектов механической системы стола может быть выявлено проверкой по схеме рис. 3, в. Однако выявление и интерпретирование дефектов механической системы при нефункционирующем объекте усложнено отсутствием контроля необходимых параметров, и в ряде случаев необходима частичная разборка узла или замена некоторых механизмов. Функционирующий стол может быть работоспособен и неработоспособен. Неработоспособный стол характеризуется выходом за допустимые пределы основных параметров, т. е. наблюдается потеря точности, быстроходности, а также значительно возрастают нагрузки в приводе и механизме фиксации. Потеря точности зависит от следующих факторов нестабильности скорости планшайбы в момент фиксации Дшф, нестабильности давления в системе поворота ДРф и разгрузки АР раз, наличия зазоров в механизме фиксации и центральной опоре, нестабильности характеристик жесткости упоров и усилий фиксации. Потеря быстроходности зависит от расхода Q и давления в системе поворота Р и разгрузки Рраз. от наличия колебательного движения планшайбы, характеризуемого коэффициентом неравномерности — б , и от длительности процесса торможения <тор- Высокие динамические нагрузки в приводе и механизме фиксации F определяются величинами скорости поворота и фиксации, давлением в системе поворота и разгрузки,  [c.86]

Механизмы позиционирования с фиксацией. Увеличение концентрации обработки в переналаживаемом оборудовании, автоматизация смены инструмента и их блоков, применение спутников, создание разветвленных систем для их транспортировки и установки требуют использования механизмов позиционирования с фиксацией. Рассмотрим более подробно поворотно-фиксирую- щие механизмы, получившие особенно широкое применение в автоматическом оборудовании. Они используются в токарных автоматах для позиционирования шпиндельных блоков, многопозиционных агрегатных станках для поворота и фиксации столов и барабанных приспособлений, станках с ЧПУ для поворота револьверных головок, магазинов, делительных столов, а также в манипуляторах для смены инструмента. За последнее время и для смены многошпиндельных головок при последовательной обработке, на однопозиционных и агрегатных станках группы различных деталей также все чаще применяются столы с поворотно-фикси-рующими устройствами. К ним предъявляются те же требования, что и к механизмам позиционирования. Отличие заключается в том, что точность позиционирования здесь зависит в основном от механизма фиксации, а при прерывистом повороте надо создать благоприятные условия для фиксации и ограничить динамические нагрузки с целью увеличения долговечности деталей и уменьшения погрешности позиционирования. Быстроходность и быстродействие при этом являются наиболее важными общими характеристиками всего поворотно-фиксирующего устройства и определяются в значительной степени видом закона движения (рис. 1.2), моментом инерции поворачиваемых масс, координацией поворота и фиксации и в меньшей степени колебаниями, возникающими при фиксации. На общую длительность цикла работы поворотно-фиксирующего механизма оказывает существенное влияние работа устройств освобождения опор и зажима поворачиваемого узла, что будет рассмотрено ниже. Те же факторы существенны и для случая прерывистого поступательного движения с фиксацией конечных положений. Исследование характеристик большого числа  [c.28]


Смотреть страницы где упоминается термин Динамические характеристики. опор : [c.27]    [c.538]    [c.37]    [c.399]    [c.322]    [c.7]    [c.97]    [c.194]   
Смотреть главы в:

Вибрации в технике Справочник Том 3  -> Динамические характеристики. опор



ПОИСК



Динамические характеристики опор и виброустойчивость станков

НДС и динамических характеристик

Опоры турбоагрегата — Динамические характеристики



© 2025 Mash-xxl.info Реклама на сайте