Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полоса пропускания

Соотнощение между измеряемой величиной и термодинамической температурой оказывается очень простым, однако шумовая термометрия не используется в качестве основного метода первичной термометрии. Причина заключается в том, что не удается достаточно точно измерить напряжения порядка нескольких микровольт и при этом избежать посторонних источников шума, как теплового, так и нетеплового происхождения, а также сохранить постоянными полосу пропускания и коэффициент усиления измерительных приборов. В шумовой термометрии, несмотря на достигнутые за последние годы успехи, остается еще много нерешенных проблем. Точность измерения термодинамической температуры шумовым методом, кроме области очень низких температур, намного ниже точности других первичных термометров. По этой причине, не вдаваясь в подробности предмета шумовой термометрии, рассмотрим в общих чертах основные принципы тех приемов, которые применялись на практике.  [c.113]


Для типичной полосы пропускания 100 кГц и АТ/Т З-10 необходимое время измерения составляет около 5 мин. Для повышения точности в 10 раз необходимо в 100 раз увеличить время измерения. Обычными средствами это сделать трудно, поскольку поддержание стабильности характеристик усилителя в течение столь долгого периода является весьма сложной задачей.  [c.114]

Характеристики входного каскада усилителя, такие, как чувствительность, полоса пропускания и собственный уровень шумов, не должны зависеть от импеданса источника шума.  [c.116]

Измеренное значение Р позволяет вычислить температуру Т (величина Р в расчет не входит) при условии, что известны полоса пропускания и коэффициенты усиления усилителей тока и напряжения.  [c.118]

В измерительной схеме рис. 3.17 чувствительный усилитель напряжения с высоким входным импедансом и чувствительный усилитель тока с низким входным импедансом подключаются к одному и тому же источнику шума. Эффективная полоса пропускания системы составляет около 40 кГц при среднем значении частоты 45 кГц. Точность определения температуры зависит от стабильности усилителей, особенно от их внутренних  [c.118]

Ответ Полоса пропускания V  [c.431]

Ответ Полоса пропускания определяется неравенством  [c.431]

Для электронного усилителя выходные параметры — полоса пропускания, коэффициент усиления на средних частотах, входное сопротивление, мощность рассеяния  [c.22]

Отметим, что существуют и другие методы малого параметра, определения периодических режимов, которые не предполагают наличия порождающего решения, а исходят из так называемой гипотезы фильтра [1, 2], которая опирается на наличие у любой реальной системы конечной полосы пропускания частот.  [c.119]

Усилители — устройства, позволяющие получить на их выходе сигнал, подобный сигналу управления, подаваемому на их вход, но обладающий большей мощностью за счет преобразования энергии источников питания в энергию сигнала на выходе. Усилители характеризуются полосой частот колебаний, которые они могут усиливать, и в зависимости от ее ширины подразделяются на усилители узкополосные, широкополосные и усилители постоянного тока (с полосой пропускания от О Гц, т. е. постоянного тока).  [c.165]

Контур настраивается на усиливаемую частоту / = —— , Полоса пропускания усилителя при уменьшении коэффициента усиления в ее  [c.167]

В низкочастотных широкополосных апериодических усилителях нагрузкой Z является активное сопротивление R . В этом случае полоса пропускания в области нижних частот ограничивается емкостью  [c.167]


В усилителях мощности и усилителях высокой частоты нагрузку часто включают через трансформатор. В этом случае первичную обмотку трансформатора включают вместо Z , а во вторичную цепь трансформатора включают нагрузку. В усилителях высокой частоты это позволяет уменьшить сопротивление Rbh и, следовательно, полосу пропускания, а в усилителях низкой частоты согласовать нагрузку с усилительным при ром и тем самым увеличить мощность, отдаваемую в нагрузку.  [c.168]

Полоса пропускания усилителя.  [c.168]

Полосы пропускания интерферометра Фабри-Перо малой толщины, используемого в качестве интерференционного фильтра  [c.253]

Для измерения спектров поглощения полупроводников (или диэлектриков) применяют монохроматор, который выделяет узкую полосу длин волн (АХ) источника излучения. Длина волны к, соответствующая центру спектральной полосы, может меняться. Поэтому монохроматор представляет собой настраиваемый фильтр, обладающий полосой пропускания Ак или Дсо и раз решен,ием Ак/к=А<а/о).  [c.167]

С помощью частотных характеристик можно не только определить динамическую погрешность, но и в целом оценить пригодность средств измерений для решения той или иной конкретной задачи. В частности, с помощью амплитудно-частотной и фазочастотной характеристик можно установить область частот нормальной работы средств измерений или рабочую полосу пропускания частот.  [c.139]

Рабочей полосой пропускания частоту называют диапазон частот, в котором отклонение параметров А (ю) и ф(со) от их значе ннй, соответствующих uj = 0, не превышает допустимых значений.  [c.139]

F ВЕРХИ — (максимальное значение полосы пропускания),  [c.202]

Шумовой термометрии присуща еще одна особенность, связанная со статистической природой измеряемой величины. Если сравнить два источника найквистовского шума при различных температурах, то для данной полосы пропускания стандартное отклонение величины К , а именно за время измерения t определяется соотношением  [c.114]

КОЙ температурой в цепь усилителя вводится точный аттенюатор. На рис. 3.15 приведена блок-схема, поясняющая принцип действия метода равных сопротивлений. Как всегда в таких случаях, предварительная ступень усилителя выполнена на полевых транзисторах. Метод равных сопротивлений требует определения собственного шума усилителя, поскольку он входит в измеряемые шумовые сигналы неодинаково. Кроме того, часть усилителя, находящаяся перед аттенюатором, должна обладать высокой линейностью. Параллельно аттенюатору включается схема компенсации, которая обеспечивает равенство полосы пропускания частот для двух сигналов. Переключатель, основанный на механическом принципе, работает на частоте 30 Гц и вносит незначительные помехи в цепь усилителя. Переключатели на входе и в цепи заряда запоминающих конденсаторов работают в противофазе, что позволяет подавить наводки, связанные с переключением. Кровини и Эктис [21] измерили отношение термодинамических температур с точностью в 2-10 (на уровне За), что составляет 0,25 К при 1000 К-  [c.117]

Система больщого числа масс т, насаженных на расстоянии а друг от друга на струну АВ, натянутую с усилием Т, и поддерживаемых пружинами жесткости с, является полосовым механическим фильтром поперечных колебаний. Вычислить Частоты, отвечающие границам полосы пропускания.  [c.431]

Для восприятия лучистой энергии используют различные приемники термобатареи, болометры, термисторы II т. д. Спаи термопар, чувствительные элементы болометров и термисторов хорошо зачернены с целью создания неселективности термоприемников в широком диапазоне длин волн. Однако следует заметить, что к данным, полученным радиационным методом, следует относиться с осторожностью. Необходимо учитывать, что для увеличения чувствительности метода применяют линзы и другие фокусирующие устройства кроме того, часто используют радиационные пирометры. Использование оптических элементов приводит к тому, что приемник воспринимает излучение неполно и в ограниченной области спектра. Поэтому, как оправедливо отмечено в [131], использование пределов интегрирования, показанных в формуле (6-69), не правомерно. В этом случае степень черноты интегральна лишь в пределах полосы пропускания оптической системы, т. е.  [c.164]


Отмечая эти точки на частотной характеристике (рис. VI.20) и вспоминая о наличии полосы пропускания, благодаря чему практически оказывается необходимым рассмотреть лишь конечное (и обычно небольшое) число таких точек, мы можем для каждой из этих точек определить модуль частотной характеристики и ее аргумент и, подставив их в формулу (73), найти вынужденное колебание. Этот ряд можно изобразить графически, откладывая в точках О, Q, 2Q,. .. оси Q значения амплитуд гармоник Ak и соответствующих сдвигов фаз ф (рис. VI.21). Такой график называется линейчатым спектром воздействия. Аналогично возникающее в результате вынужденное движение также представимо рядом Фурье и изображается своим линейчатым спектром. Частотная характеристика W (02) в этом случае играет роль оператора, преобразующего линейчатый спектр возмущающей силы в линейчатый спектр вынужденного движения.  [c.251]

ФИЛЬТРЫ ПОЛОСОВЫЕ пропускают сигналы в некоторой полосе частот меяоду и ffj, которая является полосой пропускания фильтра.  [c.77]

Как известно из радиотехники, объем передаваемых информаций в едииицу времени пропорционален ширине полосы пропускания и растёт с уменьшением длины волны. По этой причине лазерное излучение является очень выгодным носителем информации. Следует отметить, что при переходе к связи — передаче информации с помош,ью лазерного излучения — возникают своего рода технические трудности (необходимость в светоотводах, трудности модуляции и демодуляции на высоких частотах и т. д.).  [c.389]

В заключение остановимся на принципе действия интерференционных фильтров, получишпих за последние годы широкое распространение. Интерференционный фильтр — это устройство, позволяющее пропустить значительную часть светового потока в определенной узкой области длин волн. Ширина полосы пропускания Л/, обычно составляет несколько десятков ангстрем. Принцип действия подобного фильтра понятен, если представить себе интерферометр Фабри —Перо с очень ма- сьсм расстоянием I между пластинами.  [c.253]

Используя формулы (8.54) и (8.55), можно оценить относительное влияние тех или иных параметров измерительной установки на величину полезного сигнала. Так, например, для повьппения чувствительности фотоэлектрических измерений часто используется уменьп1ение Д/ (частотная полоса пропускания), приводящее к уменьшению флуктуаций, возникающих как из-за дробового эффекта, так и теплового движения электронов. В усилителях постоянного тока это достигается увеличением произведения ВС (С — емкость конденсатора) и неизбежно приводит к увеличению времени регистрации (записи) сигнала, что не всегда желательно.  [c.441]

Фотоэлемент 12 и осциллограф 13 позволяют исследовать временные характеристики генерации ОКГ. В задаче используют коаксиальный фотоэлемент ФЭК-09, обладающий высоким временным разрешением ( 10 с), который присоединен к осциллографу через разделительный конденсатор ТБПД-15 с помощью коаксиального кабеля с волновым сопротивлением 75 Ом. Осциллограф С1-15 с предусилителем С1-15/2 имеет полосу пропускания 20 МГц. Запуск осциллографа осуществляется исследуемым сигналом. Перед выполнением работы необходимо ознакомиться с описанием указанных приборов.  [c.300]

Важнейшей, по существу - осно)шой задачей проектирования, решаемой на системотехническом уровне лроектирования ОЭП, яляется обеспечение заданного по ТЗ соотношения сигнал/шум. Это требование удовлетворяется выбором полосы пропускания тракта и подбором специальной нелинейности. Проектанту ОЭП привычно пользоваться понятиями козффищ1ент усиления, транспортн 1Я задержка к, постоянные времени типовых звеньев т,, 7), Q , L , Таким образом, перечисленные па-  [c.28]

Характер спектральной характеристики ПЛЭ в общем случае определяется тем, относится ли ПЛЭ к тепювым (термоэлементы, болометры, пневматические, оптико-акустические, пироэлектрические ПЛЭ) или к фотоэлектрическим (фоторезисторы, фотодиоды, фототриоды, фотоэлементы, ЭОП, ФЭУ, телевизионные тр ки). Тепловые ПЛЭ неселективны спектральная чувствительность идеального теплового ПЛЭ постоянна во всем оптическом диапазоне (X) = onst. Однако у реальных ПЛЭ спектральный диапазон чувствительности ограничен, например, спектральной полосой пропускания оптических фильтров, используемых как элемент конструкции ПЛЭ. Поэтому спектральную характеристику даже идеализированного теплового приемника сл дует записывать  [c.66]

Отметим еще одно важное свойство i ауссовских процессов, которое можно использовать при статистическом анализе нелинейных систем. Плотность распределения вероятности случайного сигнала на выходе любого нелинейного элемента изменяется. Поэтому, если на входе такого элемента действует случайный сигнал с гауссовским законом шютности распределения вероятности, то на выходе сигнал уже не будет гауссовским. Если после нелинейного элемента сигнал поступает в линейное частотно-зависимое звено, у которого полоса пропускания меньше, чем полоса частот сигнала, то сигнал по своим свойствам приблизится к гауссовскому сигналу. Такое приближение тем точнее, 1ем е полоса пропускания линейного звена по отношению к спектру сигнала на выходе нелинейного звена [ 16]. Это свойство случайных сигн шов позволяет упростить анализ и синтез тракта ОЭП при воздействии случайных сигналов.  [c.115]

DF1 = шаг разбиения полосы п юпускания электронного тракта (Гц) DFZ = максимально возможнее значение полосы пропускания электронного тракта (Гц)  [c.180]

DFDP = минимально возможн эе значение полосы пропускания электронного тракта (Гц),  [c.180]

F НИЖН — (значение нижней границы полосы пропускания всего электронного тракта).  [c.202]


Смотреть страницы где упоминается термин Полоса пропускания : [c.115]    [c.52]    [c.22]    [c.168]    [c.254]    [c.441]    [c.92]    [c.177]    [c.265]    [c.149]    [c.182]    [c.183]    [c.184]    [c.202]    [c.202]    [c.203]   
Смотреть главы в:

Карманный справочник инженера-метролога  -> Полоса пропускания


Основы физики и ультразвука (1980) -- [ c.196 ]

Карманный справочник инженера-метролога (2002) -- [ c.22 ]

Колебания и волны Введение в акустику, радиофизику и оптику Изд.2 (1959) -- [ c.519 , c.524 ]



ПОИСК



Акустооптические анализаторы спектр ширина полосы пропускани

Блоховские волны полосы пропускания

Генераторы с общим источником шума и формирователем на фильтрах постоянной полосы пропускания

Дефектоскоп магнитный полоса пропускания

Лио — Эмана фильтры ширина полосы пропускания

Полоса пропускания управляющего

Полоса пропускания управляющего устройства

Полоса пропускания фильтра

Полосы непронускания, пропускани

Полосы пропускания и непрозрачности стопы четвертьволновых пластинок

Произведение внешнее на ширину полосы пропускани

Произведение мощности на ширину полосы пропускания

Произведение пространства на ширину полосы пропускания

Пропускание

Расширение полосы пропускания частот

Резонансный контур полоса пропускания

Фильтр механический полоса пропускания

Ширина относительная полосы пропускания частот бокового спектр

Ширина полосы пропускания

Ширина полосы пропускания и дисперсия

Ширина полосы пропускания лавинных фотодиодов

Эффективная полоса пропускания



© 2025 Mash-xxl.info Реклама на сайте