Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вихревое взаимодействие

Режимом вихревого взаимодействия называют режим обтекания, при котором  [c.204]

При рассмотрении вихревого взаимодействия обычно считают [24, 69], что соотношение между скоростью и линией тока, на которой она измеряется, не зависит от наличия пограничного слоя. Основным критерием подобия ви сре-вого взаимодействия является величина  [c.384]

Приближенный анализ проблемы вязкого взаимодействия [24] показал, что в окрестности точки торможении на осесимметричном затупленном теле, поверхность кото])Ого сильно охлаждается, напряжение трения на поверхности увеличивается вследствие вихревого взаимодействия в 1 + 4-0,49 П раза, а плотность теплового потока —в 1 +0, 9Х ХП раза.  [c.384]


Режим вихревого взаимодействия 204  [c.460]

Классическая теория ламинарного пограничного слоя не учитывает завихренности внешнего потока, а учитывает только скорость на внешней границе пограничного слоя. Имевшиеся попытки расширения теории Прандтля на этот случай, насколько нам известно, не получили достаточного развития. Разобранный эффект оттеснения линий тока при наличии вихревого взаимодействия может значительно исказиться, особенно вблизи передней затупленной кромки тела. Упомянем еще, что при гиперзвуковом обтекании вязким газом тонких тел вращения, помимо только что указанных эффектов, важен еще эффект поперечной кривизны тела, который в случае потоков малых скоростей проявляется лишь на сильно удлиненных тонких телах.  [c.705]

Решение задачи, согласно общим формулам (3.52), показывает, что в зависимости от начального расположения вихрей имеют место три основных типа движения прямое, обменное столкновения и взаимный захват. Такая терминология атомной физики, начиная с работы Х.Арефа [85], применяется в задачах вихревого взаимодействия. При этом характерная величина г/4 служит аналогом параметра соударения.  [c.99]

При небольших углах атаки предельные линии тока на поверхности плавно переходят с наветренной стороны тела на подветренную и сгущаются вблизи плоскости симметрии (Моо=6, а=5°, зис. 5.29, а). Следует отметить появление линии стекания в которой встречаются два потока и в результате вихревого взаимодействия газ сворачивается в вихревой жгут и сходит с поверхности. Можно заметить появление линии стекания 5з. При увеличении угла атаки (а=7°30, рис. 5.29, б) на подветренной стороне появляется особая седловая точка Q. В точке 5 формируется замкнутая зона возвратных течений. Линии стекания и 5з разделены промежуточной линией растекания е . Области течения разделены линией тока RQ на две области, в которые приходят частицы жидкости из разных областей. Увеличение угла атаки приводит к небольшим деформациям картины течения при изменении угла атаки до величины а=25°. При угле атаки а=15° можно заметить, что точка Р смещается вверх по потоку и намечается тенденция к из-  [c.305]

Если оценить толщину энтропийного слоя и сравнить с толщиной пограничного слоя в физических переменных, то в этом случае возникают различные ситуации. Если энтропийный слой намного толще пограничного слоя, то в этом случае пограничный слой развивается независимо. Если энтропийный слой намного меньше пограничного слоя, то происходит поглощение энтропийного слоя пограничным слоем. Режим взаимодействия и поглощения энтропийного слоя пограничным слоем характеризуется условием величина толщины энтропийного слоя и пограничного одного порядка. В приближении асимптотической теории задача о вихревом взаимодействии рассмотрена в работах [55—56]. Для осесимметрического случая переход течения из ламинарного режима в турбулентный связан с характером поверхности, ее шероховатостью и др.  [c.362]


Электромагнитная штамповка по принципу создания импульсно воздействующих на заготовку сил отличается от ранее рассмотренных (рис. 3,47, б). Электрическая энергия преобразуется в механическую аа счет импульсного разряда батареи конденсаторов через соленоид , вокруг которого при этом возникает мгновенное магнитное поле высокой мощности, наводящее вихревые токи в трубчатой токопроводящей заготовке 3. Взаимодействие магнитных полей вихревых  [c.114]

Исследования показали, что при кольцевом (периферийном) вводе потока в аппарат движение жидкости значительно сложнее, чем при обычном боковом. Струя, поступая в кольцо и взаимодействуя со стенкой корпуса аппарата, разделяется на две части, обтекает эту стенку и устремляется по инерции в противоположный конец кольца. Отсюда через щели в стенке корпуса аппарата она выходит в его полость. При этом создаются условия для двойного винтового (вихревого) движения (рис. 8.8, а). В результате распределение скоростей по сечению рабочей камеры аппарата получается неравномерным (Ai = 1,8-н2, табл. 8.3). Закручивание потока столь значительное, что сохраняется даже после установки в начале рабочей камеры плоской решетки. Поэтому и за решеткой неравномерность распределения вертикальных составляющих скоростей не устраняется (Л = = 1,5- 2,0). Только после наложения на плоскую решетку спрямляющего устройства в виде ячейковой решетки, устраняющей закручивание потока, достигается практически полное выравнивание скоростей по всему сечению (М — 1,08ч-1,10). Опыты показывают, что установка одного спрямляющего устройства без плоской решетки неэффективна (см. рис. 8.8, б), так как вследствие малого сопротивления это устройство не может выравнять скорости по величине.  [c.213]

Свой относительно небольшой вклад в рост эффектов охлаждения с увеличением вносит и дроссель-эффект (эффект Джоуля-Томсона). Если принять за физическую основу эффекта гипотезу взаимодействия вихрей, можно допустить что с ростом сдвиговых скоростей возрастают степень турбулизации вынужденного приосевого вихря и число образующихся парных вихрей в результате чего эффективность энергоразделения возрастает. Однако рост гидравлической нафузки в трубе вызывает обратное воздействие, что 6 оказывает превалирующее влияние и темп роста эффектов охлаждения заметно снижается, а затем и совсем прекращается. Поэтому с ростом давления на входе при неизменном давлении на выходе рекомендуется [161] для достижения оптимальной работы вихревой трубы по максимуму температурной эффективности снижать относительную площадь соплового ввода закручивающего устройства в соответствии с зависимостью (2.19).  [c.54]

Г, + 0,25А и Г-2+ 0,75А, у которых центры смещены вдоль вертикального радиуса на соответствующие расстояния (рис. 2.18) [116]. Оптимальное соотношение ширины Ь и высоты А прямоугольного канала в выходном сечении 6 А = 2 1. При этом входные кромки тщательно обрабатывают, обеспечивая плавный вход, а носик сопла закругляют с радиусом 0,1 мм. Предположение о том, что форма острой кромки должна сократить интенсивность возмущений на границе между втекающим потоком и остальной массой газа, находящейся в камере энергоразделения [40, 116), противоречит теоретическим взглядам самого автора сопла А.П. Меркулова и других приверженцев гипотезы взаимодействия вихрей. Ее вибрация может служить причиной возникновения начальной турбулентности, приводящей впоследствии к ее генерации во всем объеме камеры энергоразделения. На рис. 2.19 показаны сравнительные характеристики вихревых труб, использующих различные сопловые вводы. Нетрудно заметить, что прямоугольное спиральное сопло А.П. Меркулова дает заметный выигрыш при прочих равных условиях по сравнению с другими типами закручивающих устройств.  [c.69]

При определенных условиях (определенном сочетании режимных и геометрических параметров) наблюдается реверс вихревой трубы, заключающийся в том, что из отверстия диафрагмы истекают не охлажденные, а подогретые массы газа. При этом полная температура периферийного потока, покидающего камеру энергоразделения через дроссель, ниже исходной. А.П. Меркуловым введено понятие вторичного вихревого эффекта [116] и предпринята попытка его объяснения, основанная на теоретических положениях гипотезы взаимодействия вихрей. При работе вихревой трубы на сравнительно высоких степенях закрутки в приосевой зоне отверстия диафрагмы вследствие существенного снижения уровня давления в области, где статическое давление меньше давления среды, в которую происходит истечение (Р < J ), возникает зона обратных в осевом направлении течений, т. е. в отверстии диафрагмы образуется рециркуляционная зона. При некотором сочетании режимных и геометрических параметров взаимодействие зоны рециркуляции и вытекающих элементов в виде кольцевого закрученного потока из периферийной области диафрагмы приводит к образованию вихревой трубы, наружный  [c.89]


Особое место в экспериментальных исследованиях интенсивно закрученных вихревых офаниченных течений, в том числе и в камере энергоразделения вихревых труб, занимает изучение пульсаций термодинамических параметров и, в частности, давления, формирующего звуковое поле, излучаемое вихревыми трубами. В соответствии с санитарно-гигиеническими требованиями этот отрицательно влияющий на окружающих фактор должен быть максимально снижен. В то же время должна присутствовать очевидная взаимосвязь взаимодействия акустических колебаний с турбулентной микроструктурой потока, а, следовательно, и со всеми явлениями переноса, ответственными в коне-  [c.117]

Несмотря на длительное изучение вихревого эффекта до сих пор отсутствует общепризнанная физико-математическая модель феномена. Наиболее обоснованной считается гипотеза взаимодействия вихрей [116], но и она не лишена некоторых неточностей и противоречий. Пока не проведено строго обоснованного прямого эксперимента, способного полностью подтвердить ее достоверность.  [c.149]

Таким образом, при взаимодействии закрученной струи со сносящим потоком реализуется сложное пространственное распределение скорости и давления. Результаты измерений и визуализации выявили различия в структуре течения и характере распространения закрученных и незакрученных струй и подтвердили целесообразность использования закрученных радиально вдуваемых стержневых струй — факела продуктов сгорания в вихревой горелке для стабилизации фронта пламени в прямоточных камерах сгорания преимущественно форсажного типа.  [c.365]

Пробстин выделяет следующие щесть режимов течении в окрестности лобовой критической точки режим вихревого взаимодействия, режим вязкого слоя, режим частичн ) смыкаюш,ихся слоев, режим полностью сомкнувшихся слове, режим переходного слоя и режим однократных столкновений.  [c.204]

Шумы большой интенсивности. Распространение шумов большой интенсивности отличается от поведения слабого шума. В процессе распространения спектр шума меняется спектр, плотность его в области высоких частот растёт в результате генерации гармоник энергонесущих спектр, компонент, расширяется и НЧ-часть спектра из-за появления комбинац. ионов при условии, что максимум спектр, плотности шума в нач. момент соответствовал частоте, отличной от нулевой. На расстояниях // са/гк и )Чг (где X — длина волны энергонесущей компоненты, — среднеквадратичная коле-бат. скорость) в шумовом сигнале возникают разрывы и затухание шума растёт. На этой стадии в ВЧ-обла-сти спектра спектр, плотность шума спадает по универсальному закону не зависящему от вида нач. спектра. Генерация интенсивных шумов часто также бывает связана с нелинейными взаимодействиями гид-родинамич. возмущений. Напр., шумы самолётных и ракетных двигателей в значит, степени обусловлены генерацией шума, турбулентностью в результате вихревых взаимодействий (см. Аэроакустика).  [c.292]

Помимо такого взаимодействия через давление, могут иметь место и другие явлёния, обусловленные возросшей толщиной пограничного слоя. Так, например, при расчете пограничного слоя на тонких телах может стать существенным учет поперечной кривизны их поверхности если внешний поток является сильно завихренным (как, например, при обтекании затупленных тел), это может привести к эффекту так называемого вихревого взаимодействия, связанному с учетом изменения продольной скорости на внешней границе пограничного слоя и т. п.  [c.530]

Значения давлений и скоростей рабочего тела в различных элементах проточной части ТНА даже на установившемся, расчетном режиме работы распределяются неравномерно. На выходе из колеса насоса имеется высокая степень пульсации давления в потоке, вихревое взаимодействие с потоком в боковой пазухе насоса. В открытых и полуоткрытых центробежных колесах и импеллерах пульсации и неравномерность давления сушествуют в радиальном направлении. Пульсации давления, возбуждаемые в потоке любым элементом гидравлического тракта, передаются в соседние полости, усиливаясь или ослабевая, и оказьшают существенное влияние на работу узлов, устройств насосного агрегата и на их динамические характеристики. Например, пульсации давления, возникающие при вращении лопаток импеллера, вызывают колебания давления в полостях щелевого уплотнения с плавающим кольцом и нарушают его устойчивую работу, влияют на направление потока жидкости, охлаждающего подшипник, а также значение и характер осевой и радиальной сил, что изменяет нагрузку на ротор и его опоры. Это влияние приводит к нерасчетному режиму работы элементов ТНА, изменяет характеристики и работоспособность агрегата в целом.  [c.266]

Ранние исследования по теории вихревого движения восходят к Декарту, Гюйгенсу, Иоганну и Даниилу Бернулли. В этот период были установлены некоторые закономерности вихревого взаимодействия, но вихревая теория не достигла такого совершенства и полноты, как ньютоновская теория гравитации. Несмотря на ожесточенную полемику картезианцев (приверженцев Декарта) и ньютонианцев, она вскоре бьша вытеснена ньютоновской картиной мира и почти совсем забыта. Отметим, что исторически первые труды Эйлера и Лагранжа, создававших ньютоновскую гидродинамику (а также теорию сплошных сред), ограничивались описанием потенциальных (безвихревых) течений идеальной жидкости. Захватывающее описание этого периода вихревой теории можно найти в книге В. В. Козлова Общая теория вихрей . Изд. дом Удм. университет , 1998 [31].  [c.18]

Статья главным образом (п.п. 3-6) посвящена анализу динамики как дискретных, так и распределенных бароклинных вихрей с нулевой суммарной интенсивностью — хетонов. Бароклинные вихри, в отличие от классических (баротропных) вихрей в идеальной жидкости, обладают запасом не только кинетической, но и доступной потенциальной (тепловой) энергии. Как показано в [7], бароклинная природа вихрей кардинально изменяет как структуру индуцируемых ими полей скорости, так и характер вихревого взаимодействия. При условии равенства нулю суммарной интенсивности вихревые структуры обладают важным свойством самодвижения (образуется двухслойная вихревая пара, движущаяся как целое без изменения формы и интенсивности [7]). В частности, каждый из двух точечных вихрей, сосредоточенных в разных слоях двухслойной жидкости и имеющих равновели-  [c.548]


Помимо областей 1 , имеющих место и для вихревых взаимодействий в однородной жидкости [5, 38], в двухслойном случае появляются еще области 2 и 3 . Геометрически, областям 1 и 2 соответствуют инфинитные относительные движения, а области 3 — финитные. С точки зрения динамики, для движений типов 1 и 2 преобладающим является межслойное взаимодействие вихрей, а для 3 — внутрислойное.  [c.569]

На рис. 3.9 представлено осевое распределение амплитуд. Из графиков следует распространяясь по струе, вихрь нарастает по интенсивности аналогично эволюции волн Толлмина— Шлихтинга, что подтверждает результаты А. Powell [2]. Пространственная корреляция амплитуд возмущений в струе и ближнем акустическом поле явным образом указывает на акусто-вихревые взаимодействия как механизм реализации рассматриваемых автоколебаний.  [c.64]

На пружине, коэффициент жесткости которой = 19,6 Н/м, подвешены магнитный стержень массы 50 г, проходящий через соленоид, и медная пластинка массы 50 г, проходящая между полюсами магнита. По соленоиду течет ток / => = 20sin8nif А, который развивает силу взаимодействия с магнит-, ным стержнем 0,016лг Н. Сила торможения медной пластинки вследствие вихревых токов равна киФ , где = 0,001, Ф = 10 VS Вб и о —скорость пластинки в м/с. Определить вынужденные колебания пластинки.  [c.255]

Регуляторы с торможением вихревыми токами. Магнитонндукционный регулятор представляет собой металлический диск /, вращающийся в постоянном магнитном поле (рис. 82). При вращении диска в нем возникают вихревые токи, создающие магнитное поле, которое, взаимодействуя с полем постоянного магнита 2, препятствует вращению диска.  [c.117]

Этот факт имеет достаточно прозрачное физическое объяснение. При неизменных геометрии трубы и степени расширения в ней увеличение ц достигается прикрьггием дросселя, т. е. уменьшением площади проходного сечения для периферийных масс газа, покидающих камеру энергоразделения в виде подогретого потока. Это равносильно увеличению гидравлического сопротивления у квазипотенциального вихря, сопровождающегося ростом степени его раскрутки, увеличением осевого градиента давления, вызывающего рост скорости приосевых масс газа и увеличение расхода охлажденного потока. Наибольшее значение осевая составляющая скорости имеет в сечениях, примыкающих к диафрагме, что соответствует опытным данным [116, 184, 269] и положениям усовершенствованной модели гипотезы взаимодействия вихрей. На критических режимах работы вихревой трубы при сравнительно больших относительных долях охлажденного потока 0,6 < р < 0,8 течение в узком сечении канала отвода охлажденных в трубе масс имеет критическое значение. Осевая составляющая вектора полной скорости (см. рис. 3.2,а), хотя и меньше окружной, но все же соизмерима с ней, поэтому пренебрегать ею, как это принималось в физических гипотезах на ранних этапах развития теоретического объяснения эффекта Ранка, недопустимо. Сопоставление профилей осевой составляющей скорости в различных сечениях камеры энергоразделения (см. рис. 3.2,6) показывает, что их уровень для классической разделительной противоточной вихревой трубы несколько выше для приосевых масс газа. Максимальное превышение по модулю осевой составляющей скорости составляет примерно четырехкратную величину.  [c.105]

В настоящее время среди исследователей вихревого эффекта широкое распространение получила усовершенствованная модификация гипотезы взаимодействия вихрей [137, 140, 142, 143, 155, 157]. Хотя сама гипотеза будет подробно описана в гл. 4 в целях логического объяснения взаимосвязи микроструктуры потока с энергопереносом в камере энергоразделения вихревых труб, кратко рассмотрим ее основные положения.  [c.121]

Рассматривая неустойчивость потоков в вихревой трубе, авторы работ [95, 96] предлагают модель, в которой агентами энергопереноса являются КВС, причем при анализе для удобства авторы оперируют с тороидальной формой. Согласно предлагаемой модели, КВС в результате взаимодействия друг с другом и с основным потоком перемещаются к центру или к периферии. В первом случае они расширяются, теряют устойчивость, замедляют вращение и передают механическую энергию ядру, обеспечивая тем самым его квазитвердую закрутку, во втором случае, увеличиваясь по радиусу, сжимаются и диссипируют вследствие работы сил вязкости. Процессы увеличения или уменьшения размера вихрей относятся к процессам деформационного характера. В этом смысле рассматриваемая деформация симметрична. При несимметричной деформации одна часть тора претерпевает сжатие, а диаметрально противоположная — расширение. Если учесть, что в вихревом тороиде низкоэнергетические массы газа располагаются по его оси [67], то должно происходить их смещение вдоль криволинейной оси тороида в центр вихревой трубы с последующим их перемещением в приосевую зону вынужденного вихря, и уходом разогретой оболочки на периферию.  [c.125]

В частности, в осесимметричных струях такие структуры идентифицируются с неустойчивостью вихревого слоя и его сворачиванием в концентрации завихренности — вихри. Снос этих вихрей вниз по потоку сопровожцается процессом их последовательного слияния попарно, что и определяет расширение слоя смешения. Каскад попарных слияний вихрей заканчивается образованием последовательности клубков. В конце начального участка крупномасштабные клубки разрушаются и генерируют мелкомасштабную турбулентность. Взаимодействие упорядоченных, когерентных структур с хаотическим турбулентным фоном определяет динамику развития структурного турбулентного движения.  [c.127]

Таким образом, можно сделать вывод о том, что для внесения ясности в понимание физического механизма энергоразделения в вихревых трубах необходимо провести дополнительные исследования по изучению влияния мелкомасштабной турбулентности, а также влияния КВС и прецессии вихревого ядра на вихревой эффект. В теоретическом плане необходимо провести предварительные оценки возможности энергоразяеления вследствие взаимодействия когерентных вихревых структур, проанализировать уравнения закрученного потока в представлении вихревой, акустической и турбулентной структур возмущений, а также построить физико-математическую модель процесса энергоразделения на базе детального рассмотрения микроструктуры потока в вихревых трубах.  [c.128]

Качественный анализ и предварительные оценки возможности энергоразделеиия за счет взаимодействия когерентных вихревых структур  [c.129]

Рассмотрим механизм энергопереноса крупными вихрями более подробно. Вследствие радиального фадиента осевой скорости возникают тороидальные вихри, в которых локализуется энергия осевого движения как приосевого, так и периферийного потоков. Под воздействием гироскопического эффекта эти вихри разворачиваются относительно своей криволинейной оси и взаимодействуют с окружным движением, создавая положительный фадиент избыточного давления, что приводит к смещению их на периферию и к последующей диссипации. Для изменения направления момента импульса элемента вихревого кольца необходима энергия, производимая моментом сил. Очевидно, таким моментом может являться вязкий момент сил трения, возникающий между вращающимися приосевым и периферийным вихря-  [c.132]

Однако данной точки зрения придерживаются не все авторы [62]. С.В. Лукачев при рассмотрении регулярных низкочастотных пульсаций давлений в вихревой трубе (которые идентифицированы с прецессией) объясняет их возникновение динамическим взаимодействием приосевого потока с вторичными вихревыми структурами (винтовыми вихрями).  [c.147]


Из предположения, что число Рейнольдса, рассчитанное по диаметру трубы и максимальной окружной скорости, составляет 10 -10 , следует что интенсивность пристенной турбулентности равна 5,1-7%, т. е. она почти на порядок меньше свободной. Кроме того, линейные масштабы свободной турбулентности, по крайней мере, на порядок больше линейных масштабов пристенной турбулентности. По этой причине коэффициент диссипации для пристенной турбулентности значительно выше, чем для свободной. В результате существенно более слабая пристенная турбулентность диссипирует намного быстрее свободной. Именно по этой причине ее роль в процессе энергоразделения несущественна. Вычисляя оптимальный радиус вихревой трубы, можно анализировать лишь свободную турбулентность, трактуемую как результат взаимодействия вращающихся с различной скоростью закрученных струек газа в плоскости, перпендикулярной оси трубы. По существу, рассматривается течение в плоскости, хотя в действительности в любом сечении камеры энергоразделения вихревой трубы имеются осевые компоненты скорости. Они важны при анализе физической картины течения, обусловливая взаимодействие вихревых потоков в осевом направлении. Это взаимодействие является дополнительной причиной генерации свободной турбулентности, роль которой возрастает по мере увеличения уровня осевых скоростей в трубе, т. е. с ростом относительной доли охлахаенно-го потока ц. По этой причине эффективность энергоразделения в противоточной вихревой трубе выше, чем в прямоточной, а в про-тивоточной трубе с дополнительным потоком выше, чем в обычной противоточной разделительной вихревой трубе.  [c.177]

Одной из основных геометрических характеристик вихревой трубы является радиус разделения вихрей г . Физико-математическая модель, построенная на гипотезе взаимодействия вихрей, позволяет рассчитывать величину на режимах, когда истечение из отверстия сопла-завихрителя соответствует критическому. Для докритических режимов истечения обычно принимают rj = г, [116]. Это весьма жесткое допушение, так как оно исключает возможность формирования свободного квазипотенциального закрученного потока в узкой кольцевой зоне, прилегающей к внутренней цилиндрической поверхности камеры энергоразделе-ния. Практически это означает полное отсутствие возможности взаимодействия вихрей, так как будет существовать лишь один приосевой вынужденный вихрь, вращающийся как квазитвердое тело. Устранить это внутреннее противоречие можно, если в математическую модель ввести оценку значения rj, основанную на законах сохранения массы, энергии и момента количества движения с учетом особенностей турбулентного характера течения. Рассмотрим модель вихревой трубы с тангенциальным вдувом газа через щель сопла на внутренней поверхности трубы радиусом  [c.188]

Уже одна из первых охлаждаемых вихревых труб [242], разработанная Е.Н. Оттеном, имела диффузорную камеру энергетического разделения. Опыты, поставленные позже, подтвердили необходимость выполнения охлаждаемых вихревых труб с коническими камерами энергоразяеления (40, 112, 116, 117, 172]. Очевидно, что это позволяет увеличить путь взаимодействия элемента газа, попавшего из приосевого потока в периферийный, способствующий процессу перераспределения энергии. Эффективность охлаждаемых вихревых труб увеличивается с ростом ц и становится максимальной при работе вихревых труб на режиме ц> 1.  [c.288]


Смотреть страницы где упоминается термин Вихревое взаимодействие : [c.381]    [c.458]    [c.337]    [c.533]    [c.78]    [c.244]    [c.5]    [c.61]    [c.82]    [c.144]    [c.173]    [c.309]    [c.365]    [c.365]   
Физическая газодинамика реагирующих сред (1985) -- [ c.381 ]



ПОИСК



Взаимодействие вихревой пары с одиночным вихрем

Взаимодействие вихревой трубки с неподвижной плоскость

Взаимодействие двух вихревых пар

Взаимодействие коаксиальных вихревых колец

Взаимодействие коаксиальных вихревых пар

Взаимодействие трех вихревых колец

Вихревая нить движение и взаимодействие отдельных

Вихревые кольца, взаимодействие

Вихревые усы

Качественный анализ и предварительные оценки возможности энергоразделения вследствие взаимодействия когерентных вихревых структур

Режим вихревого взаимодействия

Режим вихревого взаимодействия слоев



© 2025 Mash-xxl.info Реклама на сайте