Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм фиксации

Износ механизма фиксации головка  [c.200]

На рис. 7, а показан конвейер-перекладчик с высотой подъема до 50 мм. Такая высота подъема позволяет применить в приспособлениях станков неподвижные фиксаторы, что способствует повышению точности базирования деталей и упрош,ает конструкцию приспособлений благодаря отсутствию механизмов фиксации. Перемещаемые детали 6 устанавливаются на двух штангах 3 с ограничительными упорами 4 и перемещаются вместе с ними на шаг с помощью цилиндра 5 продольного перемещения. Подъем штанг перед их перемещением производится гидроцилиндром 8, движущим вспомогательную составную штангу 7, шарнирно связанную с поворотными рычагами 1. На верхних концах рычагов установлены ролики 2, по которым катятся штанги 3.  [c.107]


Управление работой вспомогательных механизмов. Вспомогательные механизмы АЛ могут работать без ограничения скорости и давления, с ограничением скорости и с ограничением давления. Без ограничения скорости и давления работают механизмы, в которых производится перемещение малых масс на относительно небольшие расстояния (например, механизмы фиксации). С ограничением скорости работают транспортные, поворотные и другие механизмы АЛ. Скорость ограничивают, как правило, с помощью дросселей или регуляторов потока, обеспечивающих постоянный перепад давления через дроссель. С ограничением давления (по сравнению с давлением настройки предохранительного клапана насоса) работают некоторые системы зажима, например, при использовании зажимных устройств с самотормозящими передачами, когда необходимо уменьшить давление зажима по сравнению с давлением отжима для преодоления повышенных  [c.145]

Механизм фиксации детали в приспособлении 0,03 0,07 8,0  [c.383]

Бульдозер работает следующим образом. При движении вперед механизм фиксации опорных колес включен так, что колеса 1 могут свободно вращаться в прямом направлении и не могут в обратном. При подаче давления жидкости в левую полость цилиндра 5 рабочий поршень в,  [c.168]

Механизмам позиционирования станков с числовым программным управлением, где имеется возможность корректировать конечное положение выходных звеньев механизма, посвящена обширная литература [1], а исследование их динамики представляет самостоятельную задачу. Поэтому в дальнейшем будут рассматриваться механизмы позиционирования с электро-, гидро- или пневмомеханическим приводами и с цикловым управлением без обратных связей. Вопросы исследования механизмов фиксации устройств позиционирования отражены в работе [2] и в других статьях этого сборника.  [c.5]

Наиболее сложное влияние оказывает характер изменения скорости поворота, определяющий ускорения перемещаемого узла при его разгоне и торможении, колебания узла после окончания его перемещения на заданное расстояние, условия работы механизма фиксации.  [c.5]

В заводских условиях выбор регистрируемых параметров и их числа определялся задачами, возникающими при изготовлении и эксплуатации оборудования. Обычно записывались крутящие моменты на РВ совместно с параметрами, определяющими положение звеньев механизмов (угловое ускорение или перемещение блока и рычагов механизма фиксации). В производственных условиях было исследовано свыше 150 токарных многошпиндельных автоматов и полуавтоматов различных моделей отечественного и зарубежного производства.  [c.60]


По сравнению с другими автоматами лучше отрегулировано положение рычага с роликом механизма фиксации у станков 2 и 6. Анализ осциллограмм большого числа автоматов показывает, что в зависимости от различных факторов на участках начала и второй половины поворота шпиндельного блока характер кривой крутяш его момента может изменяться.  [c.65]

Элементы конструкции прибора показаны на рис. 10, б. Фиксирующий механизм состоит из укрепленного на корпусе прибора электромагнита задержки 34, шарнирно установленного якоря 33 со сферическим упором 44 и жесткого винта-упора 14. Между торцами этих упоров могут перемещаться плоские пружины 13, каждая из которых связана со своим измерительным рычагом. При отсутствии тока в обмотке электромагнита задержки 34 упор 44 под действием пружины сжатия 32 стремится повернуться вокруг оси 43. При этом пружины 13 окажутся зажатыми между проставками 45 и 46, подвешенными на упругих элементах 41, 42 и сферическим торцом винта 14, служащего Для регулировки фиксатора. Благодаря гибкой связи между механизмом фиксации и измерительными рычагами погрешность измерения, вносимая зажимными элементами, незначительна.  [c.213]

Удары при расфиксации шпиндельного блока (пик Мз) Неправильное положение рычага с роликом (относительно кривой кулачка фиксации блока) Отрегулировать положение рычага механизма фиксации  [c.122]

На основании анализа этих данных были сделаны следующие выводы. Наибольшее влияние на точность обработки и стойкость инструмента оказывает недостаточная жесткость шпинделей силовых головок, насадок и поворотного стола [31]. Точность, надежность и долговечность механизма фиксации снижаются вследствие больших динамических нагрузок и влияния зазоров [30].  [c.13]

Была составлена динамическая циклограмма (рис. 2) работы поворотно-фиксирующих устройств формовочной машины. Сопоставление величин коэффициентов Ь я К (табл. 3) показывает следующее механизмы поворота каруселей формовочных машин работают в напряженных условиях. Это соответствует полученным в цехе данным об износе механизмов и напряженных условиях работы механизма фиксации.  [c.14]

Для более точных механизмов позиционирования с фиксацией характерны случаи б, в, г. В случае б механизм фиксации включается после окончания колебаний ведомых масс, что уменьшает динамические нагрузки на механизм фиксации. В случае в уча- сток отсутствует, но обычно увеличиваются длительность колебаний и динамические нагрузки, возникающие при фиксации.  [c.43]

Обычно стендовым исследованиям подвергаются наиболее нагруженные, быстроходные или наиболее точные устройства, оказывающие превалирующее влияние на точность, производительность и надежность автомата. К ним относятся механизмы позиционирования автоматов (поступательного перемещения и поворотные) механизмы фиксации приводы подач и ускоренных ходов суппортов, силовых головок, силовых столов и других узлов механизмы ориентации и зажима (заготовок или узлов станка) механизмы загрузки и подачи материала манипуляторы, кантователи, транспортеры муфты и другие устройства для периодического включения механизмов, распределительных валов, коробок скоростей и подач тормозные устройства шпиндельные бабки, шпиндели пневмо- и гидроаппаратура специальные механизмы, непосредственно осуществляющие выполнение технологического процесса (прокладывание нити, сборку, упаковку, завертывание и т. п.).  [c.56]

Применение в кулачково-цевочных механизмах вращающегося фиксатора обеспечивает повышенную надежность работы, но понижает точность фиксации и увеличивает потери времени из-за ударов и длительных колебаний карусели в начале и в конце поворота. Поэтому в точных автоматах целесообразно введение дополнительного механизма фиксации.  [c.64]

В результате исследования были изучены факторы, ограничивающие повышение быстроходности характер изменения динамических нагрузок при различных условиях работы механизмов поворота влияние ошибок изготовления и сборки на кинематические параметры и динамические нагрузки влияние смазки на характер движения планшайбы и динамические нагрузки зависимость сил трения от скорости. Было проведено сравнение различных механизмов фиксации и способов торможения планшайбы.  [c.65]


Были сделаны следующие выводы. В качестве основных критериев следует принять быстродействие и быстроходность, оцениваемые по Тп, (йср и К, точность, оцениваемую по величине погрешности позиционирования S . Дополнительным критерием является динамическая нагрузка на механизм фиксации Qф. Расчеты величин усилий, действующих на другие детали механизмов и на привод показали, что прочность деталей не лимитирует быстроходность  [c.69]

Все стенды предусматривали изменение скоростей ведущих звеньев, изменение ведомых масс и момента трения, действующего на ведомые массы. У многих стендов предусматривалось реверсирование ведущих звеньев. Стендовые исследования конструкции с консольным кривошипом позволили обнаружить ее существенные недостатки, ограничивающие увеличение быстроходности. В дальнейшем все стенды строились со сборным двухопорным коленчатым валом. Длина стойки изменялась при помощи эксцентричных втулок. При изменении длины стойки можно добиться движения ведомого звена с остановкой или с обратным ходом. Основные задачи, поставленные при изучении этой группы механизмов включали определение угла поворота ведущего звена, соответствующего выстою при различных передаточных отношениях, скоростях и нагрузках изучение стабильности выстоя ведомого звена при различном торможении исследование условий окончания поворота, влияющих на работу механизмов фиксации определение допустимой быстроходности механизмов изучение динамических нагрузок, действующих на детали механизмов исследование влияния технологии изготовления и сборки механизмов на динамические нагрузки и точность позиционирования.  [c.72]

СРАВНЕНИЕ ХАРАКТЕРИСТИК МЕХАНИЗМОВ ФИКСАЦИИ  [c.80]

Результаты исследований основных типов механизмов фиксации (рис. 20) [30] представлены в табл. 29 и 30. Особенностью предложенного подхода являлось совместное изучение механизмов позиционирования и фиксации, исследование динамических и статических характеристик, учет пространственных перемещений фиксируемого звена [44, 45, 60, 70, 73], сравнение механизмов по большому числу параметров, из числа которых особо были выделены коэффициент быстроходности К и точность фиксации бф. Данные о них приведены также в ряде таблиц гл. 2, 4—6. В табл. 30 пред-  [c.80]

ШТОК 7 н отвал 8 перемещаются вперед на один шаг и совершают полезную работу. При этом оиорные колеса 1 неподвижны и служат точками опоры перемещающегося рабочего органа (отвала). После переключения реверсивного гидравлического золотника (что может произойти по команде от путевого выключателя или оператора) давление подается в правую полость цилиндра 5, рабочий поршень 6 и шток 7 реверсируют и левая часть (шасси) агрегата, опирающаяся на подвижные колеса 1, перемещается (катится) вперед по наиравлению к отвалу 8. Далее поршень н шток снова реверсируют и отвал 8 снова совершает рабочий ход вперед при неподвижных опорных колесах и т. д. Таким образом, отвал, как и опорная часть бульдозерного агрегата, шагами перемещается вперед. Для движения назад механизм фиксации колес включается таким образом, что опорные колеса могут свободно вращаться в обратном направлении и не могут вращаться в прямом. В этом случае при подаче дав-168  [c.168]

Описанные колесно-шагающие устройства могут иметь различные исполнения отдельных узлов. Гидравлический механизм возвратно-поступательного движения может быть заменен винтовым либо тросовым механизмом. Механизм фиксации колес может быть храповым, гидравлическим, роликовым. Для увеличения силы сцепления с грунтом зафиксированных колес в качестве фиксирующего механизма может использоваться скользящий упор, клин 16 (рис. 9.27, в) или подкатпой ролик 17 (рис. 9.27, г). Заметим, что в последних случаях опорные колеса могут быть гладкими, т. е. лишенными протекторов, шипов и т. п. Вместо плуга или отвала с шаСси устройства могут агрегатироваться другие сельскохозяйственные орудия.  [c.169]

При необходимости увеличения глубины диагностирования с целью выявления конкретных причин неисправностей регистрировались и другие параметры, определяющие положение звеньев различных механизмов, получая одновременно их динамические циклограммы. Такими параметрами обычно были ускорения, скорость и перемещение ведомых звеньев механизмов — шпиндельного блока и рычагов механизма фиксации, суппортов, пол-зушек механизмов подачи и зажима материала и других узлов.  [c.42]

При проверке точностных характеристик поворотно-фикси-рующих устройств в качестве диагностических параметров служат перемещения контролируемых узлов. Разработан динамический способ контроля точности фиксации шпиндельных блоков, который позволяет в короткое время выявить причины, приводящие к неправильной фиксации блока и наметить пути их устранения. Метод может быть использован в производственных условиях для точной доводки механизма фиксации [5]. У новых автоматов на точность установки шпинделей в рабочее положение при индексации шпиндельного блока оказывают влияние погрешности расточки отверстий блока под шпиндели (ошибки по хорде и радиусу), погрешности расположения фиксирующих поверхностей сухарей, несоосность оси центральной трубы и барабана овальность и конусность наружного диаметра барабана, деформация центральной трубы шпиндельного блока (нестабильность положения оси центральной трубы), деформация рычагов механизма фиксации (жесткость и температурные деформации), биение шпинделей. Проведен анализ быстроходности и точности поворот-по-фиксирующих механизмов исследованных автоматов по методике, основанной на сравнении этих характеристик со средними величинами коэффициента быстроходности iiT p для разных угловых погрешностей, полученным по данным о быстроходности поворотных устройств различных заводов и фирм [6]. В табл. 4 приняты следующие обозначения Шср = ijj /( пов + фик)— средняя скорость поворачиваемого узла при повороте и фиксации, с  [c.70]


При диагностировании гидросистемы контролируются параметры пл — угловая скорость планшайбы — давление у насоса — давление на входе гидромотора Qq — расход насоса Ок.вых — расход на сливе предохранительного клапана Мгм — момент на валу гидромотора Рзаж, раз — давления в системе зажима и разгрузки планшайбы соответственно . Si зол и б зоя — перемещения золотников гидропанели. Знак + свидетельствует о том, что величины указанного параметра находятся в пределах, близких к нормальным знак — указывает на значительное отклонение параметра от нормальных значений. Анализ данной схемы подтверждает, что при выполнении проверок и измерении указанных параметров представляется возможным обнаружение основных дефектов. На схеме основная цепочка работоспособности проходит но линии параметров СОпл дв, Pi, Рзат, Р раз, Мгм- в этом случае гидравлическая и электрическая системы работоспособны и дефекты находятся в механической системе стола. Обозначенные связи предлагают возможную последовательность поиска дефектов гидросистемы поворотного стола. Для дальнейшего поиска дефектов и анализа работоспособности гидросистемы целесообразно провести проверку электрической системы. При наличии нескольких конечных выключателей ВК, электромагнитов, реле давлений и электрических реле, управляющих работой электропривода и гидроаппаратуры, а также взаимных блокировок, полная схема диагностических проверок представляется достаточно сложной. Однако, для обнаружения причин отсутствия функционирования может использоваться упрощенная схема, показанная на рис. 3, б. Наличие дефектов механической системы стола может быть выявлено проверкой по схеме рис. 3, в. Однако выявление и интерпретирование дефектов механической системы при нефункционирующем объекте усложнено отсутствием контроля необходимых параметров, и в ряде случаев необходима частичная разборка узла или замена некоторых механизмов. Функционирующий стол может быть работоспособен и неработоспособен. Неработоспособный стол характеризуется выходом за допустимые пределы основных параметров, т. е. наблюдается потеря точности, быстроходности, а также значительно возрастают нагрузки в приводе и механизме фиксации. Потеря точности зависит от следующих факторов нестабильности скорости планшайбы в момент фиксации Дшф, нестабильности давления в системе поворота ДРф и разгрузки АР раз, наличия зазоров в механизме фиксации и центральной опоре, нестабильности характеристик жесткости упоров и усилий фиксации. Потеря быстроходности зависит от расхода Q и давления в системе поворота Р и разгрузки Рраз. от наличия колебательного движения планшайбы, характеризуемого коэффициентом неравномерности — б , и от длительности процесса торможения <тор- Высокие динамические нагрузки в приводе и механизме фиксации F определяются величинами скорости поворота и фиксации, давлением в системе поворота и разгрузки,  [c.86]

Для выявления влияния каждого из этих параметров на динамику и погрешность позиционирования могут использоваться методы математического моделирования, позволяющие проводить исследования модели в условиях изменения конструктивных и рабочих параметров узла в широких пределах, так как натурные эксперименты не всегда позволяют проводить подобные исследования. Потеря точности может быть вызвана также и нестабильностью срабатывания предохранительного клапана и разбросом величин давлений при фиксации планшайбы АРф, поэтому при диагностировании необходимо исследовать характер изменения давления при фиксации, стабильность характеристик реле давления и электроаппаратуры. Наличие зазоров в механизме фиксации, которое приводит к изменению контактной жесткости /ф фиксатора и упоров, также является одной из основных причин потери точности бф. Обнаружение больших смещений планшайбы в позициях, противоположных фиксатору, указывает на дефект центральной опоры (наличие больших зазоров). Потеря быстроходности (Вор (рис. 4, б) и увеличение времени цикла могут быть вызваны 1) неправильной регулировкой пути реверса фрев, что устраняется регулировкой механизма упоров управления  [c.87]

Рассматривается возможность применения оптико-электронных преобразователей для регистрации одного из основных динамических параметров — ускорения. Показано, что благодаря высокой чувствительности и большой жесткости оптико-электронные акселерометры пригодны для исследования механизмов линейного и углового позиционирования и механизмов фиксации. Применение таких акселерометров упрощает проведение экспериментальных исследований. Илл. 3, библ. 3 назв.  [c.93]

Механизмы позиционирования с фиксацией. Увеличение концентрации обработки в переналаживаемом оборудовании, автоматизация смены инструмента и их блоков, применение спутников, создание разветвленных систем для их транспортировки и установки требуют использования механизмов позиционирования с фиксацией. Рассмотрим более подробно поворотно-фиксирую- щие механизмы, получившие особенно широкое применение в автоматическом оборудовании. Они используются в токарных автоматах для позиционирования шпиндельных блоков, многопозиционных агрегатных станках для поворота и фиксации столов и барабанных приспособлений, станках с ЧПУ для поворота револьверных головок, магазинов, делительных столов, а также в манипуляторах для смены инструмента. За последнее время и для смены многошпиндельных головок при последовательной обработке, на однопозиционных и агрегатных станках группы различных деталей также все чаще применяются столы с поворотно-фикси-рующими устройствами. К ним предъявляются те же требования, что и к механизмам позиционирования. Отличие заключается в том, что точность позиционирования здесь зависит в основном от механизма фиксации, а при прерывистом повороте надо создать благоприятные условия для фиксации и ограничить динамические нагрузки с целью увеличения долговечности деталей и уменьшения погрешности позиционирования. Быстроходность и быстродействие при этом являются наиболее важными общими характеристиками всего поворотно-фиксирующего устройства и определяются в значительной степени видом закона движения (рис. 1.2), моментом инерции поворачиваемых масс, координацией поворота и фиксации и в меньшей степени колебаниями, возникающими при фиксации. На общую длительность цикла работы поворотно-фиксирующего механизма оказывает существенное влияние работа устройств освобождения опор и зажима поворачиваемого узла, что будет рассмотрено ниже. Те же факторы существенны и для случая прерывистого поступательного движения с фиксацией конечных положений. Исследование характеристик большого числа  [c.28]

J—3 — зоны, характерные для основных типов механизмов фиксацив  [c.46]

Циклограмма работы револьверной головки токарного станка с ЧПУ, полученная при экспериментальном исследовании кинематических параметров, приведена на рис. 7.4. Длительность цикла работы Гц определяется работой электродвигателя индивидуального привода головки. Она устанавливается по записи скорости (Од ротора электродвигателя. Начало поворота револьверной головки запаздывает на время р.ф, включающее время разгона ротора с помощью муфты, расфиксации и включения кулачковой муфты. Начало поворота головки сопровождается ударом (скорость о)р и ускорение е ). После окончания разгона t-p начинается участок установившегося движения ty T Головка поворачивается на угол, несколько больший ф = 2tl/zq, величина которого контролируется датчиком положения. По команде от датчика происходит реверс двигателя рев, сопровождающийся переходным процессом tj и затухающими колебаниями Врев, ty a в конце реверса, когда головка фиксируется механизмом предварительной фиксации, на участке производится осевое перемещение головки, фиксация и зажим. Сигнал на отключение электродвигателя выдается датчиком контроля окончания зажима. Применение в механизме фиксации плоских шестерен с торцевым зубом (z = 12) позволяет обеспечить точность б = 20" и достаточно высокую жесткость. Надежность фиксации головки определяется качеством и точностью регулировки положения датчиков и механизмов, осуществляющих предварительную фиксацию, так как  [c.124]


Записываются крутящий момент М на валу поводка, усилия фиксации Рф и ввода-вывода фиксатора Qф, скорость в, ускорение и перемещение барабана, давление зажима рз т (записи части параметров не показаны на циклограмме). В обоих случаях используется как механизм поворота, так и механизмы фиксациии зажима барабана и выявляются дефекты конструкции, изготовления, наладки (синхронизации движений). Так, у барабана с электроприводом выявлены дефекты механизмов фиксации и поворота, что вызывалось низким качеством оснастки станка, на котором  [c.140]


Смотреть страницы где упоминается термин Механизм фиксации : [c.190]    [c.359]    [c.81]    [c.84]    [c.190]    [c.14]    [c.33]    [c.85]    [c.101]    [c.11]    [c.29]    [c.46]    [c.126]    [c.156]    [c.58]    [c.71]    [c.81]    [c.25]   
Автоматическая загрузка технологических машин (1990) -- [ c.67 , c.68 ]

Автоматы и автоматические линии Часть 2 (1976) -- [ c.294 , c.295 , c.309 ]



ПОИСК



Грузозахватные устройства с четырехтактным механизмом фиксации захватных органов

Динамическая модель системы гидравлического поворотного стола с механизмом двойной фиксаци

Конструкции и наладка механизмов для автоматического зажима и фиксации

Механизм для фиксации бортов собираемой

Механизм кулачково-зубчатый с длительным с фиксацией ведомого звена

Механизм фиксации захватных органов

Механизмы для автоматизации зажима и фиксации положения заготовок на автоматических линиях (канд техн. наук А. Н. Огринчук)

Механизмы для получения веданного положения и для фиксации

Механизмы зажима и фиксации

Механизмы зажима и фиксации деталей

Механизмы зажима, поворота и фиксации

Механизмы точного останова и фиксации рабочих органов

Механизмы установочные с автоматической фиксацией

Механизмы установочные с принудительной фиксацией

Механизмы установочные с принудительной фиксацией для механической обработки

Надежность работы механизмов зажима и фиксации

Органы захватных зажимных грузозахватных устройств — Механизм фиксации 176 — Конструкции 174 Крепление

Расчет механизма фиксации

Сравнение характеристик механизмов фиксации

Фиксация

Фиксация токарных станков-автоматов многошпиндельных - Поворотные механизмы



© 2025 Mash-xxl.info Реклама на сайте