Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение уравнений для прямоугольных пластин

РЕШЕНИЕ УРАВНЕНИЙ ДЛЯ ПРЯМОУГОЛЬНЫХ ПЛАСТИН  [c.129]

Решение основного уравнения для прямоугольных пластин  [c.151]

Для прямоугольной пластины с конечным отношением сторон основное линеаризованное уравнение (4.33) допускает точное решение при следующих условиях.  [c.153]

Рассмотрим прямоугольную пластину, равномерно сжатую в двух направлениях (рис. 4.12, а). В том случае, когда 5 = О, Тх = — Цх, Т = — qy и выполняются граничные условия рассмотренной сейчас задачи, можно применять намеченную выше общую схему решения. Для упрощения расчетов ограничимся решением задачи устойчивости прямоугольной пластины, свободно опертой по всему контуру. Для такой пластины, равномерно сжатой в одном направлении, выше найдена система собственных функций. В рассматриваемом случае решение уравнения (4.40) можно искать в виде  [c.159]


Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]

Для решения задач устойчивости прямоугольных пластин используем алгоритм численно-аналитического варианта МГЭ, вариационный метод Канторовича-Власова и дифференциальное уравнение технической теории устойчивости (7.66)  [c.453]

Позже бьши разработаны другие эффективные методы расчета складчатых систем. Отметим метод перемеш,ений, основанный на решениях М. Леви (изгиб) и Л. Файлона (плоская задача) для прямоугольных пластин [4] и различные модификации метода перемещений и смешанного метода [186, 344]. Метод перемещений устраняет многие недостатки метода В.З. Власова в части реализации алгоритма расчета на ЭВМ. Однако, он привносит в методику расчета недостатки, связанные с природой метода перемещений. В частности, формирование матрицы реакций требует привлечения матричных операций. Обязательное формирование основной системы привносит недостатки, связанные с ее использованием. Необходимы промежуточные вычисления для перехода от перемещений узлов к напряженно-деформированному состоянию во внутренних точках элементов системы. Метод разработан только для шарнирного опирания торцов конструкции. Сходные недостатки можно обнаружить и в смешанном методе. Следует отметить, что последний недостаток метода перемещений устраним, поскольку решения М. Леви и Л. Файлона являются частными случаями вариационного метода В.З. Власова. Поэтому можно разработать метод перемещений для произвольного опирания торцов складчатой системы. Если пренебречь влиянием побочных коэффициентов системы дифференциальных уравнений В.З. Власова, то алгоритм формирования матриц реакций и нагрузки останется прежним, а изменяется лишь фундаментальные функции. Можно дальше модифицировать метод перемещений. В I разделе отмечалось, что на базе соотношений МГЭ  [c.479]


Уравнение (7.20) для прямоугольной пластины, сжатой равномерно в одном направлении, удается аналитически проинтегрировать и в тех случаях, когда граничные условия свободного опирания заданы на любых двух противоположных сторонах пластины, а две другие стороны закреплены произвольно, но неизменно вдоль всей пластины [1]. Расчетные зависимости обычно представляют тоже в виде формулы (7.25), но здесь коэффициент Ко для каждого варианта граничных условий по-своему зависит от отношения сторон пластины (рис. 17.13). (Кривая I построена по результатам приближенного решения, поскольку для защемленной по всему контуру пластины аналитическое решение построить не удается.)  [c.197]

Для прямоугольных пластин с конечным отношением сторон решение уравнения (7.26) получают с помощью того или иного приближенного метода, причем окончательный результат обычно тоже записывают в виде (7.27). На рис. 7.14 даны значения К% в зависимости от отношения сторон alb для пластин с защемленным (/) и свободно опертым (//) контуром.  [c.198]

Пренебрежение нелинейностью температурного поля по толщине пластины существенно искажает результаты решения уравнений движения. На рис. 3.13 изображены графики движения центральной точки пластины (случай цилиндрического изгиба, Л = 0,008 м), полученные решением задачи динамической термоупругости при различных N. На рис. 3.14 представлены аналогичные результаты для прямоугольной пластины толщиной Л = 0,01 м. Предположение о линейном распределении температуры по толщине (jV=1) существенно изменяет величину прогиба и амплитуду колебаний. Расхождение результатов заметно проявляется в течение переходного периода. Учет первого нелинейного члена N — 3) приводит к практически точным результатам.  [c.127]

В статьях [55, 56] предлагается новый вариант теории трехслойных пластин с несжимаемым в поперечном направлении заполнителем, основанный на гипотезе ломаной нормали. Уравнения равновесия в перемещениях получены с помощью принципа Лагранжа. Формальным введением малого параметра в дифференциальные уравнения решение исходной задачи сведено к итерационному процессу, содержащему решение задачи об изгибе пластины на упругом основании и плоской задачи теории упругости. Точное решение получено для прямоугольной шарнирно-опертой по контуру пластины, найдена оценка погрешности приближенного решения, получаемого после произвольного числа итераций. Этими же авторами предложен метод расчета осесимметричных круглых трехслойных пластин с легким сжимаемым заполнителем на действие нагрузок, симметричных и обратносимметричных относительно срединной плоскости. Разложение нагрузок на составляющие позволяет упростить определение постоянных, входящих в общее решение задачи.  [c.13]

Метод расчета напряженно-деформированного состояния цилиндрических складчатых систем разработал проф. В.З. Власов [24]. К недостаткам метода В.З. Власова следует отнести сложную логику формирования разрешающей системы уравнений, необходимость решать дифференциальные уравнения для каждого элемента конструкции, ограничения на торцевые условия опирания элементов складчатых систем (они должны быть одинаковыми), относительную сложность реализации алгоритма на вычислительных машинах. Позже были разработаны другие эффективные методы расчета складчатых систем. Отметим метод перемещений, основанный на решениях М. Леви (изгиб) и Л. Файлона (плоская задача) для прямоугольных пластин с шарнирным опиранием по торцам [2] и различные модификации метода перемещений и смешанного метода [46, 104]. Метод перемещений устраняет многие недостатки метода В.З. Власова в части реализации алгоритма на персональных компьютерах. Однако он привносит в методику расчета недостатки, связанные с природой метода перемещений. В частности, формирование матрицы реакций требует привлечения матричных операций, образование основной системы привносит недостатки, связанные с ее использованием, необходимы промежуточные вычисления для перехода от перемещений узлов к напряженно-деформированному состоянию во внутренних точках элементов системы.  [c.232]


В 1913 г. Бубнов разработал новый метод решения уравнений [44, с. 136—139], известный в литературе как метод Бубнова — Галеркина [46, с. 58—61], использованный им для решения ряда задач строительной механики и прежде всего для определения напряжений и прогибов для гибкой прямоугольной пластинки, имеющей удлиненную форму и изгибающейся по цилиндрической поверхности, т. е. для элемента, характерного для набора днища надводных военных судов и корпусов подводных лодок. Служащие для практических расчетов таких пластин вспомогательные функции были Бубновым табулированы [46, с. 388].  [c.414]

При изучении теплового режима элементов конструкции сложной формы для упрощения решения выделяются отдельные элементы или участки, форма которых приближается к классической (цилиндр, пластина, шар). Такой подход позволяет упростить область существования функции. При этом процесс теплопереноса представляется уравнением теплопроводности в цилиндрической, прямоугольной или сферической системах координат. Наиболее простым решение получается в прямоугольной системе координат.  [c.113]

Положительные направления нагрузки, формальных кинематических и статических параметров круглой пластины соответствуют параметрам прямоугольной пластины и представлены на рисунке 1.8, 1.10. Вид фундаментальных функций и грузовых членов решения уравнения (7.42) зависит от соотношения между г и 5 и вида корней (7.19). Из таблицы 7.3 следует, что для круглой пластины основным является случай s>r. Фундаментальные функции этого случая имеют вид  [c.417]

Более громоздкие задачи для конечных областей рассматривались в работах [3, 83, 91, 203, 244]. В ряде работ Миндлина и его сотрудников, относящихся к круглому цилиндру [179, 225, 237] и прямоугольной пластине [227, 238], для решения конкретных задач развита и использована приближенная теория. По своему существу она является некоторой модификацией метода однородных решений для учета трех первых ветвей дисперсионного уравнения (см. далее рис. 61 и 62).  [c.160]

Решение с помощью уравнений равновесия задачи о больших прогибах свободно опертых пластин. Для прямоугольных свободно опертых по краям пластин отыскивать решение можно начать с задания прогиба w и поперечной нагрузки р в форме (4.21) и (4.22), которая ранее использовалась для линейного случая, т. е. в виде двойных рядов по функциям синуса от х и у  [c.292]

В работе [394] рассматриваются задачи о собственных колебаниях слоистых анизотропных пластин. Используется вариант уточненной теории изгиба с учетом деформаций поперечного сдвига. Предполагается линейный закон изменения поперечных сдвиговых деформаций вдоль толщины каждого слоя. Вариационным путем получена система уравнений двенадцатого порядка в частных производных. Решение разрешающей системы уравнений получено для случая свободно-опертой прямоугольной пластины. Проведено сопоставление с результатами, найденными на основе уравнений трехмерной теории упругости.  [c.18]

Точное определение формы и частоты колебаний пластинки за исключением простейших случаев шарнирно опертой прямоугольной пластинки связано с решением весьма сложных систем дифференциальных уравнений (267), (268) для анизотропных пластин или уравнений (269), (270) для ортотропных пластин. При решении конкретных технических задач весьма эффективными являются приближенные методы, основанные на некоторых общих принципах механики. В теории стержневых систем такие методы позволяют быстро без интегрирования дифференциальных уравнений определять частоты колебаний основных тонов, которые и представляют наибольший практический интерес. Эти методы можно обобщить для случая поперечных колебаний пластин.  [c.92]

Матрица А этого уравнения обладает многими замечательными свойствами. Она является весьма разреженной матрицей общего вида, ее система фундаментальных ортонормированных функций обеспечивает хорошую устойчивость численного процесса решения краевой задачи, в определителе отсутствуют точки разрыва 2-го рода, формируется без привлечения матричных операций. Эти преимущества позволяют эффективно определять спектр собственных значений - корни уравнения (6.61). Точность спектра зависит, естественно, от точности исходной модели, где, напомним, используется только один член ряда (6.2). Уравнение (6.61) позволяет определять критические силы как статическим (при со = 0), так и динамическим методами. При определении собственных значений пластин нужно учитывать, что из уравнения (6.61) можно получить спектры частот и критических сил при фиксированном числе полуволн в направлении оси ох (например, для коэффициентов А, В, С таблицы 17 одна полуволна в направлении оси ох и множество полуволн в направлении оси оу). Вычисляя коэффициенты А, В, С при второй частоте колебаний балки, из уравнения (6.61) можно получить спектры пластины для двух полуволн в поперечном и множества полуволн в продольном направлениях и т.д. Точность решения задач устойчивости и динамики прямоугольных пластин по МГЭ определим из примеров.  [c.220]

В данной работе предлагается принципиально новый метод расчета цилиндрических складчатых систем, основанный на алгоритме МГЭ для стержневых систем. Теоретической основой метода является вариационный метод Канторовича-Власова. Решение задачи Коши изгиба прямоугольной пластины представлено в 6.2. Его можно использовать для расчета пластинчатых систем в случаях, когда плоским напряженно-деформированным состояниям элементов можно пренебречь. Алгоритм МГЭ устраняет практически все отмеченные выше недостатки существующих методов. Так, для формирования системы разрешающих уравнений типа (1.38) не используются матричные операции, не рассматривается основная система, снимаются ограничения на условия опирания пластин по торцам (граничные условия могут быть любыми, а каждая пластина может иметь смешанные граничные условия и включать как прямоугольные, так и круглые элементы), матрица коэффициентов А сильно разрежена, хорошо обусловлена и может приметаться в задачах статики, динамики и устойчивости, возможен учет ортотропии, ребер жесткости, упругого основания, переменной толщины и т.д. Таким образом, алгоритм МГЭ охватывает практически наиболее общий случай расчета. Перечисленные преимущества сопровождаются, как это бывает всегда, и недостатками. В частности, порядок матрицы А существенно больше порядка матрицы реакций метода перемещений. Однако этот недостаток  [c.232]


Пример 7.2. В пластине по рисунку 7.6,с два прямоугольных элемента соединяются под прямым углом посредством кругового сектора. Выполняя процедуру по схеме (1.46), обобщенные граничные параметры каждого элемента находим из решения системы уравнений 12-го порядка, где матрицы лишь минимально отличаются от матриц примера 7.1. Для подобластей 0-1 и 2-3 используются фундаментальные функции (7.22) при а=1, для круговой подобласти 1-2 — (7.50) при ф=тг/2. Исходные данные круглого элемента  [c.426]

Динамический краевой эффект. Асимптотический метод [10] применяют для пластин, занимающих прямоугольную (а обобщенном смысле) область. Он дает хорошие результаты для высших частот. Однако в ряде случаев и для основной частоты этот метод дает приемлемые результаты. Для пластины постоянной толщины, когда уравнение колебаний имеет вид (1), порождающее решение будет следующим  [c.209]

Критериальные уравнения (7.29) могут использоваться не только при экспериментальных исследованиях устойчивости пластин прямоугольной формы в плане, но и для представления теоретических решений в наиболее обш,ей и содержательной форме.  [c.144]

Следует добавить, что дифференциальные уравнения, описывающие процессы изгиба и выпучивания длинной прямоугольной пластинки по цилиндрической поверхности, образующая которой параллельна длинной стороне пластинки, лишь значениями некоторых коэффициентов (см. ниже) отличаются от соответствующих уравнений изгиба и устойчивости слоистых балок и стержней. Точно также уравнения, описывающие процессы изгиба и выпучивания длинной панели по цилиндрической поверхности, аналогичны соответствующим уравнениям изгиба и устойчивости арки. Так возникают пары близких между собой систем дифференциальных уравнений, характеризующих механическое поведение существенно различных элементов конструкций. Ясно, что методы исследования краевых задач для этих близких систем уравнений одинаковы, а результаты, полученные при решении одной из них, сохраняют свое значение и для другой. Поэтому сформулированные ниже выводы о характере и степени влияния поперечных сдвигов, обжатия нормали, вида краевых условий на характеристики напряженно-деформированного состояния и критические параметры устойчивости слоистых длинных пластин и панелей остаются справедливыми для балок, стержней и арок.  [c.94]

Большое внимание уделено исследованию изгиба тонких упрзпгих пластин в рамках известного уравнения Жермен — Лагранжа (или Сен-В -нана для задач устойчивости). Здесь подробно рассмотрен изгиб прямой и первоначально искривленной пластин по цилиндрической поверхности, а также конечные прогибы круговой пластины при поперечном равномерном давлении (результат автора). Изложено решение об изгибе прямоугольных пластин с четырьмя опертыми и четырьмя защемленными краями при равномерном поперечном давлении. Оценено влияние на изгиб прямоугольной пластины сил, действующих в срединной поверхности, и влияние  [c.6]

Частные решения. При решении двумерных задач обычно вводятся различные частные решения уравнения (П.27). Затем, используя соотношения (П.26), можно определить те внешние силы, которые должны быть приложены, чтобы вызвать напряжения, соответствующие введенным решениям. 1(омбинируя такие частные решения, можно в Конечном счете получить решения задач, имеющих практическое значение. Для прямоугольных пластин некоторые полезные решения получаются при выборе функции напряжений в виде полинома. Возьмем, например, квадратичный трехчлен  [c.582]

Выше мы показали возможность вывода основных уравнени й теории пластин исходя из вариационного принципа Лагранжа. Однако главное значение вариационных принципов в расчете пластин состоит в том, что с их помощью можно получить приближенные решения сложных задач, не прибегая к составлению и решению дифференциальных уравнений в частных производных. Некоторые примеры расчетов с использованием прямых методов вариационного исчисления рассмотрены в 8. Точное аналитическое решение общих уравнений изгиба пластины может быть выполнено лишь в частных случаях — для прямоугольных и круглых пластин постоянной толщины, а также для пластин,  [c.67]

Анализ расчетной зависимости. Зависимость (2-39) является решением уравнения теплопроводности для случая прямоугольной системы координат с применением прямоугольной пространственной сетки в общем виде. Из выражения (2-39) следует, что коэффициент при первом члене правой части учитывает суммарное влияние температур соседних точек на температуру в точке о, т. е. первый член правой части дает значение температуры в точке о в момент времени т с учетом влияния температуры в близлежащих точках, второй, третий и четвертый члены правой части учитывают соответственно распространение тепла вдоль координатных осей х, у и 2, коэффициенты ДРож, AFoy, AFoz показывают степень влияния распространения тепла в соответствующем направлении на температуру в точке о. Чем меньше шаг интегрирования Ах, Аг/ или Аг, тем ближе выбраны определяющие точки к точке о, тем большее влияние они оказывают на температуру в точке о и тем точнее сам расчет. Зависимость (2-39) позволяет определить значение температуры в любой точке пластины в произвольный момент времени, за исключением точек, лежащих на ее поверхностях. Если шаг интегрирования по времени Ат выбрать произвольным, а шаги Ах, Ау, Аг так, чтобы Ах=Ау=Аг, то равенство (2-39) упрощается и принимает вид  [c.58]

Основы теории. До сих пор рассматривались только пластины прямоугольной формы с использованием прямоугольной системы координат и методов, основанных на рассмотрении уравнений равновесия или энергии. Хотя это не только простейший, но также и наиболее важный тип пластин, приведенное обсуждение было бы не полным без, по крайней мере, беглого рассмотрения других типов пластин. Кроме прямоугольной, наиболее важной системой координат, используемой в теории пластин, является полярная система координат, удобная главным образом для круговых пластин. Для простоты здесь будем рассматривать случай-осесимметричных деформаций, вызываемых осесимметричным нагружением, круговых пластин или их осесимметричных форм пот тери истойчивости, а также колебаний общий случай может быть выведен из общих теорий оболочек, приведенных в главе 6. Случай осесимметричной пластины проще случая прямоугольной пластины тем, что решения изменяются только вдоль одного направления — вдоль радиуса. Расстояние, измеряемое от срединной поверхности, и перемещение, но.рмальное к этой поверхности, будем обозначать так же, как и в прямоугольных координатах.  [c.280]

Итак, переход от классической модели деформирования слоистых тонкостенных пластин к той или иной корректной уточненной модели сопровождается увеличением не только порядка системы дифференциальных уравнений, но и спектрального радиуса матрицы ее коэффициентов и, как следствие, появлением быстропеременных решений, имеющих ярко выраженный характер погранслоев и описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвигов и обжатия нормали. Такая ситуация характерна не только для балок или для длинных прямоугольных пластинок, изгибающихся по цилиндрической поверхности, но, как будет показано ниже, и для элементов конструкций других геометрических форм — цилиндрических панелей, оболочек вращения и др. Отметим, что стандратные методы их решения, которые согласно известной (см, [283 ]) классификации делятся на три основные группы (методы пристрелки, конечно-разностные методы, вариационные методы, метод колло-каций и др.), на этом классе задач малоэффективны. Так, группа методов пристрелки, включающая в себя, в частности, широко используемый и весьма эффективный в задачах классической теории оболочек метод дискретной ортого-нализации С.К. Годунова [97 ], на классе задач уточненной теории оболочек оказывается практически непригодной. Методами этой группы интегрирование краевой задачи сводится к интегрированию ряда задач Коши, формулируемых для той же системы уравнений. Для эллиптических дифференциальных уравнений теории оболочек такие задачи некорректны (см., например, [1]), что при их пошаговом интегрировании проявляется в форме неустойчивости вычислительного  [c.109]


Для прямоугольных элементов Вальц и др. [16], рассчитывая методом конечных элементов однородную пластину и сравнивая алгоритм с приближенным решением дифференциальных уравнений, установили, что сходимость гарантирована всегда. Однако распространять эти выводы на другие случаи нет никаких оснований.  [c.204]

Ван де Вурен и Дейкстра [1970] рассчитывали обтекание плоской пластины несжимаемой жидкостью ио уравнениям Навье — Стокса, сначала записав уравнения для и г] в параболических координатах, а затем преобразовав их отображением на конечную прямоугольную область. При этом поперечная координата преобразовывалась при помощи автомодельного решения уравнений пограничного слоя первого порядка (решение Блазиуса), а координата вдоль потока—при помощи логарифмического соотношения, что позволяло устранить особую точку на передней кромке.  [c.442]

Метод конечных элементов применяется не только при решении двумерных задач прикладной теории упругости (пластины, оболочки и конструкции, составленные из пластинчатых и оболочечных элементов), но и объемных (трехмерных) задач теории упругости. Для лучшей аппроксима-цпи сложной формы копструкцип применяются наряду с прямоугольными конечными элементами также конечные элементы других форм. Этот метод может применяться не только в форме метода перемещений, когда за неизвестные принимаются узловые перемещения и определяются они из уравнений равновесия, но и в форме метода сил, когда за неизвестные принимаются узловые внутренние усилия а определяются они из условия совместности перемещений в узловых точках.  [c.228]


Смотреть страницы где упоминается термин Решение уравнений для прямоугольных пластин : [c.134]    [c.186]    [c.123]    [c.228]    [c.325]    [c.468]    [c.160]    [c.214]    [c.210]    [c.89]    [c.363]   
Смотреть главы в:

Графический расчет стержневых систем и механизмов  -> Решение уравнений для прямоугольных пластин



ПОИСК



425 — Уравнения пластин

Пластина прямоугольная

Решение основного уравнения для прямоугольных пластин



© 2025 Mash-xxl.info Реклама на сайте