Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение основного уравнения для прямоугольных пластин

Решение основного уравнения для прямоугольных пластин  [c.151]

Для прямоугольной пластины с конечным отношением сторон основное линеаризованное уравнение (4.33) допускает точное решение при следующих условиях.  [c.153]

Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]


Позже бьши разработаны другие эффективные методы расчета складчатых систем. Отметим метод перемеш,ений, основанный на решениях М. Леви (изгиб) и Л. Файлона (плоская задача) для прямоугольных пластин [4] и различные модификации метода перемещений и смешанного метода [186, 344]. Метод перемещений устраняет многие недостатки метода В.З. Власова в части реализации алгоритма расчета на ЭВМ. Однако, он привносит в методику расчета недостатки, связанные с природой метода перемещений. В частности, формирование матрицы реакций требует привлечения матричных операций. Обязательное формирование основной системы привносит недостатки, связанные с ее использованием. Необходимы промежуточные вычисления для перехода от перемещений узлов к напряженно-деформированному состоянию во внутренних точках элементов системы. Метод разработан только для шарнирного опирания торцов конструкции. Сходные недостатки можно обнаружить и в смешанном методе. Следует отметить, что последний недостаток метода перемещений устраним, поскольку решения М. Леви и Л. Файлона являются частными случаями вариационного метода В.З. Власова. Поэтому можно разработать метод перемещений для произвольного опирания торцов складчатой системы. Если пренебречь влиянием побочных коэффициентов системы дифференциальных уравнений В.З. Власова, то алгоритм формирования матриц реакций и нагрузки останется прежним, а изменяется лишь фундаментальные функции. Можно дальше модифицировать метод перемещений. В I разделе отмечалось, что на базе соотношений МГЭ  [c.479]

Метод расчета напряженно-деформированного состояния цилиндрических складчатых систем разработал проф. В.З. Власов [24]. К недостаткам метода В.З. Власова следует отнести сложную логику формирования разрешающей системы уравнений, необходимость решать дифференциальные уравнения для каждого элемента конструкции, ограничения на торцевые условия опирания элементов складчатых систем (они должны быть одинаковыми), относительную сложность реализации алгоритма на вычислительных машинах. Позже были разработаны другие эффективные методы расчета складчатых систем. Отметим метод перемещений, основанный на решениях М. Леви (изгиб) и Л. Файлона (плоская задача) для прямоугольных пластин с шарнирным опиранием по торцам [2] и различные модификации метода перемещений и смешанного метода [46, 104]. Метод перемещений устраняет многие недостатки метода В.З. Власова в части реализации алгоритма на персональных компьютерах. Однако он привносит в методику расчета недостатки, связанные с природой метода перемещений. В частности, формирование матрицы реакций требует привлечения матричных операций, образование основной системы привносит недостатки, связанные с ее использованием, необходимы промежуточные вычисления для перехода от перемещений узлов к напряженно-деформированному состоянию во внутренних точках элементов системы.  [c.232]

В данной работе предлагается принципиально новый метод расчета цилиндрических складчатых систем, основанный на алгоритме МГЭ для стержневых систем. Теоретической основой метода является вариационный метод Канторовича-Власова. Решение задачи Коши изгиба прямоугольной пластины представлено в 6.2. Его можно использовать для расчета пластинчатых систем в случаях, когда плоским напряженно-деформированным состояниям элементов можно пренебречь. Алгоритм МГЭ устраняет практически все отмеченные выше недостатки существующих методов. Так, для формирования системы разрешающих уравнений типа (1.38) не используются матричные операции, не рассматривается основная система, снимаются ограничения на условия опирания пластин по торцам (граничные условия могут быть любыми, а каждая пластина может иметь смешанные граничные условия и включать как прямоугольные, так и круглые элементы), матрица коэффициентов А сильно разрежена, хорошо обусловлена и может приметаться в задачах статики, динамики и устойчивости, возможен учет ортотропии, ребер жесткости, упругого основания, переменной толщины и т.д. Таким образом, алгоритм МГЭ охватывает практически наиболее общий случай расчета. Перечисленные преимущества сопровождаются, как это бывает всегда, и недостатками. В частности, порядок матрицы А существенно больше порядка матрицы реакций метода перемещений. Однако этот недостаток  [c.232]


Положительные направления нагрузки, формальных кинематических и статических параметров круглой пластины соответствуют параметрам прямоугольной пластины и представлены на рисунке 1.8, 1.10. Вид фундаментальных функций и грузовых членов решения уравнения (7.42) зависит от соотношения между г и 5 и вида корней (7.19). Из таблицы 7.3 следует, что для круглой пластины основным является случай s>r. Фундаментальные функции этого случая имеют вид  [c.417]

Точное определение формы и частоты колебаний пластинки за исключением простейших случаев шарнирно опертой прямоугольной пластинки связано с решением весьма сложных систем дифференциальных уравнений (267), (268) для анизотропных пластин или уравнений (269), (270) для ортотропных пластин. При решении конкретных технических задач весьма эффективными являются приближенные методы, основанные на некоторых общих принципах механики. В теории стержневых систем такие методы позволяют быстро без интегрирования дифференциальных уравнений определять частоты колебаний основных тонов, которые и представляют наибольший практический интерес. Эти методы можно обобщить для случая поперечных колебаний пластин.  [c.92]

Динамический краевой эффект. Асимптотический метод [10] применяют для пластин, занимающих прямоугольную (а обобщенном смысле) область. Он дает хорошие результаты для высших частот. Однако в ряде случаев и для основной частоты этот метод дает приемлемые результаты. Для пластины постоянной толщины, когда уравнение колебаний имеет вид (1), порождающее решение будет следующим  [c.209]

Выше мы показали возможность вывода основных уравнени й теории пластин исходя из вариационного принципа Лагранжа. Однако главное значение вариационных принципов в расчете пластин состоит в том, что с их помощью можно получить приближенные решения сложных задач, не прибегая к составлению и решению дифференциальных уравнений в частных производных. Некоторые примеры расчетов с использованием прямых методов вариационного исчисления рассмотрены в 8. Точное аналитическое решение общих уравнений изгиба пластины может быть выполнено лишь в частных случаях — для прямоугольных и круглых пластин постоянной толщины, а также для пластин,  [c.67]

Итак, переход от классической модели деформирования слоистых тонкостенных пластин к той или иной корректной уточненной модели сопровождается увеличением не только порядка системы дифференциальных уравнений, но и спектрального радиуса матрицы ее коэффициентов и, как следствие, появлением быстропеременных решений, имеющих ярко выраженный характер погранслоев и описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвигов и обжатия нормали. Такая ситуация характерна не только для балок или для длинных прямоугольных пластинок, изгибающихся по цилиндрической поверхности, но, как будет показано ниже, и для элементов конструкций других геометрических форм — цилиндрических панелей, оболочек вращения и др. Отметим, что стандратные методы их решения, которые согласно известной (см, [283 ]) классификации делятся на три основные группы (методы пристрелки, конечно-разностные методы, вариационные методы, метод колло-каций и др.), на этом классе задач малоэффективны. Так, группа методов пристрелки, включающая в себя, в частности, широко используемый и весьма эффективный в задачах классической теории оболочек метод дискретной ортого-нализации С.К. Годунова [97 ], на классе задач уточненной теории оболочек оказывается практически непригодной. Методами этой группы интегрирование краевой задачи сводится к интегрированию ряда задач Коши, формулируемых для той же системы уравнений. Для эллиптических дифференциальных уравнений теории оболочек такие задачи некорректны (см., например, [1]), что при их пошаговом интегрировании проявляется в форме неустойчивости вычислительного  [c.109]

Л. Б. Именитов [2.12, 2.13] (1969) исследовал собственные колебания прямоугольной шарнирно опертой пластины, исходя из трехмерных уравнений динамической теории упругости, к которым применяется асимптотический метод интегрирования. Напряженное состояние пластины представлено в виде суммы основного медленно затухающего напряженного состояния и вспомогательных быстро затухающих от краев напряженных состояний. Для их определения применяются итерационные процессы. При этом первое приближение соответствует классической теории, вычислены также второе и третье, уточняющие приближения. Показано, что при отношении ширины квадратной пластины к толщине alh=25 асимптотические поправки к частоте по классической теории пластин малы. Из сравнения с точным решением показана также малость погрешности асимптотического решения даже при alh=6.  [c.147]


Смотреть страницы где упоминается термин Решение основного уравнения для прямоугольных пластин : [c.134]    [c.210]   
Смотреть главы в:

Основы расчета на устойчивость упругих систем  -> Решение основного уравнения для прямоугольных пластин



ПОИСК



425 — Уравнения пластин

Пластина прямоугольная

Решение основное

Решение уравнений для прямоугольных пластин

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте