Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффект I с распределенной массой

В настоящей статье для решения краевой задачи, описывающей поведение упругой гироскопической системы с распределенными и сосредоточенными массами, используется метод, развитый в [1]. Средние квадратические отклонения параметров системы, а также корреляционные моменты [2] предполагаются достаточно малыми и известными величинами. Гироскопический эффект распределенной массы считается пренебрежимо малым. Рассматривается линейная краевая задача, однако предполагаемое решение без труда распространяется и на квазилинейную краевую задачу с квазилинейными граничными условиями.  [c.22]


Силы, периодически изменяющиеся по величине или направлению, являются основной причиной возникновения вынужденных колебаний валов и осей. Однако колебательные процессы могут возникать и от действия постоянных по величине, а иногда и по направлению сил. Свободное колебательное движение валов и осей может быть изгибным (поперечным) или крутильным (угловым). Период и частота этих колебаний зависят от жесткости вала, распределения масс, формы упругой линии вала, гироскопического эффекта от вращающихся масс вала и деталей, расположенных на валу, влияния перерезывающих сил, осевых сил и т. д. Уточненные расчеты многомассовых систем довольно сложны и разрабатываются теорией колебаний. Свободные (собственные) колебания происходят только под действием сил упругости самой системы и не представляют опасности для прочности вала, так как внутренние сопротивления трения в материале приводят к их затуханию. Когда частота или период вынужденных и свободных колебании со-  [c.286]

В предыдущих двух главах рассматривались волны и колебания конструкций, состоящих из распределенных масс и податливостей (жесткостей), без учета демпфирования — важного параметра, характеризующего затухание волн и колебаний. Этот параметр обусловлен внутренним и внешним трением, излучением и другими причинами, вызывающими убывание акустической энергии в рассматриваемой конструкции. Во многих случаях эффекты потерь пренебрежимо малы, по в некоторых случаях пренебрежение ими ведет к большим ошибкам в расчетах. Так, амплитуда вынужденных колебаний на резонансной частоте существенно зависит от потерь (см. рис. 3.14). Так же сильно зависят от потерь и отклики произвольной колебательной системы на кратковременные нагрузки. Вследствие демпфирования часть энергии колеблющейся конструкции превращается в тепло и предоставленные самим себе колебания затухают со временем. Аналогичная картина наблюдается и при распространении волны в среде. Из-за внутренних потерь часть энергии волны идет на нагревание среды и амплитуда волнового движения уменьшается с расстоянием по мере распространения волны.  [c.207]

Рассмотрим подробнее более сложную задачу по уравновешиванию ротора расчетно-экспериментальным методом, по измеренным деформациям, когда требуется определить неизвестные — эксцентриситеты. В общем виде ее можно решить для ротора с любым распределением масс и жесткостей с учетом податливости опор и гироскопическим эффектом (рис. 2, а). Математическая модель такого ротора с любой заданной степенью  [c.137]


В классической небесной механике теория движения небесных тел около центра масс развивалась применительно к конкретным телам (Луна, Земля) [94], что позволило сделать ряд упрощений, отсутствующих в общем случае при этом рассматривалось в основном влияние гравитационных моментов. Сложность задачи о вращательном движении искусственных космических объектов обусловливается произвольностью формы и распределения масс объекта, произвольностью начальных данных, многочисленностью факторов, влияющих на движение. Кроме гравитационных моментов следует учитывать еще аэродинамические и электромагнитные моменты, диссипативные эффекты, связанные с трением оболочки спутника об атмосферу и взаимодействием металлической оболочки с магнитным полем Земли влияние эволюции орбиты спутника, влияние моментов сил светового давления на космический объект, движущийся по межпланетной орбите, и т. д. Отметим также,  [c.10]

Следовательно, величина силы, действующей на тело конечных размеров, меньше силы, действующей на материальную точку той же массы. Это обстоятельство позволило предсказать новый эффект — в результате периодического изменения распределения массы внутри космического корабля появляется возможность увеличить полную энергию КА и целенаправленно изменять параметры кеплерового эллипса [33]. Действительно, в случае гантели неизменной длины работа силы тяжести за период обращения равна нулю. Если в интервале времени, когда выполняется условие fv > О, длина гантели равна нулю, а в течение остальной части периода, когда fv < О,  [c.231]

Неустановившееся течение сжимаемой жидкости без трения в однородной упругой трубе. В некоторых случаях неустановившегося течения жидкости в трубопроводах и каналах распределенная масса жидкости оказывает столь же значительное влияние на процесс, как и сжимаемость жидкости, так как в этом случае эффектом момента количества движения нельзя пренебрегать. В этих условиях давление не остается постоянным по длине трубы и поэтому массу и упругость жидкости следует учитывать одновременно как распределенные параметры. Точно так же следует учитывать изменение плотности, скорости и расхода как во времени, так и в различных точках системы. Для общности в приводимом ниже исследовании учитывается и влияние упругости стенок каналов.  [c.101]

Строго говоря, перенос тепловой энергии изменяет распределение масс, что в соответствии с общими уравнениями поля (см. 11.1) изменяет метрическое поле. Однако, поскольку 6Q—бесконечно мало, этот эффект приведет к изменению в (10.256) лишь на величину второго порядка малости.] Кроме того, поскольку энтропия — аддитивная величина, из (10.255) получим следующее выражение для изменения полной энтропии системы в течение этого процесса  [c.296]

Пусть /о ( , г, I) — функция равновесного распределения массы частиц (молекул) по скоростям . Пренебрегая пристеночными эффектами, предполагаем, что зависимость от пространственных координат г и времени I — неявная и выражается через моменты нулевого порядка (р = ,  [c.246]

В настоящей статье рассматриваются изгибные колебания ротора высокоскоростной ультрацентрифуги со схемой, аналогичной изучавшейся в работе [3]. Однако здесь ротор представлен как упругая гироскопическая система с распределенными и сосредоточенными параметрами учитывается гироскопический эффект только сосредоточенных масс. Численные значения параметров системы значительно отличаются друг от друга. Это приводит к появлению зон преимущественного влияния того или иного элемента ротора на его колебания. В ранее опубликованных работа -  [c.47]

Увеличение нелинейности системы (пластических свойств) приводит к возрастанию отклонения закона распределения от гауссовского и к уменьшению сейсмических сил. При этом эффект нелинейности увеличивается с возрастанием массы системы, жесткости или интенсивности внешнего воздействия.  [c.317]

Общие дифференциальные уравнения диффузионного и теплового пограничных слоев известны, но для данного конкретного случая (двухкомпонентная газовая смесь с фазовыми превращениями) они достаточно сложны [32, 51]. Сделанные упрощения дифференциальных уравнений пограничного слоя имеют своей целью усилить роль основного эффекта при расчетах взаимосвязанных процессов тепло- и массообмена между газом и жидкостью и в то же время по возмол<ности в наибольшей мере учесть второстепенные. Как видно из уравнений (1-10), (1-18), основным результатом таких упрощений является возможность представить линейным распределение потенциалов переноса массы и энергии в пограничных слоях за счет осреднения некоторых физических параметров в пределах слоя. Этот результат есть следствие особенностей рассматриваемых процессов, включая невысокие относительные скорости фаз, небольшие разности потенциалов переноса, а также специфическое для двухкомпонентных смесей равенство абсолютных значений градиентов концентраций компонентов, градиентов их парциальных энтальпий (Я , Яг) и парциальных давлений.  [c.30]


Дробление капель Поверхностный срыв массы Разность скоростей Поперечное перетекание Распределение капель по размерам Длина пути испарения Длина пути смешения Турбулентность Потери на дробление Потери на рассеяние Трехмерные эффекты Кинетические эффекты Отставание частиц Полное давление  [c.166]

Анализ показал, что вышеприведенные результаты для ротора с одним диском являются справедливыми и для произвольных двухопорных роторов (ротор с несколькими дисками, с распределенными параметрами), если под М понимать массу Всего ротора, а под 2 — его первую собственную частоту. При этом результаты расчетов всегда будут с некоторым запасом, так как дополнительный анализ показал, Что гироскопический эффект дисков, который может проявляться в несимметричных системах, всегда повышает устойчивость.  [c.167]

Система, находящаяся в термомеханическом равновесии, в том числе и неоднородная система, состоящая из нескольких фаз, имеет постоянное поле температур и давлений. Для неоднородной системы, при постоянной температуре и давлении, не исключена возможность неравновесного распределения масс веществ и наличия процессов обмена массой. В результате такая система не находится в равновесном состоянии. Процессы перераспределения массы протекают чрезвычайно быстро, так что они далеки от квазистатических в сравнении с термомеханическими изменениями состояния. Существенная нестатичность процесса перераспределения массы приводит к появлению сопутствующих тепловых, акустических, оптических и других эффектов. Однако последние мало энергоемки и основным остается тепловой эффект, в результате которого увеличивается энтропия. На этом основании можно написать основное соотношение термодинамики для системы, в которой происходит перераспределение вещества, в следующей форме  [c.158]

При продольном обтекании пучков оребренных стержней и витых труб овального профиля наблюдается значительная ин-тенсиф икация процесса межканального перем.ешивания теплоносителя по сравнению с течением в круглой трубе [9, 39, 48]. Это очень важно для теплообменных аппаратов с заметной неравномерностью поля энерговыделения (теплоподвода) в поперечном сечении пучка. Обычно для определения распределений температуры в пучках оребренных стержней применяется метод расчета элементарных ячеек с учетом эффектов обмена массой, импульсом и энергией между ними, используя для замыкания системы уравнений экспериментально определяемый коэффициент перемешивания д = С,у/С/ [48]. Однако в этом случае при большом числе стержней (труб) в пучке требуются значительные затраты счетного времени на реализацию программы расчета. Поэтому в пучках витых труб для опреде-леция полей температур теплоносителя применяется метод гомогенизации реального пучка [9, 39], который рекомендуется и для расчета температурных полей в пучках оребренных стержней.  [c.93]

Не следует думать, что сплюснутость Земли является единственной причиной, вызывающей эффект оскулнрования. К аналогичному изменению параметров приводят и другие возму-шаюниге факторы. Это — прнтиженне Луны и Солнца, световое давление и аномалии распределения масс в объеме земного шара.  [c.325]

Следует напомнить также об описанном в гл. 1 вторичном эффекте, вызванном дискретными струйками, протекающими через отверстия решетки, и проявляющемся в сечениях за ней. Уменьшить илияние этого эффекга на распределение скоростей можно, например, устройством в канале в области отрыва соответствующих карманов . В этом случае отрывная зона с циркуляцией присоединенной массы, отделившейся от ядра постоянной массы общего потока в конце кармана , находясь внутри него, будет меньше стеснять поток, а следовательно, меньше нарушать равномерность распределения скоростей на рассматриваемом участке. Кар-мана.ми , 1апример в горизопталычо.м электрофильтре, являются пылевой бункер внизу н углубление для крепления электродов вверху.  [c.89]

В работах Р. М. Гарипова [11] и О. В. Воинова и А. Г. Петрова [9, 10] получены осредненные уравнения неразрывности и импульса фаз для случая смеси идеальной несжимаемой жидкости со сферическими частицами (пузырьками) нулевой массы при отсутствии фазовых перюходов, когда объемное содержание дисперсной фазы 1, так что величинами а. в степени большей единицы можно пренебречь. Указанные уравнения [9—11] получены из анализа задачи о двпженпи идеальной несжимаемой жидкости около системы N сфер с радиусами a t) v = 1,. . ., Л ) и предельного перехода N со пли L/L -> 0. При этом рассматривалось хотя и не произвольное распределение пузырьков в объеме, но, по-видимому, более общее, чем их равномерное расположение (а именно, равномерному расположению соответствует использованная нами ячеечная схема). С одной стороны, метод [9—И ], видимо, более последователен и строг, но, с другой стороны, он проходит только для случая потенциального движения идеальной несжимаемой жидкости, в то время как метод ячеек допускает анализ и получение уравнений в более сложных случаях, когда необходим учет эффектов вязкости, теплопроводности, сжимаемости, фазовых переходов, несферичности частиц и т. д. В связи с этим интересно сравнить, не вдаваясь в процедуру их вывода, уравнения [9—И] и уравнения, полученные нами.  [c.151]

С учетом распределения плотности твердых частиц это приводит к различию между отношениями масс и расходов твердой фазы и газа [7451. На фиг. 4.24 показаны экспериментальные данные и резу.льтаты расчетов на основе интегральной измеренной плотности и профилей потока массы [745]. Отношения, полученные этими двумя способами, были бы идентичны, если при движении по трубе взвесь была подобна газообразной среде. Результаты показывают, что отношение потоков массы заметно меньше, чем отношение масс. Если сравнить кривые для двух скоростей 42,7 п 18,9 м1сек), то можно видеть, что при сходных значениях отношения заряда к массе при ма.лых скоростях потока электростатический эффект ощущается заметнее. Это подтверждает концепцию минил1альной скорости переноса частиц [8041.  [c.192]


Представляет интерес движение по трубе смеси газ — твердые частицы. Если труба — проводник или диэлектрик с равномерно распределенным зарядом, то, согласно закону Гаусса, электрического поля внутри трубы не будет. Если частицы равномерно заряжены и осесимметрично распределены по трубе, то частица, возможно, осядет на стенку, если поток нетурбулентен. Согласно уравнению (10.157), мелкие стеклянные шарики в атмосферном воздухе при концентрации 1 кг частицЫг воздуха на расстоянии 1 см от оси будут иметь в 10 раз большее ускорение, чем под действием силы тяжести даже при отношении заряда к массе, равном 0,002 к1кг. Радиальная составляющая интенсивности турбулентного движения частиц в соответствии с приближением oy [721] составляет 10 м сек для частиц диаметром 100 мк. Этот эффект может полностью компенсировать действие силы тяжести на смесь газ — твердые частицы в горизонтальной трубе и стать одной из возможных причин большой разницы между поперечной и продольной интенсивностями турбулентного движения частиц (разд. 2.8). Распределение плотности, данное oy [726], можно приписать дрейфовой скорости, обусловленной главным образом электрическим зарядом частиц.  [c.485]

Каждый дополнительный контакт увеллчивает вариантность на единицу, поскольку добавляется одна внешняя независимая переменная. Так, если система подвержена действию электростатического поля, заметно влияющего на ее свойства, то вариантность будет с+3, если к тому же необходимо учесть энергию граничной поверхности, считая ее принадлежащей системе, то с+4 и т. д. С другой стороны, постоянство некоторых из переменных уменьшает вариантность. При фиксированных массах компонентов, т. е. для закрытых систем, в отсутствие внешних силовых полей и поверхностных эффектов справедливо правило Дюгема общая вариантность равновесия равняется двум вне зависимости от числа компонентов и их распределения внутри системы [3]. Система, изолированная или имеющая с внешней средой-только тепловой контакт, является моновариантной. Вариантность уменьшается также, если есть дополнительные связи между внешними переменными,, так как это эквивалентно уменьшению числа независимых переменных. Например, изменение площади поверхности тела однозначно определяется изменением его объема при однородной (с сохранением формы) деформации тела.  [c.24]

Другой причиной неаддитивности свойств может быть не учитываемая в термодинамике взаимная гравитационная энергия масс. Гравитационные силы не относятся к короткодействующим, и величина отвечающей им избыточной энергии зависит от общей массы системы и от ее распределения по объему. Для земных применений термодинамики эффект пренебрежимо мал, однако, как показывает современная физика, в масштабах космоса он может стать решающим. Термодинамика гравитирующих систем не существует, хотя есть примеры неожиданно удачного применения к таким системам законов и понятий обычной термодинамики [5].  [c.28]

Далее, в результате процессов взаимодействия космических излучений с биологической тканью в теле космонавта будет создаваться неравномерное пространственное распределение поглощенных доз. Степень неравномерности этого распределения зависит от проникающей способности излучения. Для излучения очень больщой проникающей способности (например, для высо-коэнергетичной части спектра галактического космического излучения) локальная поглощенная доза могла бы в принципе служить критерием радиационной опасности, поскольку в этом случае перепады значений доз в различных точках отсека и по поверхности и объему тела космонавта были бы невелики. Однако при увеличении энергии заряженных частиц значительно возрастает вклад в дозу вторичных частиц, образующихся при ядерном взаимодействии в биологической ткани. При этом эффект вторичных излучений существенно зависит от общей массы  [c.272]

В спектрах элементов, обладающих определенным изотопным составом, наблюдают расщепление линий на ряд компонент, каждая из которых характеризует свой иуклид. Возникновение подобной изотопической структуры спектров обусловлено взаимодействием электронов с ядром. Полный гамильтониан взаимодействия атома в системе центра инерции включает в себя движение нуклонов ядра относительно центра инерции (нормальный или боровский эффект массы), зависящее от массы ядра обменное взаимодействие электронов (специфический эффект массы) и взаимодействие валентных электронов с распределенным протонным зарядом ядра (эф-  [c.846]

Имеется взаимосвязь между сопротивлением растеканию тока с протектора и колебаниями электросопротивления грунта под влиянием сезонных изменений погоды. Для предотвращения этих колебаний и для уменьшения сопротивления растеканию тока протекторы окружают в грунте постельной массой — так называемой засыпкой (активатором). Кроме того, такие массы предотвращают образование пассивирующего поверхностного слоя и обеспечивают равномерное распределение защитного тока и более равномерную собственную коррозию. Последний эффект обусловливается в первую очередь наличием гипса в активато-  [c.188]

Хотя значение поглощенной дозы может служить приемлемой мерой количества энергии, переданной излучением единице массы вещества, она не вполне удовлетворяет требованиям задачи оценки биологических эффектов, вызываемых различными ионизирующими излучениями. Дело в том, что повреждение ткани связано не foлькo с количеством поглощенной энергии, но и с ее пространственным распределением, характеризуемым значением линейной передачи энергии 1д чем выше L д  [c.340]

Была установлена слабая зависимость положения кривой скорости счета от напряжения, приложенного к иглалМ, но этот эффект не оказывал влияния на расчет распределения размеров капель. Кривая отклонялась только на постоянный множитель, причем эта постоянная исчезает, если результируюш ее вероятностное распределение является нормальным [2]. Эта зависимость может быть вызвана тем, что капли вследствие трения приобретают статический заряд, пропорциональный массе капли. Спла кулонова взаимодействия с зарядом на иглах искажает распределение капель и также пропорциональна массе капли. Поэтому результирующее искажаюш ее ускорение капель не должно зависеть от массы капли.  [c.176]

В приведенном ранее теоретическом решении не учитывается межфазное взаимодействие на границе жидкости с паром. А. П. Солодов [7-9] решал задачу с учето.м зтого эффекта. Рассматривалась плоская ламинарная струя с равномерным начальным распределением скорости и температуры, равных соответственно Wa И Го- Струя вытекает в пространство с неподвижным насыщенным паром при температуре Тв- Вследствие притока массы конденсата жидкость подтормаживается и поверхность раздела фаз несколько отклоняется от плоскости г/=0 и принимает положение t/i(x) (рис. 7-3).  [c.181]

Колебат. механич. системами Э. п. могут быть стержни, пластинки, оболочки разл. формы (полые цилиндры, сферы, совершающие разл. вида колебания), механич. системы более сложной конфигурации. Колебат. скорости и деформации, возникающие в системе под воздействием сил, распределённых по её объёму, могут, в свою очередь, иметь достаточно сложное распределение. В ряде случаев, однако, в механич. систем можно указать элементы, колебания к-рых с достаточным приближением характеризуются только кинетич, и потенц. энергиями и энергией механич. потерь. Эти элементы имеют характер соответственно массы М, упругости I / С и активного механич. сопротивления г (т.н. системы с сосредоточенными параметрами). Часто реальную систему удаётся искусственно свести к эквивалентной ей (в смысле баланса энергий) системе с сосредоточенными пара.меграми, определив т. н. эквивалентные массу Л/, , упругость 1 / С , и сопротивление трению / . Расчёт механич. систем с сосредоточенными параметрами может быть произведён методом электромеханич. аналогий. В большинстве случаев при электромеханич. преобразовании преобладает преобразование в механич, энергию энергии либо электрического, либо магн. полей (и обратно), соответственно чему обратимые Э.п. могут быть разбиты на след, группы электродинамические преобразователи, действие к-рых основано на электродинамич. эффекте (излучатели) и эл.-магн. индукции (приёмники), напр, громкоговоритель, микрофон электростатические преобразователи, действие к-рых основано на изменении силы притяжения обкладок конденсатора при изменении напряжения на нём и на изменении заряда или напряжения при относит, перемещении обкладок конденсатора (громкоговорители, микрофоны) пьезоэлектрические преобразователи, основанные на прямом и обратном пьезоэффекте (см. Пьезоэлектрики) электромагнитные преобразователи, основанные на колебаниях ферромагн. сердечника в перем. магн. поле и изменении магн. потока при движении сердечника  [c.516]


Процесс упругого рассеяния происходит на всех ядрах и при всех энергиях нейтронов. В результате упругого рассеяния нейтрон изменяет направление движения и теряет часть своей энергии (если она выше тепловой), передавая её ядру отдачи. Сечение упругого рассеяния ст, обычно слабо зависит от энергии нейтрона и приближённо равняется геом. поперечному сечению ядра (порядка неск. барн). Угл. распределение нейтронов после рассеяния (в системе центра масс) в большинстве случаев изотропно лишь на тяжёлых ядрах для быстрых нейтронов имеет место нек-рая анизотропия с преимуществ, рассеянием вперёд. Эффект упругого рассеяния непосредственно не влияет на баланс нейтронов, но косвенно сказывается на протекании цепной реакции, т. к. уменьшение энергии нейтронов в общем случае изменяет соотношение между вероятностью вызвать деление и вероятностью захватиться, кроме того, запутывание нейтрона в среде уменьшает вероятность его потери из-за вылета наружу. Ср. потерю энергии нейтроном при одном соударении удобно характеризовать среднелогарифмич. декрементом  [c.680]

Влияние быстроты смешения коагулянта с водой и равномерности его распределения. При введении коагулянта в обрабатываемую воду очень важно обеспечить равномерность его распределения в объеме воды. Наглядное представление об этом дает коагуляционная кривая (рис. 3.5). В той части воды, где доза коагулянта будет явно недостаточна, процесс коагуляции не произойдет (первая зона). В другой части объема воды, где доза коагулянта будет в избытке (третья зона), будут образовываться очень крупные рыхлые хлопья с большим количеством молекул захваченной воды. Их плотность будет близка к плотности воды, и поэтому они будут находиться в состоянии безразличного равновесия, не выпадая в осадок, и только в той части объема обрабатываемой воды, где доза коагулянта будет близка к оптимальной, процесс коагуляции будет протекать нормально. Таким образом, равномерное распределение коагулянта во всей массе обрабатываемой воды явля ется необходимым условием для обеспечения надлежащего эффекта процесса коагулирования примесей воды.  [c.78]

В технологических схемах реагентного умягчения воды с осветлителями вместо вихревых реакторов применяют вертикальные смесители (рис. 20.5). В осветлителях следует поддерживать постоянную температуру, не допуская колебаний более 1°С, в течение часа, поскольку возникают конвекционные токи, взмучивание осадка и его вынос. Подобную технологию применяют для умягчения мутных вод, содержащих большое количество солей магния. В этом случае смесители загружают контактной массой. При использовании осветлителей конструкции Е. Ф. Кургаева, смесители и камеры хлопьеобразования не предусматривают, поскольку смешение реагентов с водой и формирование хлопьев осадка происходят в самих осветлителях. Зна-чительная высота при небольшом объеме осадкоуплотнителей позволяет применять их для умягчения воды без подогрева, а также при обескремнивании воды каустическим магнезитом. Распределение исходной воды соплами обусловливает ее вращательное движение в нижней части аппарата, что повышает устойчивость взвешенного слоя при колебаниях температуры и подачи воды. Смешанная с реагентами вода проходит горизонтальную и вертикальную смесительные перегородки и поступает в зону сорбционной сепарации и регулирования структуры осадка, что достигается изменением условий отбора осадка по высоте взвешенного слоя, создавая предпосылки для получения его оптимальной структуры, улучшающей эффект умягчения и осветления воды. Проектируют осветлители так же, как и для обычного осветления воды.  [c.486]

Существование потенциала скорости связано с предположением об отсутствии вращательной составляющей и поперечном течении такое предположение обычно считалось неприемлемым для двухфазного вязкого течения с различиями в местных ускорениях и скоростях генерации газа. Однако следует отметить, что если лобовое сопротивление и другие вязкостные эффекты не оговорены априори, то определение потенциала скорости ведет просто к невращающемуся потоку с плоскостным распределением источников генерации газа, которое определяется местными скоростями горения и стоками газа, обусловленными осевым ускорением. Таким образом, потенциальное решение может рассматриваться как удовлетворительное приближение,, если условие сохранения массы преобладает над влиянием вязкости.  [c.157]

Изучая механизм изнашивания, нельзя обойти особенность, относящуюся к распределению износа между поверхностями трения в паре. Если материалы нескольких пар трения одинаковы, то при прочих равных условиях их износ (в пределах обычных колебаний) будет одинаковым. Если же материалы деталей разные, то и износы по массе и размерам будут различны. Интенсивность изнашивания каждой детали определяется его видом. Может случиться, что при одном виде изнашивания более интенсивно изнашивается одна деталь, а при другом виде изнашивания — другая. Ограничимся простейшими парами ползун — направляющая при неравных площадях трения и вал — частичный вкладыш. Эксперимент показывает, что при одинаковых материалах износы поверхностей по массе не одинаковы большая поверхность больше теряет маЬсы. Соотношение линейных износов зависит от соотношения поверхностей трения. Сделано несколько попыток объяснить эффект влияния площади трения на массовый износ.  [c.110]

Некоторое время назад русские ученые предложили способ обработки сердцевины дерева посредством воздействия поля высокой частоты. Диэлектрические потери, распределенные в массе древе- сины, производили эффект активного нагрева и сушки. Отметим, однако, что этот процесс, весьма выгодный при обработке каучука, менее применим к дереву, - ибо трудно поддается регулированию. А стоит слишком резко повести процесс, как начинается разрушение клеток. Процессже, проведенный слишком-слабо, не оказвдает  [c.294]


Смотреть страницы где упоминается термин Эффект I с распределенной массой : [c.175]    [c.351]    [c.481]    [c.843]    [c.30]    [c.289]    [c.255]    [c.136]    [c.422]    [c.168]    [c.104]    [c.124]    [c.591]    [c.644]    [c.111]   
Прочность Колебания Устойчивость Т.3 (1968) -- [ c.0 ]



ПОИСК



324—326 — Эффект гироскопический с распределенной массой

Вал с распределенной массой

Распределение масс



© 2025 Mash-xxl.info Реклама на сайте