Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача Лагранжа ограниченная

Методы штрафных функций так же, как и метод множителей Лагранжа, преобразует исходную задачу к задаче без ограничений. Отличие состоит в том, что вместо функции Лагранжа используется функция более общего вида, а именно  [c.252]

Наиболее значительного сокращения числа неизвестных в многокомпонентной многофазной системе можно достичь, исключая из (22.9) все переменные. ....n. Такая возможность представляется благодаря особой, седловидной форме поверхности функции L(n, к) вблизи экстремума и ввиду очевидного термодинамического смысла множителей "к (см. (16.20)). Вычислительный процесс при этом организуется иначе вместо минимизации функции L в пространстве переменных п ведется поиск максимума этой функции по переменным к. Такую замену называют переходом от решения прямой задачи к решению сопряженной с ней двойственной задачи. В теории выпуклого программирования доказывают теоремы, позволяющие из формулировки прямой задачи по стандартным правилам составить соответствующую ей двойственную. В общем случае часть целевой функции двойственной задачи, от которой зависят координаты максимума, представляет собой функцию Лагранжа прямой задачи, а вместо ограничений л/< >>0 в прямой задаче выступают ограничения (22.10) в двойственной. Для рассмотренного выше частного примера из области линейного программирования двойственная к (22.2), (22.3) задача формулируется следующим образом найти максимум функции  [c.188]


Подобно принципу Гамильтона ( 3.7), принцип наименьшего действия выражает необходимые и достаточные условия движения. Поэтому из пего можно вывести уравнения движения. Однако это сделать значительно трудней, чем из принципа Гамильтона, вследствие ограничения Е = h, накладываемого на движения вдоль варьированных путей. В этом случае мы имеем вариационную задачу Лагранжа. Мы приведем здесь этот вывод для натуральной системы. Согласно принципу наименьшего действия функционал h  [c.546]

Для вывода условий стационарности в задачах с ограничениями эти задачи преобразуют в эквивалентные им свободные. Существует два способа учета ограничений (1.3) в форме равенств использование общих решений уравнений (1.3) и метод неопределенных множителей Лагранжа.  [c.20]

Во многих задачах, например для выпуклых функционалов, использование этих двух положений позволяет проследить и за изменением экстремальных свойств функционалов (см. 3). В ряде задач без ограничений можно искусственно ввести дополнительные условия, чтобы затем внести их в функционал с множителями Лагранжа и производить дальнейшие преобразования. Эта идея оказалась очень плодотворной. Она позволяет получить множество различных формулировок одной и той же вариационной задачи с различными переменными и, в частности, осуществлять важное преобразование Фридрихса (см. 2.4).  [c.34]

Контактные задачи принадлежат к классу задач с ограничениями. По своей природе они являются нелинейными, так как при их решении требуется определить заранее неизвестную границу контакта двух (или более) тел и контактные силы взаимодействия этих тел. Наиболее известны такие методы решения контактных задач, как методы множителей Лагранжа и штрафных функций. Применение метода множителей Лагранжа к решению этих задач приведено в [1, 2, 7, 50, 59, 69, 82, 91, 92, 102], а применение метода штрафных функций развито в [1, 2, 55, 57, 58, 69-71, 85-87, 91, 92, 102, 114]. У каждого из этих методов есть достоинства и недостатки. Для метода множителей Лагранжа точно выполняются кинематические условия контакта, но вводятся дополнительные уравнения для множителей Лагранжа и получается усложненная формулировка уравнений. В то же время для метода штрафных функций число уравнений при введении условий контакта не меняется, однако в численном алгоритме точно удовлетворить кинематические условия контакта не удается. Введение большого коэффициента штрафа приводит к плохой обусловленности касательной матрицы жесткости, а для малого коэффициента штрафа ухудшается выполнение кинематического условия контакта тел. Поэтому выбор величины штрафа является непростой задачей.  [c.6]


Таким образом, контактная задача представляет собой формулировку уравнений для движения двух тел с наложенными кинематическими (4.45) и статическими (4.46) ограничениями на их движения друг относительно друга. Существует два наиболее известных метода решения задач с ограничениями метод множителей Лагранжа и метод штрафных функций. Суть решения  [c.152]

Если в задаче имеются ограничения типа равенств, то ее приводят к безусловному виду, применяя метод множителей Лагранжа.  [c.148]

Подобно тому, как это делалось выще, рассмотрим (2.1) при 6 4 = О как вариационную задачу с ограничениями (2.2). Введем соответствующие множители Лагранжа вектор Q = и Af = (несимметричный). Вариации gw и 80 свободны в следующей постановке  [c.199]

Это уравнение вместе с уравнениями связей (29) составляют замкнутую систему для нахождения решений задачи Лагранжа. Уравнение (31) можно получить методом множителей Лагранжа. Вводя новый лагранжиан S — L—l K.f, и считая Xi.....%т дополнительными координатами, сведем задачу Лагранжа к вариационной задаче без ограничений. Если в новой задаче не принимать во внимание уравнения связей, то уравнения Эйлера—Лагранжа будут иметь вид  [c.45]

Теперь рассмотрим приложение этих общих результатов к частным решениям Лагранжа ограниченной задачи.  [c.232]

Задача оптимизации КА математически представляет собой задачу с ограничениями. Лагранж предложил задачу с ограничениями свести к задаче без ограничений с помощью введения дополнительных неизвестных - неопределенных множителей, определяемых в процессе нахождения оптимальных проектных параметров. Для этого вводится новая функция  [c.186]

Метод множителей Лагранжа предполагает наличие связей в виде равенств. В реальных задачах существуют ограничения и в виде неравенств.  [c.22]

Как известно из теории квадратичного программирования [20, 34], задаче (117), (118) эквивалентна следующая задача Лагранжа — определить неизвестные ги и ии, удовлетворяющие системе ограничений  [c.72]

Задача Лагранжа, эквивалентная задаче (126) и (127), формулируется так — определить неизвестные Аг, и ин, удовлетворяющие системе ограничений  [c.75]

Для определения максимального значения аддитивного критерия F(V, N) с учетом ограничения на массу автомата воспользуемся методом неопределенных множителей Лагранжа. В результате решения задачи оптимизации получаем =100 м/с, =0,445 м, Ngp =65. На рис. 1.2 данному решению соответствует точка В.  [c.20]

Основным достоинством методов скользящего допуска является то, что независимо от выполнения условия (П.37), на каждом шаге решаются экстремальные задачи оптимизации без ограничений (минимизация T(Zh) или оптимизация //о(2д). Хотя методы преобразования задач с помощью множителей Лагранжа или штрафных функций также сводятся к оптимизации без ограничений, тем не менее поиск со скользящим допуском на ограничения приводит быстрее к цели. Эффективные алгоритмы поиска по методу скользящего допуска с использованием комплексов для определения направления движения описаны в [80].  [c.253]

Задача минимизации выпуклой функции G(n) при ограничениях (20.11) и (20.16) формулируется в наиболее удобном виде с помощью функции Лагранжа (см. (16.14))  [c.186]

Замечание 4.6.2. Метод неопределенных множителей Лагранжа есть математическая формулировка принципа освобождения от идеа.тьных связей (определение 3.8.1). В такой форме этот принцип механики можно успешно использовать в произвольных задачах на условный экстремум. В частности, пусть требуется найти экстремум скалярной функции (функционала, см. 8.11) F(x), х Л (или X ( 2)", если F(x ) — функционал) при выполнении ограничений  [c.340]

Внося условия (4.242) —(4.243) в функционал (4.241) с помощью множителей Лагранжа, получим задачу без добавочных ограничений.  [c.204]

Исходная задача минимизации эквивалентна задаче разыскания стационарного значения (по переменным у, и, р) функции Лагранжа (5.416) так как по переменной у теперь никаких ограничений нет, то в точке стационарности  [c.302]

Ограниченная задача трех тел (К. Г. Якоби, 1835 г.). Вектор I (см. задачу 3.3.7) описывает окружность (рис. 2.9а>. Найти ограниченное решение уравнений движения в окрестности треугольных точек Лагранжа [56, 65].  [c.142]


Если не накладывать ограничения на начальные условия, то точное решение задачи можно получить только в трех частных случаях — случаях Эйлера, Лагранжа и С. В. Ковалевской.  [c.703]

Разработаны многочисленные методы рещения задачи оптимизации при различных видах целевой функции, уравнений связи и типах ограничений, которые условно можно подразделить на две группы а) классические (метод дифференциального исчисления, метод множителей Лагранжа, вариационное исчисление) б) метод математического программирования (методы линейного и нелинейного программирования, метод динамического программирования, принцип максимума Понтрягина и др.).  [c.555]

Рассмотрим вначале решение задачи для случая, когда функция (10.183) или (10.184) достигает минимума внутри области ограничения функции в точках, в которых частные производные обращаются в нуль. Решение задачи в этом случае возможно при помощи метода условного экстремума Лагранжа. Введем следующие обозначения  [c.374]

Несомненным достоинством дифференциального метода является получение строгого (в математическом смысле) решения оптимизационной задачи посредством применения метода неопределенных множителей Лагранжа при условии, что на независимые параметры установки и ее отдельные узлы накладываются лишь ограничения третьего рода (в виде функциональных равенств).  [c.38]

Далее рассмотрим, какие уравнения можно вывести из принципа дополнительной виртуальной работы, если предполагается, что он справедлив для произвольных вариаций напряжений. Универсальным методом решения задач такого рода является метод множителей Лагранжа ). Будем рассматривать (1.48) и (1.49) как ограничения, а перемещения и, v, w как множители Лагранжа, ассоциированные с этими ограничениями. Тогда, проводя все рассуждения в обратном порядке, получим (1.46) из (1.50). Поскольку величины ба , ба ,. .., бт считаются независимыми в соответствии с общей схемой применения множителей Лагранжа, все коэффициенты в уравнениях (1.46) обращаются в нуль, и мы получаем уравнения (1.44) и (1.45). Таким образом, принцип дополнительной виртуальной работы эквивалентен соотношениям напряжения—деформации и граничным условиям в напряже-  [c.35]

Теперь для функционала (П2.67) можно решать обычную вариационную задачу об определении экстремалей с заданными граничными условиями. При этом решение такой задачи будет зависеть от неопределенных множителей Ж.Лагранжа, которые определяются из замкнутого множества уравнений, получаемого подстановкой этих решений в интегральные ограничения типа (П2.66).  [c.280]

Сравнивая задачу Лагранжа с задачей акустической оитими-зации в общей ностановке (7.51) — (7.54), можно заметить, что здесь требуется минимизировать один функционал (7.56) при выполнении ограничений типа равенств (7.57) или  [c.261]

Поскольку критерий (3.21) монотонно растет с увеличением толщины любого слоя, решение задачи (3.21)—(3.22) находится на границе ограничений (3.22). Поэтому решение этой задачи распадается на решение нескольких задач с ограничениями типа равенства и проверкой вьшолне-ния для этих решений оставшихся ограничений. Решение общей Задачи оптимального проектирования многослойной пластины получается выбором наилучшего решения из конечного числа решений этих вспомогательных задач. Полученные вспомогательные задачи методом множителей Лагранжа сводятся к решению задачи с критерием (3.20) и условием нормировки Xi = 1, однако параметры Ху определяются в ходе решения задачи таким образом, устанавливается связь между множителями Ху  [c.239]

Стоит рассмотреть вывод уравнений с самого начала — от (2.1). Можно поставить задачу с ограничением = 0,VV8w = 0 ) и ввести симметричный тензор множителей Лагранжа X  [c.202]

В зависимости от вида ие.иевой функции, а также от вида ограничений суп1сствуют pa i личные методы оптимизации (методы дифференциального исчислении, методы множителей Лагранжа, методы пжейного и нелиней ного программирования, методы динамического программирования и т. д.). Пример исно, 1ь )ова ния метода множителей Лагранжа для некого рых задач оптимизации конструкций дан в кни ге (23],  [c.53]

При решении практических задач этот подход, как правило, непригоден из-за отсутствия явных функциональных выражений ограничений-равенств. ГТоэтому обычно применяют второй подход, использующий классический метод множителей Лагранжа. Он требует построения функций Лагранжа  [c.252]

Пластиной называется тело, ограниченное двумя плоскостями Z = h и цилиндрической поверхностью, образующие которой параллельны оси z. В плоскости z = О, называемой срединной плоскостью, выбираются произвольным образом координаты Ха (а = 1,2). Предполагается, что размеры пластины в плане значительно больше, чем толщина 2h (рис. 12.4.1). Так же, как в 2.1, где речь шла о стержнях, будем принимать за 1[аимень-ший поперечный размер наименьшее расстояние между касательными к контуру пластины. Под контуром пластины понимается контур сечения цилиндрической поверхностью плоскости Z = 0. Так же, как теория изгиба балок, теория пластин может быть построена при помощи любого из вариационных принципов. Если при выводе уравнения изгиба мы отправлялись от вариационного принципа Лагранжа, то здесь мы примем за основу вариационный принцип Рейснера (не в силу каких-то его преимуществ, а для иллюстрации метода). Дело в том, что в физически нелинейной теории пластин, изготов- Рис. 12.4.1 ленных из нелинейно-упругого или пластического материала, реализация вычислений на основе принципа Лагранжа приводит к очень большим трудностям, тогда как принцип Рейснера позволяет получить приближенное решение задачи относительно просто.  [c.395]


В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

Задача о движении системы с го-лономными связями формально всегда может быть решена, что частично объясняется возможностью исключения зависимых координат. Однако для задач с неголономными связями общего метода решения не существует. Правда, дифференциальные уравнения неголономных связей можно рассматривать совместно с дифференциальными уравнениями движения и тогда можно исключить зависимые величины с помощью метода множителей Лагранжа, который мы рассмотрим позже. Однако в более специальных случаях неголономных связей требуется индивидуальный подход к каждой задаче. При формальном изложении классической механики почти всегда предполагается, что любая имеющаяся связь является голономной. Это ограничение несколько сужает применимость общей теории, несмотря на то, что в повседневной практике нередко встречаются неголоном-ные связи. Причина этого состоит в том, что связи, наложенные на систему, обычно реализуются посредством различных поверхностей, стенок или стержней и играют заметную роль лишь в макроскопических задачах. Но современных физиков интересуют главным образом микроскопические системы, в которых все объекты (как внутри системы, так и вне ее) состоят из молекул, атомов и еще более мелких частиц, порождающих определенные силы. Понятие связи становится в таких случаях искусственным и встречается редко. Связи используются здесь лишь как математические идеализации, полезные при описании  [c.25]

Как видим, по своим условиям случай Гесса сущ,ественно отличается от раньше разобранных случаев Эйлера, Лагранжа и Ковалевской тело совершает гессово движение не при произвольных начальных условиях, а только тогда, когда начальные данные связаны ограничением (51.8). Другими словами, мы имеем здесь не обш,ее решение задачи о движении твёрдого тела с определённым распределением масс, как это было в предытущих трёх случаях, а только частное.  [c.577]

К классическим проблемам в теплоэнергетике можно вполне отнести задачу определения оптимального распределения регенеративных отборов и выбора оптимальных параметров промперегрева с целью достижения максимальной тепловой экономичности турбоустановки, т. е. минимума удельного расхода тепла. Для упрощенных тепловых схем заданная задача решается аналитически. В работе В. Я. Рыжкина [Л. 35] широко используются комбинированные методы. С использованием метода Лагранжа для учета ограничений вида равенства получены системы алгебраических уравиений, удов-летворяюш,их условиям оптимальности распределения. Для численного решения этих систем применяется ЭВМ.  [c.59]

К первому способу относятся дифференциальные градиентные методы, или методы с малым шагом. Они могут быть использованы для решения задач оптимизации в случае задания ограничений в виде системы равенств. Проблема учета границ здесь решается введением функции Лагранжа [9]. Больший интерес представляют методы с конечным шагом, т. е. все методы возможных направлений [10]. В методе штрафных функций [111 градиентный метод поиска экстремума применяется к сумме оптимизируемой функции и функций ограничения, взятых с некоторыми весо-  [c.18]

Уравнения Эйлера выведены для условий, когда режимные ограничения отсутствуют. При наличии ограничений в форме неравенств уравнения Эйлера будет удовлетворяться лишь в тех зонах, где ограничения не сказываются (в зонах с наличием ограничений уравнения Эйлера превращается в неравенства). Кроме того, согласно вариационному исчислению, при наличии ограничений в форме неравенств, должны дополнительно соблюдаться так называемые уравнения трансверсальности. Последние уравнения отражают условия наилучшего сопряжения линий оптимального режима (экстремалей) с линиями рел<имных ограничений в зонах, где режимные ограничения в форме неравенств сказываются. Число уравнений трансверсальности равно числу указанных точек сопряжения экстремалей, поэтому в сложных задачах число уравнений трансверсальности может быть очень большим. Кроме того, заранее не известны точки сопряжения экстремалей, и приходится записывать уравнения трансверсальности для всех возможных точек сопряжения экстремалей. В силу этого для сложных задач практический учет ограничений в форме неравенств методами классического вариационного исчисления невозможен, и поэтому приходится искать иные решения. Учет ограничений в форме равенств в классическом вариационном исчислении возможен с помощью известных множителей Лагранжа.  [c.36]

Таким образом, существенным недостатком классического вариационного исчисления является практическая невозможность учета в сложных задачах ограничений в форме неравенств. В современной математике разработан ряд методов учета таких ограничений—метод штрафных функций, методы возможных направлений (проекционные методы), метод модифицированных множителей Лагранжа, принцип максимума Понтрягина. Первые два метода, используемые в данной работе, будут рассмотрены ниже более подробно. Анализ метода модифицированных множителей Лагранжа применительно к энергетическим задачам проведен в работах [Л. 47, 48]. Исследования по применению принципа максимума Понтрягина к задаче оптимизации долгосрочных режимов ГЭС только еще начаты в работах Л. С. Беляева, Далина, Шена, Нариты [Л. 48, 95, 96]. Авторы отмечают большую перспективность этого метода решения задачи. Исследования но применению принципа максимума Понтрягина, по-видимому, позволят дать объективную оценку этому методу. В настоящей работе этот метод не рассматривается. Р ешение задачи на основе интегрирования дифференциальных уравнений Эйлера не получило в настоящее время распространения, хотя и не доказано, что оно бесперспективно.  [c.37]


Широко тжстеп метод множителей Лагранжа, ориентированный на поиск экстремума при наличии ограничений Т1ша равенств v /(X) = О, т. е. на решение задачи  [c.166]

Это провозглашение эры исключительного господства аналитического метода могло казаться тем более обоснованным, что в труде Лагранжа содержится и все, что к тому времени составляло механику сплошной среды. Подводя итоги, надо все же признать, что аналитическая механика Лагранжа — не вся механика его времени. Недостаточность для приложений динамики идеальной жидкости, ограничение идеальными связями, т. е. исключение сил трения, математические трудности — словом, все, отделявшее теоретические построения от технических применений, заставляло уже тогда искать новые физические схемы, приближенные методы, обращаться к эксперименту. Это относится прежде всего к механике сплошной среды (см. следующую главу). Но в механике Лагранжа не было и других важных компонентов. В ней отразились и слабые стороны механистического, недиалектического материализма XVIII в. Лагранж обходит вопросы, связанные с тем или другим толкованием таких общих понятий, как пространство и время. А заодно он совсем не касается вопроса о том, каковы те системы координат, которыми он пользуется он ничего не говорит об относительности движения. Он обрывает в этом пункте традиции классической механики. Исходя из уравнений и не вникая в анализ физических основ механики, Лагранж как бы провел некую линию уровня . Все, лежащее выше нее, можно было считать прочно установленным и рекомендовать к применению то, что находилось ниже нее, игнорировалось. Это была новая позиция — позиция разумного самоограничения, но это исключало из рассмотрения ряд основных вопросов механики (и естествознания в целом). Исключить их на том основании, что пока нет удовлетворительного ответа на них и что они слишком близки к метафизике , было полезно можно было сосредоточить усилия на более конкретных задачах, поддающихся решению но это принесло и вред, так как отвлекало от более глубокого исследования основных понятий механики и физики, создавая иллюзию благополучия, которого на самом деле не было.  [c.157]

Работы Эйлера по продольному изгибу продолжил Лагранж. В первом мемуаре посвященном этому вопросу, Лагранж не ограничился исследованием наименьшей критической силы, а рассмотрел так называемые критические силы высших порядков, когда изгиб оси стержня происходит по двум, трем и большему числу полуволн синусоиды. Лагранж изучил зависимость стрелы прогиба от величины нагрузки в случае, когда последняя превышает критическое значение. Он нашел интеграл точного дифференциального уравнения изогнутой оси при помощи разложения искомого решения в ряд. Лагранж решил также задачу о продольном изгибе стержня, ограниченного какой угодно поверхностью вращения второго порядка. Тогда же он поставил задачу о наивыгоднейшем очертании колонн — об очертании стержня, выдерживающего без изгиба данную сжимающую нагрузку и имеющего наименьший вес. Однако ему не удалось найти удовлетворительного решения этой задачи. Впоследствии ею занимались Т. Клаусен, Е.Л. Николаи и др.  [c.168]

Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]


Смотреть страницы где упоминается термин Задача Лагранжа ограниченная : [c.260]    [c.348]    [c.118]    [c.153]    [c.280]    [c.283]   
Справочное руководство по небесной механике и астродинамике Изд.2 (1976) -- [ c.548 ]



ПОИСК



Задача 3 тел ограниченная

Задача N тел, взаимодействующих по закону всемирного тяготения. Лемма Лагранжа-Якоби. Необходимое условие ограниченности взаимных расстояний

Задача Лагранжа

Лагранжевы решения ограниченной круговой задачи трех тел Точки либрации

Ограничения



© 2025 Mash-xxl.info Реклама на сайте