Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки Колебания свободные — Уравнения

Свободные колебания конических оболочек. Полубезмоментная теория. Дифференциальные уравнения малых колебаний конической оболочки, если пренебречь силами инерции в направлении образующих и использовать предпосылки полубезмоментной теории, имеют вид  [c.455]

В работе [3.1431 осесимметричная задача об изгибных колебаниях тонкой упругой сферической оболочки приведена к решению системы двух дифференциальных уравнений, содержащих прогиб и силовую функцию. Получено решение этой системы при гармонических колебаниях в функциях Лежандра и приведены результаты расчета низшей частоты. Неосесимметричные колебания полусферической оболочки со свободным краем рассмотрены в предположении о мембранном характере деформации. Приведено сопоставление частот чисто изгибных колебаний и колебаний растяжения.  [c.208]


Наиболее простой тип колебаний возможен для оболочки со свободными концами. Такие колебания, при которых образующая оболочки остается прямолинейной, называются радиальными. Так как ш(а) 0, хо из уравнения (8.167) сразу получаем  [c.373]

Как и для случая изгибных колебаний, можно получить решения уравнения (8.168) и при других краевых условиях. Если для оболочки со свободно опертыми концами при колебаниях возникает , целое число полуволн т = 1, 2, 3,..., оо, то для случая, когда один или оба концевых сечения заделаны, по образующей цилиндра возникает нецелое число полуволн, а именно оболочка с одним свободно опертым, другим заделанным концом т =1,25 2,25 3,25 4,25 оболочка с двумя заделанными концами /тг"= 1,506 2,5 3,5 4,5. Зависимость же для частоты приближенно сохраняет вид (8.170) с указанными особенностями относительно волнообразования.  [c.373]

Здесь функции Х х), Уп(у), и х) и Р (у) являются линейными комбинациями фундаментальных балочных функций, представляющих собой решения дифференциальных уравнений свободных колебаний балок и удовлетворяющих условиям закрепления на соответствующих краях оболочки (см. 10).  [c.252]

Резонансный толщиномер. Локальный метод вынужденных колебаний применяют для измерения толщины и дефектоскопии тонкостенных труб и оболочек. Прибор для реализации этого метода называют резонансным толщиномером. Он основан на возбуждении в стенке изделия по толщине ультразвуковых колебаний и определении частот, на которых возникают резонансы этих колебаний. В простейшем случае, представляя изделие как пластину, поверхности которой с обеих сторон свободны, условие возбуждения упругих резонансов записывают в виде уравнения для свободных колебаний (2.26).  [c.128]

Здесь функции (Jt), Уп ( /). Um (Jt), V (y) являются линейными комбинациями фундаментальных балочных функций, представляюш.их собой решения дифференциальных уравнений свободных колебаний балок и удовлетворяюш,их условиям закрепления соответствующих краев оболочки см. 9 данной главы).  [c.214]

Что касается задач динамики, то сопоставление результатов исследований свободных колебаний полого упругого цилиндра, проведенное на основе уравнений линейной теории упругости и различных теорий толстостенных оболочек [120, 122], показывает, что, когда отношение внутреннего радиуса цилиндра к внешнему радиусу меньше 0,5, то только точная теория дает полную характеристику распределения напряжений. В связи с этим предъявляются повышенные требования к методам динамического расчета прочности, устойчивости и напряженно-деформированного состояния толстостенных конструкций цилиндрической формы.  [c.153]


Например, при исследовании собственных колебаний цилиндрической оболочки, свободно опертой по торцам х = О, I, воспользуемся для оценки частотного диапазона моделирования уравнением [31]  [c.181]

Таким образом, во всех рассмотренных случаях опирания краев имеем по четыре граничных условия относительно функций xi и два граничных условия для функции F, что соответствует двенадцатому порядку разрешающей системы уравнений (3.29), (3.36), (3.38). Уравнение (3.36) не связано с другими уравнениями и при решении частных задач может не приниматься во внимание. Это вызвано тем, что уравнение (3.36) имеет решение типа краевого эффекта, т.е. решение быстро затухающее при удалении от края. Указанный краевой эффект порождается продольными связями или крутящими моментами, поэтому различие решений, соответствующих краевым условиям типа а и б , не должно сильно проявляться в большинстве задач при определении таких интегральных характеристик оболочки, как критическая сипа и первая частота свободных колебаний. Имеющиеся в литературе данные по расчету трехслойных оболочек подтверждают эти соображения [ 35,3.6].  [c.61]

Свободные колебания цилиндрических оболочек. Проведение изложенных выше процедур не составляет труда, поэтому рассмотрим в качестве примера несколько иной тин задачи — свободные колебания тонкой цилиндрической оболочки. Так же, как и ранее при рассмотрении стержней (см. уравнения (2.18) —(2.20)) и пластин (уравнения (4.30)—(4.32)), зададим прогиб как функцию координат ж и г/, а также времени t  [c.480]

В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]

Накопленный опыт [17—19, 21, 23, 24, 30] использования метода инвариантного погружения в задачах статики, устойчивости, свободных колебаний слоистых оболочек вращения с применением разработанных в настоящей монографии неклассических дифференциальных уравнений позволяет заключить, что соответствующие им уравнения (7.2.21), (7.2.28) можно отнести к классу умеренно" жестких. Так, в рассмотренной ниже тестовой задаче прочности длинной круговой цилиндрической панели (требующей введения достаточно густой координатной сетки), дифференциальные уравнения метода инвариантного погружения (7.2.21),  [c.204]

В этом параграфе разработан метод численного решения линейных краевых задач устойчивости и свободных колебаний слоистых оболочек вращения, объединяющий в себе метод Бубнова — Галеркина для линейных интегральных уравнений Фредгольма второго рода с обобщенной формой метода инвариантного погружения. Изложение метода строится на примере задачи устойчивости и сопровождается указаниями на модификации, необходимые для перехода к задаче  [c.205]


Исследуем свободные установившиеся гармонические колебания упругой слоистой композитной тонкостенной конической усеченной оболочки, структура армирования слоев которой не зависит от угловой координаты. В основу анализа положим уравнения (8.1.1) — (8.1.9) динамики конической оболочки. Из этих уравнений получим дифференциальные уравнения задачи о собственных колебаниях (см. [43, 100, 144, 289]), опуская в них нелинейные слагаемые, принимая составляющие внешних поверхностных и контурных нагрузок равными нулю и выполняя преобразование ы — частотный параметр)  [c.244]

В результате возникает линейная краевая задача на собственные значения для системы дифференциальных уравнений с частными производными, к интегрированию которой сводится определение спектра свободных колебаний слоистой тонкостенной оболочки. Эта система включает в себя следующие группы зависимостей (считаем оболочку достаточно тонкой и пренебрегаем во всех уравнениях величинами порядка h/R по сравнению с 1)  [c.244]

Итак, исследование свободных колебаний конической ортотропной слоистой композитной оболочки сведено к интегрированию линейной краевой задачи на собственные значения для системы обыкновенных дифференциальных уравнений. Численное решение этой задачи получено по методу, разработанному в параграфе 7.3 при использовании ортонормированной координатной системы  [c.252]

На основании уравнения (25) первый корень дает р = 0, = 0 и соответствует незначительному постоянному перемещению в пространстве оси вихревого вектора жидкости. Второй корень соответствует свободной эйлеровой нутации оболочки, не зависящей в этом случае от наличия жидкости. Равным образом и вынужденные колебания оболочки также не зависят от жидкости.  [c.915]

Рассматриваемая проблема была предметом обстоятельного анализа в рамках А. Л. Гольденвейзера (1961, 1966), подошедшего к ней с точки зрения общей теории оболочек, т. е. применительно к произвольной оболочке. В последней статье Гольденвейзер подытожил результаты качественного исследования свободных колебаний с большим показателем изменяемости состояния перемещений. Целью исследования было установление областей для параметров, характеризующих функцию изменяемости, в которых возможно расчленение общего состояния перемещений на элементарные. Классификация задач проведена с учетом геометрических свойств контурной линии, от которых существенно зависит характер дополнительных интегралов, привлекаемых для удовлетворения краевых условий. Основное внимание в статье уделено безмоментным поперечным колебаниям, происходящим при относительно малых частотах и сопровождаемым лишь малыми тангенциальными колебаниями. Разрешающее уравнение этих колебаний имеет любопытную структуру  [c.249]

Колебания оболочек, заполненных жидкостью. Свободные колебания заполненных частично или целиком сосудов имеют, естественно, два качественно различных участка спектра. При низких частотах колеблется жидкость, оболочка же является практически безынерционной (квазистатической). При высоких частотах, наоборот, колеблется оболочка, увлекая при этом в движение вместе с сосудом некоторый объем жидкости. Несмотря на возможные упрощения (идеальная жидкость, малые колебания), задачи гидроупругости являются далеко не простыми даже в случае осесимметричных колебаний оболочек вращения — ведь движение жидкости и тогда определяется двумерным волновым уравнением.  [c.256]

Упрощенные дифференциальные уравнения. При определении частот и форм свободных колебаний, для которых напряжениями изгиба можно пренебречь по сравнению с напряжениями растяжения срединной поверхности, можно использовать упрощенные уравнения — дифференциальные уравнения безмоментной теории оболочек  [c.445]

При этом решения первого уравнения отражают статический изгиб сферического сегмента краевыми усилиями и момента.ми, решения второго уравнения затухают с удалением от края оболочки и характеризуют динамический краевой эффект, решения третьего уравнения совпадают с формами свободных колебаний всюду за исключением области, прилегающей к краю.  [c.446]

В частном случае свободных колебаний замкнутой сферической оболочки уравнение частот при кг= 1,2, V = — имеет вид к ,—осред-  [c.449]

Свободные колебания конических оболочек. Применение уравнений краевого эффекта. Неосесимметричные формы колебаний оболочек нулевой кривизны, соответствующие минимальной частоте, имеют в окружном направлении большой показатель изменяемости. Поэтому для определения этих форм колебаний можно использовать приближенные уравнения (46).  [c.457]

В уравнении (46) через О обозначены частоты свободных колебаний оболочки в вакууме (/= 1, 2, 3). Им соответствуют компоненты векторов (1, щ, у), характеризующие формы колебаний,  [c.492]

Подставляя выражение (662) в дифференциальное уравнение (660), получим для определения частоты свободных поперечных колебаний ортотропной цилиндрической оболочки следующее выражение  [c.194]

Рассмотрим вынужденные колебания оболочки, предполагая, что свободные колебания успевают исчезнуть. Общее решение уравнения (669) будет равно сумме решений (662), (670), т. е. сумме свободных и вынужденных колебаний  [c.196]

Собственные колебания симметричных, слоистых ортотропных свободно опертых (шарнирная опора, допускающая осевое смещение) по всем сторонам цилиндрических панелей и оболочек рассматривались на основе теории типа Доннелла в работе Даса [71 ]. Пензес [217 ] использовал ту же теорию для анализа собственных колебаний замкнутых цилиндрических оболочек со свободно опертыми, и защемленными краями, а также оболочек, один край которых является защемленным, а другой — свободно опертым. Петров и Финкельштейн [222 ] исследовали относительное влияние различных членов, входящих в уравнения.  [c.238]


Дифференциальные уравнения и граничные условия. Различные варианты уравнений динамики оболочек приведены в гл. VIII. Для свободных колебаний (qj = 0) уравнения движения оболочек в перемещениях после выделения гармонического временного множителя могут быть записаны в форме  [c.218]

Предлагаемая модификация метода основана на исключении из системы уравнений больших и малых экспоненциальных членов путем разделения ее на части, описывающ ие распространяю-пциеся волны и ближнее поле, затухаюш ее в окрестности концов участков стержня. Подобный метод был применен В. В. Болотиным [46] для расчета свободных колебаний пластин и оболочек.  [c.108]

Трудности в численных расчетах, встречающиеся при исследовании балки, опертой на жесткие пружины, обсуждались Пестелем и Леки [4.8. Эта проблема становится еще более актуальной при расчете панелей самолетов. Одной из основных возникающих здесь трудностей является цепочка перемножений матриц типа представленных в уравнении (4.125), так как если цепочка становится длинной, а жесткость упругого элемента, определяющая матрицу [Р], существенно превышает жесткость балки на изгиб, определяющую матрицу [U], то возникает неустойчивость процедуры численного счета, что по существу является результатом вычисления малых разностей больших чисел в вычислительных машинах при конечной точности представления чисел. Для задач о свободных колебаниях это означает, что иногда, особенно когда это связано с задачами, описываемыми уравнениями высоких порядков (типа уравнений оболочек), возникают трудности определения частот, при которых частотный определитель достаточно близок к нулю, с тем чтобы с необходимой точностью найти формы колебаний. При решении задач о вынужденных колебаниях может вызвать затруднение процедура численного обращения матрицы (см. уравнение (4.128)). Как было показано Лином и Макданиэлом [4.7], это связано с соотношением  [c.186]

Молчанов А.И. Асимптотическое интегрирование системы уравнений свободных колебаний некруговых оболочек, близких к оболочкам нулевой гауссовой кривизны//Вестн. Ленингр. ун-та.— Сер. матем., механ., астрон. — 1987. — N2.— С. 106-107.  [c.314]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]

Отметим, что при вычеркивании из 12x12 матриц/4, В, С 5, 6, 11, 12-й строк и таких же столбцов получаются соответствующие 8x8 матрицы коэффициентов классической системы дифференциальных уравнений свободных колебаний конической оболочки. Это сразу следует из предельного перехода (3.2.20), если учесть, что при -> 00, - 00 элементы указанных строк и столбцов матриц А, В, С обращаются в нуль.  [c.252]

Наймушин В.Н., Нетрушенко Ю.Я., Лебедев А.А. Уравнения свободных колебаний предварительно напряженно-деформиро-ванных многослойных оболочек сложной геометрии // Теория и методы исслед. пластин и оболочек сложной формы. — Казань,  [c.546]

Излагаемый в настоящей статье приближенный метод исследования динамических характеристик круговых или некруговых цилиндрических оболочек, не подкрепленных или подкрепленных шпангоутами и стрингерами и имеющих вырезы прямоугольной формы, основывается на энергетическом принципе. Исследование базируется на использовании принципа Гамильтона и классического метода Рэлея —Ритца с применением балочных функций для аппроксимации осевых перемещений и тригонометрических для окружных. Балочные функции соответствуют тем функциям, которые описывают колебания однородной балки с такими же граничными условиями, что и на краях оболочки. В исследовании рассмотрены четыре вида граничных условий, а именно шарнирное опи-рание, защемленйе —свободный край, защемление —защемление и, наконец, оба края свободные. Хорошо известно, что в методе Рэлея — Ритца аппроксимирующие ряды для перемещений должны удовлетворять кинематическим граничным условиям и не требуется удовлетворение силовых граничных условий. Поэтому как уравнения равновесия, так и граничные условия в напряжениях удовлетворяются приближенно, на основе принципа экстремума. Таким образом, это позволяет без затруднений представить граничные условия на свободном крае выреза оболочки.  [c.239]

Применение уравнений трехмерной теории упругости к исследованию устойчивости упругих тел с учетом изменения их граничных поверхностей было предложено А.Ю. Ишлинским и Л.С. Лейбензоном [5, 6]. В трехмерной линеаризованной постановке в работах А. П. Гузя и его учеников [2, 7, 8, 9] были получены решения задач устойчивости анизотропных элементов конструкций, которые послужили основой для оценки точности различных прикладных теорий, использующихся в расчетной практике. Оказалось, что теория оболочек, в которой деформации поперечного сдвига учитываются в соответствии с гипотезой Тимошенко, позволяет находить критические нагрузки с незначительной погрешностью. Эта оценка относится и к таким интегральным характеристикам, как низшие частоты свободных колебаний оболочки из КМ. В то же время решение уравнений теории оболочек типа Тимошенко менее трудоемко, чем уравнений теории упругости, особенно в случае оболочек сложной геометрии. Такими, в частности, являются цилиндрические оболочки с волнообразной срединной поверхностью, которые при большом количестве волн принято называть гофрированными. Устойчивость последних рассматривалась в работах [10, 11] путем замены их эквивалентными ортотропными. Хотя экспериментальные данные обнаруживали более высокую эффективность гофрированных оболочек [10], приближенное дискретное решение не подтвердило возможности увеличения критических нагрузок за счет придания профилю поперечного сечения волнообразного характера. Недостатков приближенного подхода удалось избежать в работах [12-14], где устойчивость гофрированных оболочек рассматривалась с учетом изменяемости геометрических параметров по направляющей. Из проведенных авторами этих работ исследований вытекает, что при равновозможности общей и локальной форм потери  [c.105]


Согласно этому методу асимптотическое решение для форм свободных колебаний выражается в виде суммы внутреннего решения и поправочных решений, которые называют динамическими краевыми аффектами. Для каждой границы тела строят решения, удовлетворяющие дифференциальным уравнениям и y -fiosHRM на соответствующей границе. Число таких выражений равно числу границ. Затем полученные решения склеивают. Эта процедура аналогична склеиванию моментных и безмоментных решений в теории оболочек или склеиванию вязких и невязких решений в гидродинамике. Вообще говоря, это склеивание может быть выполнено только приближенно. Чем быстрее затухают краевые эффекты, тем меньше ошибка асимптотического решения. Процедура склеивания позволяет получить систему трансцендентных уравнений для параметров, определяющих как внутреннее решение, так и краевые эффекты. Затем может быть получено асимптотическое выражение для собственных частот. Что касается асимптотического выражения для свободных форм, то оно может быть построено для всей области, исключая окрестности углов и ррбер. Это типично и для других методов, использующих идею краевого эффекта.  [c.406]

Свободные колебания оболочек — Расчет — Применение асиптота-ческого метода 461—466 — Уравнения 543 — Формы — Уравнения 461 — Частоты — Точки сгущения 465 - сферических 449 — Уравнения 445  [c.562]


Смотреть страницы где упоминается термин Оболочки Колебания свободные — Уравнения : [c.58]    [c.30]    [c.566]    [c.231]    [c.403]    [c.230]    [c.71]    [c.106]    [c.497]    [c.562]    [c.268]    [c.548]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.455 , c.456 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.455 , c.456 ]



ПОИСК



Колебания Уравнения колебаний

Колебания оболочек

Колебания свободные

Оболочки Колебания свободные

Оболочки уравнения

Свободные колебания оболочек Расчет — Применение асиптотического метода 401—466 Уравнения 543: — Формы Уравнения 461 -- Частоты Точки сгущения

Свободные колебания оболочек Расчет — Применение асиптотического метода 401—466 Уравнения 543: — Формы Уравнения 461 -- Частоты Точки сгущения пологих 446 — Частоты собственные и их уравнения

Свободные колебания оболочек Расчет — Применение асиптотнческого метода 461—466 Уравнения 543 — Формы Уравнения 461 — Частоты Точки сгущения

Свободные колебания оболочек Расчет — Применение асиптотнческого метода 461—466 Уравнения 543 — Формы Уравнения 461 — Частоты Точки сгущения пологих 446 — Частоты собственные а их уравнения

Свободные колебания оболочек Уравнения основные

Свободные колебания оболочек колебания

Свободные колебания оболочек пластинок — Расчет — Применение асимптотического метода 406—416 — Уравнени

Уравнение свободных колебаний



© 2025 Mash-xxl.info Реклама на сайте