Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тензор системы сил

И, наконец, тензор системы сил  [c.82]

Эта система соответствует взаимопроникающему движению двух взаимодействующих сплошных сред, в которых определены тензоры поверхностных сил в фазах af и 02 работа этих сил, силы взаимодействия i i2 и другие члены, описывающие обмен массой, импульсом н энергией.  [c.42]

Последнее утверждение нуждается в пояснении. У нас имеется две системы сил. Прикладываем первую систему сил (шаровой тензор) — получаем энергию изменения объема. Прикладываем вторую систему сил (девиатор) — получаем энергию изменения формы. Но когда мы прикладываем вторую систему, первая, приложенная ранее, должна совершить работу на обобщенном перемещении, вызванном второй системой сил. Получается, что работа суммы сил равна не просто сумме работ. При совместном действии сил надо учесть еще и взаимную работу — работу ранее приложенной силы на перемещении, вызванном последующей силой. Поэтому, вообще говоря, работа суммы сил не равна сумме их работ. Но в данном случае дело обстоит иначе. Мы разделили напряженное состояние на две части не произвольно, а так, чтобы девиаторная часть не приводила к изменению объема. Но изменение объема как раз и представляет собой обобщенное перемещение для гидростатического давления или всестороннего растяжения. Поэтому первая система сил на перемещениях, вызванных второй системой сил, производит работу, равную нулю, а энергия может рассматриваться как сумма работ в двух напряженных состояниях.  [c.49]


Проектируем силы Р и Q на плоскость приведения ZOX перпендикулярную к оси пары 0V и складывая их, находим равнодействующую Pi, с которой совпадает винтовая ось данной системы сил i. Проектируя силу Р и Q на направление винтовой оси i получим тензоры сдвига Ра Р[ и pt, Проекции тех же  [c.263]

В дальнейшем мы покажем, что и такие важные для газодинамики величины, как тензор вязких сил, поток тепла и др., выражаются через одночастичные функции распределения. Двухчастичная функция распределения имеет особо важное значение для равновесного состояния системы. В равновесном состоянии она описывает корреляции между положениями частиц, имеющие, как мы видели в 81, важное значение в теории флуктуаций и в теории фазовых переходов.  [c.479]

По тензору T(u(Q)) определяется распределение поверхностных сил n T(u(Q)) на поверхности двусвязного объема О эта система сил статически эквивалентна нулю, так как определяемое по вектору u(Q) напряженное состояние является равновесным.  [c.200]

О принципе Сен-Венана. Формулировка Мизеса. В пп. 1.1 и 1.2 этой главы рассматривалось напряженное состояние в неограниченном упругом пространстве, создаваемое силами, распределенными в малом объеме, на достаточном удалении от него. Было показано, что, ограничиваясь учетом величин первой степени относительно линейных размеров этого объема, можно заменить действие такой системы сил ее интегральными характеристиками — главным вектором, главным моментом и силовым тензором. Оказалось, что на достаточном удалении точки наблюдения напряжения, создаваемые главным моментом, имеют тот же порядок, что и создаваемые силовым тензором. Здесь будет показано, что это же явление констатируется и в упругом полупространстве z > О при нагружении его силами, распределенными по малой площадке о его границы  [c.242]

Из выражения (2.82) компонент тензора объемных сил Q( 2) видно, что они содержат переменные поля второго рода и компоненты тензора множителей Лагранжа для связей первого и второго рода. Следовательно, система уравнений (2.83) и следствия из нее не автономны и составляют дополнение к системе уравнений  [c.40]

Уравнения движения сплошной среды определяют в заданных полях массовых сил и скоростей дивергенцию тензора напряжений, но не напряженное состояние ее. Все процессы (движения и равновесия) происходят в соответствии с этими уравнениями будучи необходимыми условиями осуществимости процессов, они недостаточны для их полного описания, так как различные среды (материалы) по-разному реагируют на воздействие одной и той же системы сил (кусок глины, стальной стержень). Единые для всех сред общие теоремы механики — количеств движения, моментов количеств движения, из которых выведены уравнения движения, должны быть дополнены физическими закономерностями, определяющими поведение материалов различных свойств. Ими формулируются уравнения состояния (называемые также определяющими уравнениями) — соотношения связи тензора напряжений с величинами, определяющими движение частиц среды, если ограничиться только механической постановкой задачи (тепловые воздействия рассматриваются в гл. 9). Эксперимент является решающим в установлении этих закономерностей, но только в конечном счете . Неизбежно умозрительное рассмотрение с целью установить общие принципы построения уравнений состояния и классификации материалов. Лишь исходя из математической модели некоторого достаточно узкого класса материалов, можно извлечь сведения  [c.80]


Так как ввиду выбранного изоморфизма мы можем по существу считать, что i T, то можно определить также тен-, зорное произведение V <8 I и внешнее произведение V Л I при условии, что V е В частности, антисимметричный тензор (х — Хо) Л называется моментом системы сил в х относительно места (точки) Хо . Более общо, момент Р. относительно точки Хо системы сил f e, действующий на часть тела в данном движении этого тела, определяется следующим образом  [c.40]

Тензор А(1) называется астатической нагрузкой, соответст-вуюш,ей нагрузкам txi, Ьь Всякая линия, обладающая тем свойством, что поворот конфигурации к Ш) относительно нее на любой угол, при фиксированных txi и bi приводит к уравновешенной системе сил в к 9 ), называется осью равновесия для этих нагрузок в х(. ).  [c.310]

Если ввести определение тензора поверхностных сил и полной энергии всей системы по формулам  [c.9]

В уравнении (1-1.3) второй член левой части представляет собой все силы, действующие на поверхности, ограничивающие систему, в то время как третий член — силы, например силу гравитации, которые действуют на каждый элемент системы. Среди переменных, фигурирующих в уравнении (1-1.3), вновь встречаются плотность и скорость, но появляются также и две новые переменные давление, которое действует через граничные поверхности и, следовательно, фигурирует во втором члене, и напряжение. Действительно, для того чтобы вычислить второй член в уравнении (1-1.3), необходимо иметь возможность вычислить силы, действующие на любую произвольную поверхность в материале при условии, что система, к которой применяют уравнение (1-1.3), может быть выбрана произвольно. Сила, действующая на любую заданную поверхность, не сводится просто к давлению, поскольку она не обязательно ортогональна к этой поверхности и ее величина не обязательно независима по отношению к ориентации этой поверхности в пространстве. Напряжение является тензором (точное определение будет введено в разд. 1-3), который связывает вектор силы с поверхностным вектором. Поверхность является вектором в том смысле, что для ее определения требуется задать не только ее величину, но и ориентацию в пространстве.  [c.13]

В этом случае возникает лишь один компонент тензора напряжений 12. все прочие недиагональные компоненты равны нулю. Последнее доказывается следующим образом. Пусть, например, /jg O. В силу предположения о линейности /13 = 13 12. Изменим направление оси л з, тогда нетрудно подсчитать, что Б новой координатной системе будет тем же, компонент U12 изменит знак. Так как среда изотропна, 13 в обеих системах одно и то же, следовательно, ki = Q.  [c.42]

Учитывая, что в прямоугольной декартовой системе координат компоненты тензора g,ih равны бn в силу (1.10) будем иметь  [c.17]

Физические проекции объемной силы и ускорения в сферической системе координат соответственно обозначим через pFr, pF , pF , и Wr, a физические проекции тензора напряжений в  [c.42]

Докажем, что вектор касательного напряжения Ts также достигает своего наибольшего значения на контуре для этого отправимся от противного допустим, что вектор касательного напряжения достигает наибольшего значения внутри контура поперечного сечения в точке М. Выберем в поперечном сечении новую прямоугольную декартову систему координат 0Х/Х2 и одну из ее осей, например ось 0X2, направим параллельно вектору Т 3, приложенному в точке М. В этой системе координат в точке М будем иметь тензор напряжений с компонентами а з1 = 0, а з2= 0, причем они относительно новой системы координат являются также гармоническими. В силу этого (Тз2 достигает своего наибольшего значения на контуре, а не внутри контура, как это было допущено в начале рассуждения.  [c.178]

Дальнейшие упрощения матрицы феноменологических коэффициентов (уменьшение их числа) можно получить при учете симметрии среды. В выражение линейного закона (2.1) входят потоки и силы, из которых одни являются скалярами (в процессах с химическими реакциями, а также с объемной вязкостью), другие — векторами (потоки массы и теплоты), а третьи — тензорами (в процессах со сдвиговой вязкостью). В зависимости от симметрии среды система линейных уравнений (2.1) должна быть инвариантна относительно соответствующих ортогональных преобразований. При преобразованиях компоненты входящих в (2.1) различных величин преобразуются по-разному, в то время как установленная между потоком и силой связь не может изменяться при преобразованиях. Это приводит в случае изотропных систем к сохранению связей лишь между потоками и силами одной тензорной размерности, что выражает принцип Кюри о сохранении симметрии причины в симметрии следствий. Поэтому, хотя согласно линейному закону (2.1) каждая декартова компонента потока / может в принципе зависеть от декартовых компонент всех термодинамических сил, по принципу Кюри в зависимости от структуры (симметрии) среды может оказаться, что компоненты потоков будут зависеть не от всех компонент термодинамических сил и, следовательно, не все причины вызывают перекрестные эффекты, например в результате химической реакции (скалярный процесс) не может возникнуть диффузионный поток (векторный процесс).  [c.16]


Но здесь при вычислении ковариантных производных нужно использовать символы Кристоффеля, вычисленные для деформированного тела, и составляющие вектора Я брать по отношению к базису, связанному с деформированной координатной сеткой. Таким образом, все трудности остаются, не будучи написанными в явном виде. В этом смысле уравнения (7.9.3) и (7.9.4) кажутся проще, они относятся к декартовой системе координат, не деформирующейся с деформацией тела. Компоненты тензора напряжений также сохраняют механический смысл, это — обобщенные силы, соответствующие обобщенным перемещениям е,>  [c.235]

В гл. 4 была рассмотрена в элементарном изложении теория устойчивости упругих стержней. Особенность этих задач состояла в том, что уравнения равновесия составлялись для деформированного состояния стержня, т. е. по существу речь шла о геометрически нелинейных задачах. Вариационные уравнения, описанные в 8.7, эквивалентны геометрически линейным уравнениям теории упругости, для которых доказана теорема единственности. Поэтому никакие задачи устойчивости с помощью этих вариационных уравнений решать нельзя. Здесь мы постараемся распространить вариационные уравнения на геометрически нелинейные задачи. Существо дела состоит в том, что уравнения статики должны составляться не в исходной системе координат, например декартовой, а в той криволинейной системе координат, в которую превращается исходная вследствие деформации. Прямой путь получения таких уравнений довольно сложен, поэтому нам будет удобно вернуться к выводу 7.4, где напряжения определялись по существу как обобщенные силы, для которых компоненты тензора деформации служили обобщенными неремещениями. Пусть тело, ограниченное поверхностью  [c.390]

Рассмотрим элемент конструкции, на который действует неизвестная система внешних сил, представляющая собой произвольного вида поверхностные нагрузки. Допустим, что на некотором участке его поверхности S в результате прямых измерений известен вектор перемещений uf(s) (или тензор напряжений а - (х)). Обычно измерения проводят на свободном от нагрузки участке поверхности, так что в этом случае известен также и вектор напряжений на S, который равен pf(s) = 0. В случае же нагруженной поверхности (например, давлением теплоносителя) будем считать вектор напряжений на S также известной величиной. Таким образом, на части поверхности S в отличие от классических граничных условий заданы одновременно кинематические и статические краевые условия, в то время как на остальной части поверхности элемента гранич-  [c.62]

Покажем теперь, что рассматриваемая задача сводится к решению системы интегральных уравнений второго рода. Пусть для области V известен тензор перемещений Грина (х, ) от действия единичной сосредоточенной силы в точке F, удовлетворяющий граничным условиям  [c.76]

Однако тензор с компонентами (2.2) не нашел удачного применения при описании явлений пластического или вязкопластического деформирования. Причина состоит в том, что компоненты е,у не являются теми обобщенными перемещениями, которые соответствовали бы истинным напряжениям, рассматриваемым как некоторые обобщенные силы, заданные в системе жестко связанных друг с другом координатных осей. Это соответствие заключается в том, что произведение каждой обобщенной силы на вариацию отвечающего ей обобщенного перемещения должно являться вариацией работы этой силы.  [c.42]

При решении задач теории упругости часто обращаются к принципу Сен-Венана. Если при решении задачи граничные условия задаются точно согласно истинному распределению сил, то решение может оказаться весьма сложным. В силу принципа Сен-Венана можно, смягчив граничные условия, добиться такого решения, чтобы оно дало для большей части тела поле тензора напряжений, очень близкое к истинному. Определение тензора напряжений в месте приложения нагрузок составляет особые задачи теории упругости, называемые контактными задачами или задачами по исследованию местных напряжений. На рис. 12 показаны две статически эквивалентные системы сил одна в виде сосредоточенной силы Р, перпендикулярной к плоской границе полубесконечной пластинки, а другая — в виде равномерно распределенных на полуцилиндриче- Кой поверхности сил, равнодействующая которых равна силе Р и перпендикулярна к границе пластинки. В достаточно удаленных  [c.88]

Сверхстатическая система сил. Статически эквивалентная нулю система сил называется сверхстатической при обращении в нуль ее силового тензора  [c.244]

Более общий пример представляет система сил, остающаяся статически эквивалентной нулю при любом повороте входящих в нее сил. Обозначим f повернутый вектор силы / тогда, сославшись на (1.8,1), (1.8.2), HMeeM f = где/4—тензор поворота. Примем для простоты, что при сообщенном повороте силы повернулись на 90° вокруг оси is тогда  [c.245]

Уже отмечалось, что взаимодействие структурного элемента с соседями можно свести к главным вектору сил и моменту, при-лон енным к центру масс (инерции) данного элемента. В момент-ных теориях учитывается только этот аспект. Но на элемент действует и система уравновешенных сил и моментов, вызывающих деформацию внутри пего. В теории деформации не рассматриваются причины, породившие поля перемещений и поворотов. В теории напряжений выясняется, что поля перемещений и поворотов определяются совокупностью уравновешенной системы сил и моментов, а также главными векторрм силы и моментом. Уравновешенная система создает в структурном элементе поля деформаций и изгибов — кручений, определенных симметричными тензорами. Как видно из соотношений (29), уравнение совместности относительно дефектов в чистом виде (без дополнительных членов) получится только для симметричных тензоров. Кроме того, остаются дефекты, определенные через ассиметричные части тензора дисторсии и  [c.158]


Котельников представлял силы в неевклидовых пространствах векторами этих пространств. Две системы сил в неевклидовом пространЬтве он называл эквивалентными, когда от одной из них можно перейти к другой путем следующих операций 1) переноса сил вдоль их прямых без изменения их длин (и, значит, тензоров ) и направлений 2) сложения сил с общим началом по указанному им правилу 3) разложения силы на сумму сил с общим началом по тому же правилу 4) присоединения в любой точке нулевой силы, или, что равносильно этому, двух равных противоположных сил.  [c.345]

При построении некоторых вариантов теории пластического течения используют постулат Драккера (Друккера), суть которого заключается в следующем. Пусть к деформируемому телу, бесконечно близкая окрестность точки которого имеет в момент времени I напряженное состояние, заданное компонентами тензора напряжений, статически прикладывается дополнительная система сил, а затем также медленно снимается. При этом дополнительном воздействии напряженное и деформированное состояния в окрестности точки изменяются, и при деформации тела дополнительные напряжения совершают работу. Постулат Драккера утверждает, что работа, совершаемая дополнительным воздействием, неотрицательна.  [c.154]

О незавершенном характере построенной выше математической модели свидетельствуют также и физические соображения. Действительно, уравнения равновесия выполнены независимо от конкретного материала, из которого состоит рассматриваемое тело (оно может быть твёрдым, жидким или газообразным), однако ясно, что свойства этого материала должны быть учтены. Очевидно, что при заданных приложенных силах (например, замороженных нагрузках) возникающие деформации отсчётной конфигурации будут разными для тела из свинца и тела из стали. Также ясно, что для одинаковой деформации двух тел, одно из которых сделано из железа, а другое — из фанеры и которые занимают одну и ту же отсчётную конфигурацию, необходимо приложить различные системы сил и при этом возникнут различные поля тензоров напряжений.  [c.123]

Момент системы сил, действующих на тело Л, определяется в терминах конфигурации тела 3 при движении х в предположении, что выбрана определенная система отсчета ф. Этот момент представляет собой антисимметричный тензор размерности (сила) X (длина). Более общо, любой антисимметричный тензор такой размерности называется моментом, а моментозначная функция пар тел называется системой моментов, если она удовле-  [c.41]

Иредноложим, что к поверхности сферпческой ячейки (см. рис. 0.6) приложены силы [г = а -п о = —+ 5 . Под действием S,J произойдет изменешге формы ячейки, которая из сферы превратится в трехосный эллипсоид. Выберем систему координат, совпадающую с главными осями тензора В силу изотропии материала эта система координат будет совпадать с главными осями тензора деформаций 8,,, в результате и Еу будут иметь вид  [c.220]

Современное состояние вопроса общего математического описания дисперсных систем нельзя признать до-статочло удовлетворительным, несмотря на растущий интерес к этой проблеме. Каж травило, в работах, шо-священных этому вопросу, фактически используется феноменологический подход к исследованию дисперсного потока в целом. Идея условного континуума п03(В0Ляет полностью использовать математический аппарат механики сплошных сред, но несет с собой погрешности физического порядка тем более существенные, чем значительней макроднскретность системы. Системы таких уравнений, полученные рядом авторов как общие, все же не охватывают класс дисперсных потоков во всем диапазоне концентраций (вплоть до плотного движущегося слоя). Они не учитывают качественного изменения структуры потока и в связи с этим изменения закономерностей распределения частиц, появления новых сил (например, сухого трения), изменения с ростом концентрации (до предельно большой величины) условий однозначности и пр. В основном большинство работ посвящено турбулентному течению без ограничений по концентрациям, хотя при определенных значениях р наступает переход к флюидному транспорту, а затем — плотному слою. Сама теория турбулентности применительно к дисперсным потокам находится по существу в стадии становления (гл. 3). Наиболее перспективные методы — статистические (вероятностные) применяются мало, по-видимому, в силу недостаточной изученности временной и пространственной структур дисперсных систем Общим недостатком предложенных систем уравнений является их незамкнутость, которая объясняется отсутствием конкретных данных о тензорах напряжений и  [c.32]

Моноклинная система. Рассмотрим класс С, выбираем систему координат с плоскостью х, у, совпадающей с плоскостью симметрии. При отражении в этой плоскости координаты подвергаются преобразованию х х, у - у, г —г. Компоненты тензора преобразуются как произведения соответствующих координат. Поэтому ясно, что при указанном преобразовании все компоненты среди индексов которых индекс г содержится нечетное (1 или 3) число раз, переменят свой знак, а остальные компоненты останутся неизменными. С другой стороны, в силу симметрии кристалла все характеризующие его свойства величины (в том числе и все компоненты kthim) должны остаться неизменными при отражении в плоскости симметрии. Поэтому ясно, что все компоненты с нечетным числом индексов г должны быть равными нулю. Соответственно этому общее выражение для свободной упругой энергии кристалла моноклинной системы есть  [c.52]

Когда мы в рассмотренном выше примере с лифтом переходим от локально инерциальной (сопутствующей кабине лифта) системы к системе, связанной с Землей, находящееся в лифте тело приобретает ускорение, обусловленное полем тяжести при этом в новых координатах квадрат интервала ds представляется в форме (68). Основополагающая идея Эйнштейна заключается в том, что отличие составляющих метрического тензора rs ) от brs объясняется полем тяготения, которое, таким образом, делает геометрию иространственно-временного континуума римановой геометрией. Если ири этом тензор grs) таков, что вычисленный по нему тензор кривизны обращается в нуль в протяженной области иространственно-временного континуума, то в этой области существуют такие координаты (л -), в которых квадрат интервала допускает представление (66). В исходной системе координат (x,j составляющие тензора (grs) характеризуют тогда специальное поле тяготения, называемое полем сил инерции. Может случиться, однако, что тензор кривизны не обращается в нуль в протяженной области пространственно-временного континуума, — в этом случае составляющие тензора (grs) определяют истинное поле тяготения, созданное распределенными в этой области материальными телами. Истинное поле тяготения нельзя устранить во всей области никаким преобразованием координат, которого в этом случае попросту не существует. В этом заключается фундаментальное отличие истинных полей тяготения от полей сил инерции эти поля эквивалентны только локально ( в малом ), но отнюдь не глобально ( в большом ).  [c.477]

Эта система компонентов тензора напряжений соответствует чистому изгибу прямоугольной полосы внешними силами, приложенными на обоих ее концах xi = 0, xi = l. Эти внешние силы на основании формул (6,12) должны быть равны — ёзХ2 на конце Xi=0 и d x-i на конце Xi=l. Главный вектор и главный момент этих сил, очевидно,  [c.110]

Пусть тело, представляюп1.ее собой тело вращения около оси Хз, деформируется под действием поверхностных сил (массовые силы отсутствуют) симметрично относителыно этой оси вращения. Тогда перемещение в направлении, перпендикулярном плоскости, проходящей через ось Ха, будет равно нулю, а две другие проекции Ur и Из не будут зависеть от полярного угла ф. Для решения этой задачи удобно пользоваться цилиндрическими координатами г, ф, хз. Компоненты симметрического тензора деформаций в цилиндрической системе координат, согласно формулам (3.29), будут иметь вид  [c.236]


Основное содержание СТО, как подчеркивал Г. Минковский, состоит в установлении единой абсолютной пространственно-временной формы бытия материи — пространственно-временного мира (мир Минковского), геометрия которого псевдоевклидова. В этом мире различным системам отсчета соответствует в общем случае различная метрика с коэффициентами y v (х) пространства-времени. Например, в произвольной неинерциальной системе координат S метрические коэффициенты y[ v оказываются функциями координат X этой системы, что приводит в итоге к появлению ускорения свободной материальной точки относительно S и сил инерции, выражающихся через производные первого порядка от тензора по соответствующим координатам. Кинематически силы инерции характеризуются тем, что вызываемые ими ускорения свободных материальных точек не будут зависеть от их масс. Таким же свойством обладают и гравитационные силы, поскольку, как показывает опыт, гравитационная масса тела равна его инертной массе. Этот фундаментальный факт привел Эйнштейна к мысли, что гравитационное поле должно описываться подобно полю сил инерции метрическим тензором, но уже в римановом пространстве-времени.  [c.158]

Как напряженное и деформированное состояния являются тензорами, так и система коэффициентов податливости образует тензор, но более высокого порядка (ранга). Исследовать его свойства мы не будем, но отметим только, что этот тензор симметричный, т.е. 5, = 5, -. Это вытекает из теоремы взаимности работ (см. 5.6). Работа, например, силы Oydydz на перемещении вызванном силой Оу dx dz, равна работе  [c.338]

Рассмотрим теперь модель, в которой принимается, что точечный дефект находится в анизотропной упругой среде. Упругие свойства такой среды характеризуются уже пе двумя независимымп параметрами (например, X п ц) изотропной среды, а тензором модулей упругости число независимых компонент которого в общем случае равно 21. Будем рассматривать дефект как точечный источник деформаций и напряжений. Тогда в отсутствие объемных сил система трех уравнений равновесия такой анизотропной среды имеет вид  [c.49]

Дифференциальные уравнения движения не только допускают интегральный инвариант (71), но и являются единственными дифференциальными уравнениями, обладающими этим свойством. Поэтому в основу механики можно положить следующий принцип — принцип сохранения количества движения и энергии Движения материальной системы (с вполне голоном-ными связями), находящейся под действием сил, имеющих силовую функцию, управляются дифференциальными уравнениями первого порядка, связывающими время, параметры положения и параметры скоростей и эти дифференциальные уравнения характеризуются тем свойством, что интеграл тензора количество движения —энергия , распространенный на любую непрерывную, линейную, замкнутую последовательность состояний системы, не меняет значения при перемещении этих состояний каким-либо способом вдоль соответственных траекторий ).  [c.845]

Пусть для области V известен тензор перемещений Грика ( , г]) от действия единичной сосредоточенной силы в точке т е F, получаемый из решения системы уравнений  [c.64]


Смотреть страницы где упоминается термин Тензор системы сил : [c.209]    [c.243]    [c.145]    [c.36]    [c.46]    [c.66]    [c.67]    [c.490]   
Пространственные задачи теории упругости (1955) -- [ c.82 ]



ПОИСК



Деривационные формулы. Дифференцирование тензоров. Основные выражения векторного анализа в произвольной криволинейной системе координат

Импульс, 4-тензор углового момента для замкнутых островных систем

Инварианты тензора деформаций в прямоугольной декартовой системе

Инварианты тензора деформаций в прямоугольной декартовой системе координат

Преобразование компонент вектора и тензора при повороте системы координат

Преобразование тензоров и их производных по времени при изменении системы отсчета

Система тензора главная

Схема 12. Решение проблемы прочности при учете пластических деформаСхема 13. Система гипотез при деформациях бруса и установление компонентов тензора напряжений

Тензор деформаций в декартовой системе координат

Тензор деформаций в различных системах координат

Тензор проводимости в гексагональных системах

Тензор проводимости в кубических системах

Тензоры второго и высших рангов в косоугольной системе декартовых координат



© 2025 Mash-xxl.info Реклама на сайте