Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформации Исследования методом покрытия

Метод изгиба образцов не дает возможности получить ответ на поставленный вопрос о допустимой деформации стали с покрытием, в связи с чем было проведено исследование поведения покрытия в условиях растяжения. Образцы с покрытием толщиной 50 мк испытывались на машине ИМ-4Р с различной степенью деформации  [c.71]

При исследовании линейных упругих задач на прозрачных моделях необходимо использовать достаточно жесткие материалы, с тем чтобы исключить искажение формы модели под нагрузкой. При исследовании методом фотоупругих покрытий- жесткость оптически чувствительных материалов должна быть достаточно малой, с тем чтобы покрытие не оказывало влияния на работу исследуемой конструкции. Для оценки жесткости и оптической чувствительности материала используется коэффициент качества /Се, который характеризует оптическую чувствительность материалов по деформациям  [c.115]


Наиболее сложными являются задачи экспериментального изучения распределения деформаций, и напряжений в деталях машин и элементах сооружений. Эти задачи возникают по разным причинам. Одна из них состоит в том, что в коиструкциях современных машин ответственные детали имеют настолько сложную конфигурацию, что теория сопротивления материалов далеко не всегда может дать исчерпывающий ответ на вопрос об их прочности. В таких случаях на помощь приходит изучение напряженного состояния детали или ее модели путем применения специальных экспериментальных методов исследования деформаций и напряжений. К их числу относятся тензометрия, поляризационно-оптический метод, рентгенометрия, метод лаковых (хрупких) покрытий, метод аналогий (мембранной, электрической, гидродинамической и пр.).  [c.6]

При оптическом методе исследование ведется не на самой детали, а на геометрически подобной ей по форме и характеру нагружения модели, изготовленной из оптически активного материала. Такую модель помещают в специальную установку, называемую полярископом, нагружают и просвечивают Пучком плоскополяризованного света. При этом на экране появляется изображение модели, покрытое системой полос, анализ которых позволяет изучить характер напряженного состояния модели в каждой ее точке. После соответствующего пересчета данные исследования переносятся на натурный- объект. Обоснование правомерности такого переноса дано в теории упругости, где доказано, что при некоторых условиях, в пределах упругих деформаций, распределение напряжений в детали не зависит от упругих констант ее материала.  [c.229]

В зависимости от типа материала, вида напряженного состояния, характера нагружения и уровня деформаций разрушение может быть обусловлено накопленным усталостным повреждением, накопленной деформацией или их совокупностью. В связи с этим необходимо измерять как величину суммарной односторонней накопленной деформации, так и изменение амплитуды деформации при каждом цикле нагружения [83]. Для исследования циклически упрочняющихся материалов наиболее эффективен метод оптически чувствительных покрытий, а также метод тензометрии (при величине деформации в первом полуцикле Г%). Для измерения перемещений в зоне вершины трегцины рекомендуется метод оптической интерференции, причем величина исходной деформации должна быть 1%.  [c.239]


Основная идея метода заключается в том, что на модель наклеивается тензорезистор, представляющий собой тонкую металлическую проволоку, образующую ряд петель. Эта проволока деформируется вместе с участком модели, на который она наклеена. Если модель изготовлена из металла, проволока электрически от нее изолирована. При деформировании проволоки изменяется ее электрическое сопротивление, величина которого регистрируется с помощью специальной аппаратуры. Известны и менее распространенные тензометры механические, оптико-механические, оптические, акустические, струнные, электромагнитные, емкостные, фотоэлектрические и т. д. Все методы, связанные с тензометрированием, имеют свои преимущества и недостатки. В зависимости от условий эксперимента и его задач каждому из этих методов может быть отдано предпочтение. Однако все они обладают одним общим недостатком — деформации измеряются только в том месте, где установлен соответствующий тензометр. Общую картину поля напряженного и деформированного состояния моделей могут дать методы хрупких покрытий, сеток, муара и голографической интерферометрии и фотоупругости. Эти методы наиболее удобны, когда исследования ведутся не на реальных конструкциях, а на моделях.  [c.32]

Метод оптически чувствительных покрытий, позволяющий измерять разности главных напряжений или разности главных деформаций на поверхности нагружаемых металлических деталей, был впервые предложен еще в 1930 г. Менаже [19]. В то время не было достаточно чувствительных материалов, и этот метод не получал распространения, пока в 50-х годах не появились новые, оптически чувствительные материалы, такие, как эпоксидные смолы. В последние годы он широко внедрялся на практике, особенно в авиационной промышленности. За это время проведено много исследований по дальнейшему развитию данного метода и разработке способов обработки результатов измерения для разных задач ).  [c.274]

В основу метода хрупких покрытий положен эффект образования трещин под действием приложенных нагрузок. Покрытия предварительно наносят на объект исследования, и после высыхания в этом покрытии образуются остаточные напряжения, которые и способствуют, даже ири незначительных деформациях, образованию трещин. Метод хрупких покрытий применяют для предварительного определения зоны наибольших напряжений. Ввиду того, что погрешность определения деформаций и напряжений методом хрупких покрытий достигает 10—20%, этот метод используют только для оценочных измерений, более точные результаты получают применением других средств точного тензометрирования.  [c.387]

Методы проведения исследования. Для получения направления главных деформаций (напрян<ений) и выявления наиболее напряженных зон поверхности детали, нагрузка детали доводится до получения трещин в покрытии в интересующих зонах (при нагрузке или разгрузке) величина нагрузки может не определяться, покрытие не тарируется.  [c.576]

Вместе с тем установлено, что в реальных конструкциях в зоне примыкания патрубка пластические деформации возникают при весьма низких номинальных напряжениях, составляющих примерно 0,2от- Поэтому для определения фактических внутренних усилий в этой зоне необходимо проведение испытаний крупномасштабных моделей, выполненных из натурного материала и нагруженных в упругопластической области. Кроме того, как отмечалось выше (см. гл. 1, 2, 3), для уточненных расчетов малоцикловой прочности необходимо учитывать кинетику деформированного состояния расчетных сечений при повторном нагружении. Для неосесимметричных задач теории оболочек перераспределение упругопластических деформаций на каждом цикле нагружения может быть изучено в настоящее время преимущественно экспериментальным путем. Проведение таких экспериментальных исследований сопряжено с измерением полей упругопластических деформаций, характеризующихся значительным градиентом при этом возникает необходимость измерения и регистрации больших пластических деформаций в процессе циклов нагружения и малых упругих деформаций при разгрузке. Из известных методов измерения полей упругопластических деформаций на плоскости обычно используются методы оптически активных покрытий, муаровых полос и малобазные тензорезисторы.  [c.139]


При проведении исследований наряду с тензометрированием используют и другие экспериментальные методы. Применяют метод хрупких тензочувствительных покрытий. Он весьма прост и эффективен и позволяет оперативно отыскать наиболее опасные зопы исследуемой конструкции и оценить напряжения. При хорошей адгезии между поверхностью детали и тонким покрытием в последнем возникают те же деформации, что и в детали. Обладая малой пластичностью, покрытие в процессе нагружения детали разрушается под действием растягивающих напряжений, и трещины распространяются от более напряженных к менее напряженным точкам. Таким образом визуально устанавливаются зоны наибольших напряжений и их главные направления. Погрешность определения мак-  [c.170]

Метод хрупких тензочувствительных покрытий является простым и эффективным методом экспериментального исследования деформаций и напряжений. Применяя его, можно оценивать величину деформаций (напряжений), определять зоны поверхности с наибольшими деформациями и направления главных деформаций в точках поверхности деталей машин и узлов конструкций, выполненных из любого материала.  [c.3]

Хрупкие лаковые покрытия на канифольной основе с сероуглеродом в качестве растворителя, несмотря на неудобства при работе с ними (токсичность, огнеопасность, необходимость создания жестких условий по влажности и температуре при сушке и испытании), находят за рубежом широкое применение при исследовании деформаций и напряжений в качестве самостоятельного метода и в сочетании с тензометрией.  [c.7]

Измерения с применением хрупких покрытий целесообразно проводить в первую очередь для получения полей деформаций на поверхности модели (выявление наиболее напряженных зон и направлений главных деформаций и выбор мест и направлений баз тензодатчиков). Поляриза-ционно-оптический метод для тензометрических моделей может быть использован предварительно (исследование зон концентрации, оценка усреднений деформаций на базе тензодатчика) или на самих тензометрических моделях с применением оптически чувствительных наклеек и вклеек.  [c.66]

Трудность расчетного определения полей деформаций и напряжений у вершины трещины привела к необходимости разработки и применения экспериментальных методов исследования деформаций и напряжений. В настоящее время достаточно хорошо разработаны и эффективно используются методы фотоупругих покрытий, сеток, муара, тензометрии, рентгеновского анализа, травления, дифракционных решеток, электронной микроскопии, фазовой интерференции, нанесения медных покрытий, голографии, прямого наблюдения полированной поверхности образцов (1, 10, 6, 34, 49, 56, 130, 187, 199, 260, 261, 287], позволяющие исследовать поля деформаций при статическом и циклическом  [c.15]

Как и ранее, отдавая предпочтение аналитическим методам исследования, рассмотрим два примера. Первый — расчет напряженно-деформированного состояния собственно покрытия, лежащего на основании с различными вертикальной и горизонтальной реакциями. Второй — расчет напряжений и деформаций в покрытии, свойства материала которого изменяются по сечению, следуя за изменением температуры.  [c.329]

Для проверки предложенного метода расчета аэродромных покрытий на воздействие деформаций морозного пучения и оценки надежности метода проведено натурное исследование на 55 плитах покрытия взлетно-посадочной полосы одного из аэродромов [74], где были обнаружены продольные сквозные трещины. Ширина раскрытия трещин, непрерывно проходящих по поверхности от одной до десяти плит, составляла 0,5—1,5 мм. За зимний период число плит с трещинами увеличилось до 64. Аэродром не эксплуатировался, поэтому появление и развитие процесса трещинообразования в результате воздействия нагрузки исключалось.  [c.363]

Измеряемыми на моделях величинами являются деформации и перемещения. Места измерения различные зоны конструкции, в том числе места резкого изменения формы конструкции и концентрации напряжений. Кроме измерения деформаций и перемещений в отдельных точках конструкции, необходимо получать путем измерений поля деформаций и перемещений. В связи с этим целесообразно в сложных моделях конструкций применение нескольких методов измерений хрупких тензочувствительных покрытий наклеиваемых тензорезисторов оптически чувствительных наклеек и вклеек. Отдельные зональные модели выполняются из оптически чувствительного материала. Типы применяемых в этих исследованиях тензорезисторов и измерительной аппаратуры в зависимости от задачи исследования и характера измеряемых величин приведены в работе [5]. Там же показано, что вычисление напряжений в модели по приращениям показаний тензорезисторов Д осуществляется с применением постоянной Ст, определяемой тарировкой выборки в 5—10 тензорезисторов, устанавливаемых на консольном образце из органического стекла с модулем Ет при температуре Т тарировки. В том случае, если величина модуля упругости Е материала модели отлична от величины Ет, то значение Ст пересчитывается для величины модуля упругости Е материала модели при температуре Ь измерений [5]  [c.30]

Метод хрупких покрытий используется для исследования распределения напряжений на поверхностях деталей или их моделей при приложении к ним статической или динамической нагрузки. Этот метод заключается в наблюдении трещин, образующихся при нагрузке или разгрузке детали в тонком слое хрупкого покрытия, предварительно нанесенного на исследуемую поверхность. По образованию и распространению с увеличением нагрузки трещин в покрытии определяются наиболее напряженные зоны на поверхности детали, направления главных деформаций и оцениваются величины возникающих напряжений. Покрытие прочно связано с поверхностью, на которую 10  [c.10]


Проведенные исследования показывают, что метод хрупких лаковых покрытий позволяет быстрее, чем с помощью других методов, оценить характер и величины напряжений в деталях сложной формы, найти траектории напряжений для облегчения измерений с помощью тензодатчиков, а также выявить наличие и величины пластических деформаций. Ряд практических примеров подобных исследований опубликован в работах [19], [30], 36]. Ниже приводится несколько типовых примеров, освещающих разнообразность применения этого метода.  [c.21]

Опорная стенка конструкции пресса. Модель из органического стекла плоской стенки с поперечными упорами, не сопротивляющимися деформациям в плоскости стенки, показана на фиг. I. 49. В задачу исследования входило определение достаточности указанных упорных точек, предназначенных для предотвращения потери устойчивости стенки. Потеря устойчивости может начинаться в сжатых зонах по контурам отверстий и концевых стоек. Поэтому с применением лаковых покрытий или поляризационно-оптического метода сначала выявляются зоны сжатия при одновременно действующих нагрузках Рх и 2. На фиг. I. 49, а эти зоны условно обозначены толстыми линиями вдоль сжатых контуров. В местах наибольшего сжатия  [c.89]

Рассматриваемый вопрос имеет теоретическое и практическое значение для оптико-механической промышленности в связи с тем, что формирующаяся пленка вызывает в изделии напряжения и деформации. Это может привести к изменению оптических свойств и ухудшению изображения. Теоретическое решение дает возможность исследовать напряженное состояние в любых телах, как в прозрачных, так и в непрозрачных. Экспериментальные исследования с применением оптического метода дают картину распределения напряжений в оптической детали и позволяют убедиться в годности применяемой теории. Оптики часто сталкиваются с формирующимися на поверхностях деталей пленками это и склеивающие слои в составных оптических деталях, и защитные или декоративные покрытия, и диэлектрические покрытия на металлических зеркалах, и т. п. Исследование напряжений в таких пленках должно представлять непосредственный интерес.  [c.170]

К наиболее распространенным методам исследования полей упругопластических деформаций относятся методы делительных сеток и муара, имеющие общую геометрическую природу и позволяющие измерять деформации как при кормаль-ноп, T3[v и при повышенных (в отличие от метода оптически активных покрытий) температурах. Исходным этапом исследования местных упругопластических деформаций в зонах концентрации каждым из указанных методов является нанесение делительной сетки (растра) с различной формой ячейки и с базой 0,01. .. 1,0 мм. Эгп методы достаточно отработаны для целей исследования как статических (длительных статических), так и циклических упругоиластических деформаций в широком диапазоне температур [85, 11S].  [c.171]

Исследование методом фотоупругих покрытий показало существенное влияние коэффициента деформационного упрочнения т на распределение напряжений и деформаций внутри пластической зоны (рис. 10) у вершины трещины и на форму пластической зоны [309, 331]. С уменьшением т пластическая зона проявляет тенденцию к сужению в виде клина, расположенного вдоль линии продолжения трещины, Анализ результатов оценки полей упругих и пластических деформаций показывает качественное соответствие расчетных и экспериментальных оаенок.  [c.16]

Метод измерения адгезии, использованный при исследовании медных покрытий на полиэтилене и полистироле, оказался неприменимым для полиимидной пленки, так как прочность склеивания циакрином (4-10 ГПа) была ниже силы сцепления покрытия с подложкой, и разрыв происходил по клею. Поэтому адгезию определяли полуколичественно по пятибалльной системе в зависимости от результатов испытаний методом липкой ленты. На покрытии иглой наносили сеть глубоких царапин и при помощи липкой ленты отрывали его от полиимида. Система оценок адгезии была такой 1 балл — очень плохая, покрытие легко отделяется при незначительной деформации подложки 2 балла — плохая, покрытие отслаивается чешуйками при изгибе подложки, а липкая лента снимает покрытие полностью 3 балла — удовлетворительная, липкой лентой снимается не более 50% покрытия 4 балла — хорошая, отделяется не более 25% покрытия 5 баллов —очень хорошая, покрытие прочно сцеплено с подложкой, не отделяется липкой лентой, а также при многократном изгибе и растяжении подложки.  [c.342]

Оптические методы. В ряде работ пытались исследовать внутренние напряжения в покрытиях методом фотоупругости, пропуская свет через само покрытие. Недостатком этого метода является его непригодность для исследования непрозрачных покрытий. Метод фотоупругости неприменим также для количественного исследования внутренних напряжений, если в полимере наблюдались пластические и высокоэластические деформации. В общем случае в полимере под действием напряжений развиваются пластические, высокоэластические и упругие деформации. Все эти деформации дают эффект двулучепре-  [c.146]

С использованием методов растровой электронной микроскопии, метода скользящего пучка рентгеновских лучей и измерения микротвердости исследованы процессы самоорганизации дислокационной и субаереиной структуры в приповерхностных слоях и внутренних объемах технически чистого рекристаллизованного Мо при статическом растяжении и влияние магнетроиного покрытия Мо-45, 8Re-0,017 на особенности протекания этих процессов вблизи поверхности. Исследования проводили на образцах, растянутых до деформаций, соответствующих пределу пропорциональности, нижнему пределу текучести н пределу прочности.  [c.185]

Задача второй области приложения триботехнологии - управление триботехническими характеристиками поверхностей трения - решается главным образом путем разработки специальных методов модифицирующей упрочняющей обработки. При этом модификация свойств поверхностных слоев трущихся деталей достигается модифицированием структуры или химического состава и структуры материала деталей. В этой области триботехнология тесно смыкается с трибоматериалове-дением как по решаемым задачам повышения триботехнических характеристик трибосопряжений, так и по используемым методам исследования. Современная триботехнология располагает большим числом технологических процессов, используемых в течение многих десятилетий или разработанных в последние 1()-15 лет. Основные из них следующие термическая обработка, диффузионно-термическая (химико-термиче-ская) обработка, поверхностно-пластическая деформация, ионно-плазменная модификация и нанесение покрытий, электронно лучевая обработка, ультразвуковая упрочняющая обработка, лазерное упрочнение, различные комбинированные методы модификации,  [c.10]

Исследование геометрии перового пространства покрытий, полученных напылением частиц, деформирующихся при ударе без расплескивания, проводилось на моделях, полученных мате.чатическим моделированием методом статистических испытаний на ЭВМ ЕС-1022. Установлено, что напыление необходимо проводить в режимах, обеспечивающих небольшие степени деформации частиц.  [c.237]


М. Л. Козловым [285] сделана интересная попытка построения механико-математической модели определения остаточных напряжений непосредственно в процессе нанесения покрытий. Преимуществом такого подхода по сравнению с механическими методами, основанными на послойном удалении, является возможность проведения неразрушающих испытаний. Остаточные напряжения в этом случае могут быть определены с привлечением математического аппарата механики деформируемого твердого тела. Разработан общий принцип неразрушающих методов исследования остаточного напряженного состояния покрытий, заключающийся в том, что вместо данных о деформации основного металла с покрытием предлагается использовать сведения о величине внешних силовых факторов, непрерывно удерживающих композицию основной металл — покрытие в исходном состоянии либо возращающих ее в это состояние. Применение общего принципа неразрушающих методов дает возможность вычислять остаточные напряжения без привлечения классической расчетной схемы, для которой необходимо построение различных моделей нанесения покрытия -в зависимости от вида стеснения и формы покрываемого образца [285].  [c.188]

Идея метода заключается в том, что для изучения распределения нормальных напряжений в конструктивных элементах слолшой гео метрической формы на поверхность исследуемой детали или ее модели наносится покрытие, которое, деформируясь вместе с материалом модели, разрушается при достижении некоторых предельных нагрузок [43]. Трещины в таком покрытии располагаются перпендикулярно к направлению наибольших деформаций, возникающих на поверхности детали при ее нагружении. Иногда изучаются трещины, возникающие не при нагружении детали, а при ее разгрузке. Это делается при исследовании сжимающих напряжений. В качестве материала модели выбирается либо реальный материал, из которого изготовлено изделие, либо материал, допускающий большую деформацию. Это могут быть металлические материалы и различные пластмассы.  [c.33]

Обеспечение работоспособности и надежности уплотнительных устройств имеет часто решающее значение в проблеме ресурса и безотказности машин и механизмов. Комплексная проблема совершенствования уплотнительной техники (герметология) включает создание новых материалов, покрытий, отделочно-упрочняющих технологий, выбор оптимальных конструкций, усилий герметизации в условиях уплотнения различных сред в широком спектре нагружений, вибраций, перепадов температур, в экстремальных условиях. Развитие методов прогнозирования должно основываться на решении контактных задач, учитывающих форму и кривизну макротел и микрогеометрию, упруго-пластические свойства материалов, масштабный фактор, старение материалов и кинетику изменения напряжений и деформаций в герметизируемых стыках уплотнительных устройств. Актуальными являются исследования в области физики истечения жидкостей и газов в микрообъемах герметизирующих сопряжений, влияния кривизны вершин неровностей и высотных характеристик профилей на смачиваемость и характер проявления капиллярных эффектов, динамики процессов герметизации и разгерметизации стыков при многократном нагружении, влияния эксплуатационных факторов и совместимости уплотняющих материалов и сред на величину утечек в соединениях во времени.  [c.198]

Для перехода от значений внешних нагрузок (номинальных напряжений) к локальным напряжениям и деформациям необходимо располагать в соответствии с нормами расчета энергетических конструкций на малоцикловую усталость [2] значениями кэффициен-тов концентрации напряжений (при упругих деформациях) и коэффициента концентрации деформаций К , если местные напряжения превышают предел текучести материала. Если для геометрических концентраторов напряжений типа отверстий, галтелей, выточек и т. п. такие данные в области упругих деформа ий широко представлены в работах [3, 4], то применительно к сварным соединениям строительных конструкций такая систематизация до настоящего времени отсутствует. В связи с этим были проведены исследования зон концентрации напряжений и деформаций в стыковых и угловых швах при простейших способах нагружения (растяжение, изгиб) с применением [5] методов фотоупругости и фотоупругих покрытий. При исследованиях варьировались следующие величины, характеризующие геометрию сварного шва и определяющие уровень концентрации напряжений для стыковых швов — относительная высота наплавленного металла к его ширине q e, относительная ширина шва е/5, радиус перехода р и толщина свариваемых пластин з для угловых швов — соотношение катетов, радиус перехода р и толщина з. Диапазон изменения этих параметров был выбран на основе стандартных допусков на геометрию швов, выполненных ручной дуговой сваркой плавящимся электродом, автоматической и полуавтоматической под слоем флюса и дуговой сваркой в защитных газах. Было принято, что в стыковых сварных соединениях относительная высота валика шва не превышает 0,7, а относительная ширина шва находится в пределах 0,03 е/з 3,4. С увеличением толщины свариваемых пластин относительная высота и относительная ширина шва.  [c.173]

Обобш,ение результатов научных исследований сопротивления упругопластическим деформациям и разрушению при малоцикловом нагружении осуш,ествляется в настояш,ей серии монографий. В первой книге [12] содержатся основы методов расчета и испытаний при малоцик.ловом нагружении, состояш,ие в анализе механических закономерностей упругопластического повторного нагружения вне зон и в зонах концентрации напряжений, в обосновании выбора материалов, расчетных уравнений для оценки прочности и долговечности, методов и средств испытания лабораторных образцов, дюделей и натурных конструкций. Во второй книге [13] освеш,ены вопросы расчетного и экспериментального анализа полей упругопластических деформаций в зонах концентрации напряжений при малоцикловом нагружении в условиях нормальных и повышенных температур. При этом освеш,ены возможности использования аналитических и численных методов решения задач о концентрации деформаций и напряжений, экспериментальных методов муара, сеток, оптически активных покрытий, малобазной тензометрии. Третья книга [7] посвящена вопросам сопротивления высокотемпературнод1у деформированию и разрушению при малоцикловом нагружении.  [c.7]

Таким образом, на основании изложенных выше данных можно предполагать, что в приповерхностных слоях кристалла реализуются аномально облегченные энергетические условия пластического течения. С другой стороны, известно большое количество работ, свидетельствуюш их о барьерной роли поверхности и приповерхностных слоев в обш ем процессе макропластической деформации работы по исследованию эффекта Ребиндера [11[, по барьерной роли окисных пленок и всевозможного рода поверхностных покрытий [12], работы Крамера [13, 14] и др. Кроме того, некоторые авторы [15] при обсуждении экспериментальных данных, полученных методом микротвердости при малых нагрузках, пытаются обосновать гипотезу ослабленного поверхностного слоя , другие [16] пытаются доказать наличие теоретической прочности в поверхностных слоях кристалла. Не останавливаясь на анализе, возможно или невозможно в настоящее время получить такую информацию методом микротвердости (это особый предмет исследования), можно констатировать, что, по-видимому, в рассмотренных выше работах нет принципиальных различий. Вероятно, о большей или меньшей прочности приповерхностного слоя но сравнению с объемом материала следует говорить, лишь строго привязываясь к конкретным условиям деформации, ее абсолютной величине, методу нагружения и исследования, типу среды, предыстории исследуемого материала и главное следует четко различать, на какой стадии микро- или макропластического течения идет речь об аномальном поведении поверхности.  [c.40]

Известные в литературе различные методы определения внутренних напряжений (метод изгиба катода, деформация стеклянного шарика или диафрагмы и др.) яозволяют установить только приближенное их значение, т. к. они не учитывают снятие части напряжений за счет деформации катода. Проведенные нами исследования показали, что катодные пластинки, изготовленные из черной жести одинаковых размеров (100 мм X X 10 мм), но разной толщины (3 =0,3 мм, 82=0,5 мм), покрытые в одинаковых условиях электролитическим железом, изгибаются под разным радиусом кривизны (р), а их покрытия имеют различную твердость. Учитывая зависимость твердости покрытий от величины их внутренних напряжений, следует считать, что в процессе деформации катода часть первоначальных напряжений снимается. Следовательно, первичные напряжения (Опер) равны сумме конечных ( кон) и снятых (Осн), Т, е.  [c.89]


Для широкого применения метода хрупких тензочувствительных покрытий для исследований при нормальных температурах необходима разработка удобно выполняемого нетоксичного и неогнеонасного покрытия, не требующего при обычных испытаниях нагрева детали, обладающего достаточно стабильными требуемыми характеристиками при изменении температуры и относительной влажности и пригодного для исследования полей деформаций и напряжений в различных основных условиях испытаний деталей и узлов конструкций. Нестабильность поведения и ограниченность диапазона рабочих температур канифольных покрытий обусловлена, прежде всего, большим различием (до одного порядка) коэффициентов температурного расширения материалов покрытия и исследуемых стальных деталей, гигроскопичностью и низкой температурой размягчения материала покрытия. В связи с этим в Институте машиноведения проводится разработка хрупких покрытий со стабильными характеристиками, и одна из выполненных разработок покрытий нового тина со стабильными характеристиками относится к покрытию с наклеиваемой фольгой, имеющей оксидную пленку. Как показали проведенные эксперименты, могут быть получены на алюминиевой фольге оксидные пленки, выращиваемые электрохимическим путем, которые являются коррозионностойкими и при определенных условиях оксидирования получаются твердыми, прозрачными и достаточно хрупкими, т. е. дающими трещины при достаточно малых величинах деформации. Характеристики тензо-чувствительности охрунченных и наклеенных разработанными способами пленок оказываются стабильными.  [c.10]

Александров А. fl.. Краснов Л. А., Кушнеров В. А. Исследование накопления деформаций при циклическом нагружении методом фотоупругнх покрытий // Механика деформируемого тела и расчет сооружений Тр. НИИ ж.-д. трансп.—  [c.236]

Нанесение покрытия из оптически актив1ного материала возможно как на плоские, так и на криволинейные поверхности. Материалы, применяемые для покрытий или наклеек такого рода, должны отвечать определенным требованиям линейцая зависимость между деформацией и разностью хода, высокая оптическая активность, хорошая адгезия слоя или наклейки с материалом детали, отсутствие краевого эффекта и др. Хорошо отвечают этим требованиям материалы на основе эпоксидной смолы (ЭД6-М, ДЭП, ЭДП, ЭД-6, ЭД-5 и др.) и каучуки типа полиуретана. Исследование в этом случае производят методом компенсации.  [c.198]

Первый патент на использование антифрикционных свойств фосфатных пленок был опубликован в 1934 г. [1]. Однако к этому времени уже были завершены и опубликованы первые отечественные исследования износоустойчивости пленок [2], показавшие, что фосфатные пленки обладают высокой способностью уменьшать работу износа трущихся поверхностей металла и легко противостоять истиранию, не снижая при этом своих защитных свойств. Вначале фос-фатиревание использовали при вытяжке труб из нелегированной и хромомолибденовой сталей [3]. Широкое использование антифрикционных свойств пленок отмечено в Германии во время второй мировой войны, когда около 600 фирм использовали этот метод в 1944 г. расход фосфатирующих препаратов при процессах холодной деформации металлов был большим, чем для антикоррозионной защиты [4]. В Англии и в США, где использование антифрикционных свойств фосфатных пленок началось после войны, около 20% всего количества фосфатирующих препаратов расходуется для обработки металлов перед их холодной деформацией [5]. В современной металлообрабатывающей промышленности без фосфатирования нельзя обойтись при волочении труб и проволоки, а также невозможно было бы осуществить процессы штамповки, холодного прессования и экструдирования стали. Считают [6], что без фосфатной обработки холодная деформация металлов не приобрела бы столь важного значения, которое она достигла в настоящее время. Сравнительные испытания различных видов антифрикционных покрытий — фосфатирования, лужения, оксидирования, сульфидирования — показали [7] преимущества фосфатной пленки, которая может заменять более дорогое электролитическое покрытие оловом и превосходит сульфидные и оксидные пленки. Установлено [8], что фосфатированная поверхность, смазанная парафином, обладает при износе наи-  [c.242]

Таким образом, все перечисленные методы определения сцепляемости по методу деформации основаны на исследовании характера трещины между покрытием и подкладкой. Чем хуже сцепляемость, тем больше образующаяся трещина. При хорошей сцепляемости трещины не образуется. Эти методы просты и удобны, но они дают лишь качественную характеристику сцепляемости и точность их значительно зависит от физических свойств испытуемых металлов (как подкладки, так и по-5 рыгия),  [c.331]

Выявленный в ИТПМ СО РАН эффект образования прочных покрытий при обтекании тел сверхзвуковым двухфазным потоком (газ + твердая частица) с температурой торможения газа 300 К [16, 17] показал, что наличие высоких температур в струе с расплавленными частицами не является необходимым условием формирования покрытий. При определенных параметрах двухфазной струи (скорости, концентрации, размера частиц и пластичности их материала) возможно формирование прочных покрытий при температуре, существенно меньшей температуры плавления материала частиц, в процессе ударноимпульсного взаимодействия и пластической деформации в области контакта частиц и преграды. Сравнение основных параметров двухфазного потока, при которых был зарегистрирован эффект напыления, с параметрами, реализуемыми в газотермических методах напыления [14], показывает, что реализован новый метод нанесения покрытий, названный методом холодного газодинамического напыления (ХГН). Этот метод, показав свою уникальность и перспективность широкого практического использования, вызвал в России [18, 19, 20, 21, 22, 23, 24, 25, 26] и за рубежом [27, 28, 29, 30, 31-, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] интерес и потребовал всестороннего его исследования.  [c.25]


Смотреть страницы где упоминается термин Деформации Исследования методом покрытия : [c.36]    [c.50]    [c.454]    [c.495]    [c.388]    [c.52]    [c.303]    [c.413]    [c.190]   
Справочник машиностроителя Том 3 (1951) -- [ c.318 ]



ПОИСК



Деформации Методы покрытий

Метод деформаций

Методы исследования

Методы покрытий



© 2025 Mash-xxl.info Реклама на сайте