Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагружения многократные

Структура дифференциальных методов допускает возможность использования динамического программирования заданный путь нагружения разбивается на достаточно малые этапы и на каждом последующем этапе в качестве начальных условий принимаются результаты, полученные на предыдущем этапе (при этом легко учесть смену условий нагружения). Многократное (пошаговое) применение дифференциальных методов позволяет рассчитать всю траекторию трещины.  [c.198]


Нагружение многократными ударами вызывает так называемое явление ударной усталости. Это явление занимает промежуточное положение между обычной усталостью и явлением, вызванным однократным разрушающим ударом. При ударной усталости наблюдается макроскопически хрупкое разрушение, мало отличающееся от разрушения при обычной усталости.  [c.45]

В заключении вводного пункта сформулируем некоторые приложения задач, решаемых методами механики контактного разрушения определение вязкости разрушения поверхностных слоев материала оценка уровня остаточных поверхностных напряжений определение параметров функций распределения поверхностных дефектов описание развития поверхностных и подповерхностных трещин, в том числе с изменением их траекторий описание взаимодействия системы трещин определение критериев выкрашивания фрагментов поверхностного слоя и оценка объема таких фрагментов построение на этой основе моделей изнашивания (многообразие реализуемых при этом условий нагружения многократно усложняет задачу).  [c.627]

Вторую группу составляют факторы, связанные со средой температура и скорость газового потока, характер воздействия газовых струй и взвешенных в них мельчайших твердых частичек (динамичность нагружения), многократность, цикличность и продолжительность действия газового потока, реакционная способность газовой среды (окислительная, восстановительная, нейтральная) теплопроводность, теплоемкость и энтальпия газа, а также вязкость его и другие характеристики.  [c.132]

Согласно современным представлениям природа усталостного разрушения металла носит статистический (случайный) характер и связана с неизбежной неоднородностью его кристаллической структуры. Металл состоит из большого числа случайно ориентированных кристаллов и имеет различные дефекты внутреннего строения. Отдельные кристаллы имеют различные размеры и форму и анизотропны, т. е. обладают различной прочностью в разных направлениях. Поэтому при нагружении детали все кристаллы напряжены неодинаково, одни в большей, другие в меньшей степени. В силу случайных причин в наиболее неблагоприятно ориентированных кристаллах возникают пластические деформации. При однократном нагружении это приводит к некоторому местному перераспределению напряжений и не вызывает разрушения металла. При повторном нагружении в этих кристаллах появляется наклеп, т. е. они упрочняются (аналогичное явление упрочнения после текучести наблюдается и при испытаниях на растяжение образцов из различных пластических материалов). С каждым последующим циклом нагружения в таких кристаллах накапливаются необратимые механические повреждения, напряжения в них постепенно увеличиваются, и, когда способность какого-то кристалла к упрочнению исчерпывается, в нем появляется трещина. Трещина обычно возникает на поверхности детали в местах наибольших напряжений, а также в местах, имеющих дефекты внутреннего строения металла или обработки поверхности. По мере увеличения числа циклов нагружения трещина увеличивается в размерах, и, когда статическая прочность оставшейся неповрежденной части сечения (зона А — зона долома, см. рис. 14.4) становится недостаточной, происходит внезапное разрушение детали. Края развивающейся трещины в процессе циклического нагружения многократно трутся друг о друга.  [c.341]


Для того чтобы воспользоваться выражением (15.33), необходимо определить форму упругой линии вала. В первом приближении возьмем ту упругую линию, которую имеет вал при статическом нагружении его двумя заданными силами и собственным весом. Поскольку жесткость вала многократно меняется по его длине, определение упругой линии аналитическими методами, описанными в гл. IV, представляет значительные трудности. В таких случаях прибегают к графическому методу или к методу численного интегрирования. Последний в настоящее время является более употребительным. Воспользуемся им.  [c.489]

Степень влияния местных напряжений на прочность детали существенно зависит от характера нагружения и материала. При расчете конструкции из пластичных материалов, работающей в условиях статического нагружения, местными напряжениями пренебрегают. Это объясняется тем, что при росте нагрузки напряжения в зоне концентрации, достигнув предела текучести, не возрастают до тех пор, пока во всех соседних точках они не достигнут того же значения, т. е. пока распределение напряжений в рассматриваемом сечении не станет равномерным. Иначе обстоит дело при циклически изменяющихся напряжениях. Многократное изменение напряжений в зоне концентратора напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Для оценки снижения прочности вводят эффективный коэффициент концентрации, равный отношению предела выносливости о 1 гладкого полированного образца к пределу выносливости образца с концентратором напряжений, абсолютные размеры которого такие же, как и у гладкого образца  [c.248]

Нагрузки при механических испытаниях делятся на три вида в зависимости от способа их приложения статические, при которых нагрузка на образец за время испытания постоянна или постепенно увеличивается в процессе испытания динамические, когда нагружение образца сопровождается значительными ускорениями точек образца (носит характер удара) циклические, когда нагрузки многократно изменяются по значению.  [c.127]

Усталостное. Происходит при повторно-циклическом нагружении в результате накопления необратимых повреждений. При этом виде разрушения на поверхности тела вначале появляются микротрещины, одна из которых в результате многократного приложения нагрузки прорастает в макротрещину с последующим полным разрушением образца или детали машин.  [c.319]

Практикой установлено, что если элемент конструкции многократно подвергать переменному нагружению определенного уровня, то после некоторого числа перемен напряжений в нем появится трещина, которая постепенно будет развиваться. В конце концов деталь разрушится, не дав при этом заметных остаточных деформаций даже в том случае, когда ее материал высоко пластичен.  [c.652]

Вообще же усталостью материалов (в частности, металлов) называют явление разрушения в результате постепенного накопления в них повреждений, приводящих к возникновению усталостной трещины при многократном повторении нагружений.  [c.652]

Важное место в теории разрушения занимает усталостное разрушение, которое происходит вследствие постепенного развития трещины при повторно-переменном циклическом нагружении. Усталостное разрушение, как об этом уже было сказано (см. гл. 22), возникает в результате накопления в материале необратимого повреждения под действием многократного приложения повторно-переменных нагрузок. При этом трещины в материале начинают развиваться задолго до полного разрушения независимо от того, пластическое это будет разрушение или хрупкое.  [c.727]

Иначе обстоит дело при циклически изменяющихся напряжениях. Многократное изменение напряжений в зоне очага концентрации приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Поэтому при циклическом нагружении явление концентрации требует особого внимания, что находит свое выражение прежде всего в тех мерах, которые применяются на практике при проектировании машин. Для деталей, работающих в условиях циклических напряжений, внешние обводы стремятся сделать возможно более плавными, радиусы закругления во внутренних углах увеличивают, необходимые отверстия располагают в зоне пониженных напряжений и т.д.  [c.485]


При действии же переменных многократно повторяющихся напряжений в окрестностях точек с пониженной прочностью возникают микроскопические трещины. У концов этих трещин (а также у трещин, имевшихся в материале еще до его нагружения) возникает высокая концентрация напряжений (см. 2.10), приводящая к развитию трещин по мере увеличения числа циклов. Если рабочая площадь сечения элемента в результате развития трещин уменьшается настолько, что сечение не выдерживает возникающего в нем усилия, происходит разрушение элемента.  [c.547]

Релаксацией напряжений называется процесс постепенного ослабления напряжений при длительной постоянной нагрузке в результате перехода упругой деформации элемента в пластическую. Для предотвращения релаксации упругие элементы подвергают стабилизации — технологической операции, заключающейся в длительном или многократном нагружении элемента, иногда при повышенной температуре.  [c.334]

Усталостная природа изнашивания. Последние годы все большее распространение получает усталостная (кумулятивная) теория износа, когда основная причина разрушения поверхностных слоев связывается с возникновением усталостных трещин и отделением микроскопических чешуек материала или его окислов. При этом процесс изнашивания рассматривается как кумулятивный, т. е. суммирующий действие отдельных факторов при многократном нагружении фрикционных связей, что приводит в итоге к отделению частицы износа. Как правило, наличие пленки смазки, возникновение окислов, тепловой эффект и ряд других факторов влияют на интенсивность развития усталостного процесса, не изменяя его природы. Для объяснения физической сущности явлений усталости можно использовать исследования процессов развития усталостных трещин на базе представлений о вязкости разрушения при циклическом нагружении [2041.  [c.232]

Эти данные свидетельствуют о возможности эффективного использования детонационных покрытий на основе оксида циркония для защиты медных сплавов от теплового, эрозионного и коррозионного воздействия окислительного газового потока в условиях многократного циклического теплового нагружения.  [c.163]

Приведенный размер ячеек, соответствуюш ий области малоцикловой усталости для железа, близок к тому размеру, который зафиксирован в [160] для трения скольжения стали при возвратнопоступательном движении. Таким образом, имеются общие черты, характеризующие разрушение при объемном и поверхностном нагружении многократное циклическое воздействие, формирование ячеистой дислокационной структуры и близость размеров ячеек. Все это дает основание предполагать общность механизма разрушения и рассматривать образование частид износа [160] как усталостный процесс. Кроме того, выявляется возможность по размеру ячеек судить о действительных напряжениях, которым подвергается материал в местах фактического контакта при трении.  [c.102]

Для правильной оценки результатов ускоренных испытаниц необходимо воспроизводить один или несколько типичных эксплуатационных режимов нагружения, чередующихся в определенной последовательности. Для выбора таких режимов необходимо определить типичные условия эксплуатации, характерные для машин данного типа и назначения выявить типичные режимы нагружения детали, сборочной единицы или агрегата, соответствующие типичным условиям эксплуатации машины, а также выявить характерные циклы нагружения, многократно повторяющиеся в условиях эксплуатации и более всего способствующие разрушению исследуемых деталей, сборочных единиц или агрегатов.  [c.80]

Нормальное нагружение, передаваемое через граничный слой, воспринимается контактирующими поверхностями распределенным. В таких условиях деформация тонких поверхностных слоев осуществляется механизмами трансляции, двойникования, поворота зерен и фрагментов микроструктуры в направлении действия тангенциальных сил. В местах непосредственного контакта происходит направленная деформация — текстурирование поверхностных микрообъемов металла, что связано с приспосабли-ваемостью металла зоны взаимодействия тел к условиям нагружения. Многократное нагружение приводит в конечном счете к аморфизации поверхностного слоя [41 ].  [c.34]

Характеры нагружения дорожек качения обоих колец подшипникё принципиально различны. По отношению к наружному неподвижному кольцу вектор силы Р занимает постоянное положение. Следовательно, линии. действия векторов сил р , Ри Ро тоже не изменяют своего направления и проходят через постоянно расноложеншле точки Ut, uj, а . Поэтому в одних н тех же точках дорожек качения наружного кольца при работе подшипника возникают многократно повторяющиеся нормальные ршпряжения с максимальными амплитудами Стг, Оц 0(1 (рис. 8.4, б). Таким образом, ири.ходнм к выводу, что наружное кольцо в данном случае нагружено только на ограниченном участке (местное нагружение).  [c.105]

Способ упрочнения низкоуглеродистых сталей многократной механико-термической обработкой (ММТО) заключается в 5—6-кратной деформации, соответствующей при каждой ступени нагружения длине площадки текучести на диаграмме напряжение-отно-. сительное удлинение (суммарная деформация 6—8%), до полного исчезновения площадки текучести. Затем следует старение при 100—200 С/ в течение 10—20 ч. В результате этой обработки предел теку стн повышается на 25 — 30% (становясь практически равным пределу прочности), а предел усталости —на 30 — 50%.  [c.177]

Повышенные температуры наблюдаются не только в тепловых машинах, у которых нагрев является следствием рабочих процессов. В холодных машинах нагреваются механизмы, работающие при высоких скоростях и больших нагрузках (зубчатые передачи, подшипники, кулачковые механизмы и т. д.). Детали, подверженные циклическим нагрузкам, греются в результате упругого гистерезиса при многократно повторных циклах нагружения-разгруженпя. Повышение температуры сопровождается изменением линейных размеров деталей и может вызвать высокие Напряжения.  [c.360]


На основе анализа поломок различных деталей машин и многочисленных экспериментальных исследований установлено, что при переменных напряжениях разрушение происходит при максимальных по абсолютной величине напряжениях цикла, меньших предела прочности, а во многих случаях — даже меньших предела текучести данного материала при статическом нагружении. Разрушение, вызванное многократных действием переменных напряжений, принято называть усталостным разрушением, или у с-талостью, материала.  [c.314]

Анализ случаев поломок деталей машин свидетельствует о том, что большинство поломок связано с явлением так называемой усталости материалов. Явление усталости металлов заключается в разрушении деталей машин вследствие возникновения в них многократно изменяющихся переменных напряжений, значительно меньших, чем предел прочности или даже предел текучести материала. Опасность этого явления заключается в том, что деталь, выполненная из пластичного металла и нагруженная до напряжений, казалось бы, неопасных, внезапно разрушается без появления остаточных деформаций, которые сигнализировали бы о надвигающейся катастрофе. Долгое время существовало мнение, что при работе детали в условиях циклически меняющихся напряжений, происходит изменение в кристаллическом строении металла. Это мнение основывалось на том, что материал с достаточными пластическими свойствами при длительной работе в условиях переменных напря-  [c.327]

Закон Гука, гипотеза плоских сечений и принцип Сен-Венана — все это стадо достоянием инженеров лишь после десятилетий многократных, многовариантных опытов над стержневыми образцами различных материалов. Результатом этих исследований стали также обоснованные правила сравнительных испытаний образцов материалов с точки зрения их прочности и деформационных свойств. Супщствуют национальные и международные стандарты на форму и размер образцов, на конструктивные варианты способов их нагружения, на процедуры самих испытаний.  [c.47]

Две теоремы, приведенные ниже, позволяют получить нижнюю и верхнюю оценку для параметра нагружения ц. Эти теоремы были впервые сформулированы и доказаны Гвоздевым в малодоступной публикации 1936 г. они многократно переоткры-вались независимо разными авторами.  [c.491]

Высокая концентрация напряжений на краю отверстия представляет больиюй практический интерес. В качестве примера можно упомянуть отверстия в палубах судов. При изгибе корпуса судна в палубах вызывается растяжение или сжатие, а им сопутствует высокая концентрация напряжений вокруг отверстий. Многократные циклы нагружения, производимые волнами, при-  [c.108]

Изложены современные представления и оригинальные исследования по теории магистральных трещин, способных распространяться в твердых деформируемых телах, приводя к частичному или полному разрушению. Содержанием книги охватывается широкий круг вопросов поведения тел с трещинами — от критериев распространения трещины и до решения ряда сложных задач механики разрушения. Рассматриваются предельные п допредельные состояния равновесия при однократном, многократном, термическом и динамическом нагружениях в упругих, вязкоупругих, упругопластических и пьезоэлектрических телах с трещинами. Изложены методы экснерименталь-гюго определения характеристик трещиностойкости материалов.  [c.2]

Работа современных конструкций и сооружений, имеющих трещинообразные дефекты, часто протекает в условиях многократного статического и циклического нагружения и вибрационных нагрузок. При рассмотрении такого рода явлений важно выяснить влияние чисто инерционного эффекта па распространение трещин. Если внешняя нагрузка приложена не на берегах разреза, то ее воздействие на трещину передается пенолностью из-за релаксации напряжений и осуществляется с некоторым запаздыванием по времени. Поэтому при рассмотрении, например, задач об установившихся колебаниях для тел, содержащих трещины, будем задавать нагрузку пеносредственно па берегах разреза.  [c.426]

Таким образом, механическое состояние материала в точке зависит в первую очередь от напряженного состояния в этой точке, хотя и не определяется им полностью. Так, например, при наличии температурного воздействия на механическом состоянии материала заметно сказывается фактор времени. При малом времени нагружения состояние материала можно рассматривать как упругое, а при большом — как пластическое. Но, пожалуй, более важным является то, что само понятие механического состояния в точке не свободно от противоречий с принятым ранее предположением о непрерывности среды. Это обнаруживается в первую очередь при изучении вопросов разрушения, поскольку процесс образования трещин в металлах тесно связан с их молекулярной и кристаллической структурой, а само разрушение определяется не только напряженным состоянием, но в ряде случаев характеризуется также и историей нагружения, т. е. зависит от того, в какой последовательности прикладываются силы. В качестве примера достаточно указать на разрушение при периодически изме-няюш,ихся нагрузках. Многократное нагружение и разгрузка могут привести к разрушению, хотя возникающие напряжения остаются существенно меньшими предела текучести.  [c.293]

Суммирование в уравнении (8.7) распространяется на уровни напряжений Стаг> ((Т-i) д, так как предполагается, что напряжения с амплитудами, меньшими предела выносливости, не вызывают повреждения (если процесс усталости исключает стадию распространения трещин). Предположение о линейности накопления повреждения независимо от чередования уровней переменных напряжений при нестационарном нагружении лучше согласуется с экспериментальными данными при многократной смене уровней и повторяемости действия напряжений с одними и теми же значениями амплитуды на разные стадиях пребывания под нестационарной нагрузкой. Тип условий нагружения обычно вытекает из анализа резу 1Ьтатов соответствующих измерений в эксплуатационных условиях.  [c.171]

Paapyuienue вторичных структур. В результате многократного нагружения и под влиянием внутренних напряжений в пленке вто-ричньгх структур происходит образованпе и развитие микротрещин, а на поверхности раздела (металл—окисел) - ослабление связей и отслаивание пленки вследствие несоответствия дислокационных систем пленки и металла. Последующие механические воздействия приводят к разрушению и уносу продуктов разрушения пленки из зоны трения. Затем на обнаженных (ювенильных) участках поверхности процесс повторяется.  [c.133]

Универсальная машина WPM (ГДР) предназначена для испытаний на растяжение, сжат(1е или изгиб при многократном повторении нагрузки. Машина позволяет осуществлять статические нагрузки на образец до 100 Т и пульсируюш,ие при двустороннем нагружении до 50 Т. Пульсируюш,ая нагрузка прикладывается с частотой 250 и 500 циклов в 1 минуту. Для поддержания постоянной амплитуды заданной пульсируюш,ей нагрузки машина снабжена специальным регулятором.  [c.237]

При взаимном внедрении неровностей шероховатых поверхностей многократно возникают напряжения и деформации, которые зависят от условий нагружения, сил трения, упругих и пластических свойств материалов, форм и размеров неровностей. Возникновение напряжений и деформаций, многократно повторяясь, приводит к разрушению на отдельных участках трущихся поверхностей и к отделению частиц материала. Такой процесс поверхностного разрушения рассматривается как фрикционноконтактная усталость (52, 56].  [c.96]

Выполненные на поликристаллических сплавах исследования при пульсирующем цикле нагружения (Я = 0) в области малоцикловой усталости показали достаточно устойчивое закрепление очагов локальной деформации и накопление односторонней деформации с увеличением числа циклов. Распределение локальных деформаций при повторно-переменных нагружениях прослежено нами на сплаве ПТ-ЗВ, микронеоднородность деформации которого при статическом нагружении ранее была подробно исследована. Образцы испытывали при жестком симметричном цикле деформирования с.амплитудой деформации 1 %. Как и при статическом нагружении, поверхность образцов перед нагружением подвергали многократной злектрополировке, после чего на нее вдоль оси образца наносился ряд реперных точек уколами алмазной пирамиды с расстоянием между ними Ю. мкм. Величина фрагментов составляла 130 — 180 мкм. Расстояния между реперными точками измерялись до нагружений, после нагружений и разгрузок.  [c.29]



Смотреть страницы где упоминается термин Нагружения многократные : [c.42]    [c.317]    [c.150]    [c.589]    [c.332]    [c.2]    [c.339]    [c.653]    [c.288]    [c.346]    [c.102]    [c.100]    [c.365]   
Детали машин (1964) -- [ c.22 ]



ПОИСК



Многократные нагружения, резины

Нагружение длительное многократное (повторное)

Напряжения и деформации при многократном нагружении

Особенности прочностных свойств резин при многократном нагружении

Поведение упргугопластических тел при многократном нагружении. Приспособляемость. Теоремы приспособляемости

Повреждаемость многократными перегревами от длительного нагружения

Прочностные свойства резин при многократном нагружени

Прочность при многократных нагружениях

Прочность связи в многоэлементных резиновых системах при многократном нагружении

Режимы многократного гармонического нагружения

Стержень Многократное нагружение и нагре

Трещины и изломы при длительном статическом и многократном нагружениях

Усталостная выносливость зависимость от минимального растяжения при многократном нагружении

Усталостные свойства корда при многократном нагружении



© 2025 Mash-xxl.info Реклама на сайте