Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Голографическая интерферометрия

Основой новых высокоточных и бесконтактных оптических методов измерения полей перемещений при статических и динамических нагрузках и определения по ним полей деформаций является использование лазеров. К ним относятся голографическая интерферометрия.  [c.339]

Ценность голографической интерферометрии заключается еще и в том, что она позволяет при любых относительных измерениях обойтись без эталона сравнения, например при деформации поверхности, перемещении из одного состояния в другое или при сжатии исходное и конечное состояния могут служить эталонами друг относительно друга.  [c.222]


Метод голографической интерферометрии является весьма полезным также при исследованиях плазмы.  [c.222]

Применение голографии. Голографическая интерферометрия  [c.266]

Рассмотрим один из методов прикладной голографии, именуемый голографической интерферометрией и нашедший очень широкое распространение. Сущность этого метода в простейшем варианте заключается в следующем. На одну фотопластинку последовательно регистрируются две интерференционные картины, соответствующие двум разным, но мало отличающимся состояниям объекта, например, в процессе деформации. При просвечивании такой двойной голограммы образуются, очевидно, два изображения объекта, измененные относительно друг друга в той же мере, как и объект в двух его состояниях. Восстановленные волны, формирующие эти два изображения, когерентны, интерферируют, и на поверхности изображения наблюдаются полосы, которые и характеризуют изменение состояния объекта.  [c.269]

Замечательной особенностью голографической интерферометрии является отсутствие жестких требований к обработке отражающих поверхностей или оптической однородности исследуемых объектов. В самом деле, в результате деформаций, вибраций и других изменений состояния объекта возникают разности хода, изменяющиеся вдоль поверхности тела. Поэтому картина полос аналогична картине, наблюдаемой в случае интерференции в тонкой пленке (см.  [c.270]

Рис. 11.16. Деформации объекта, зарегистрированные методом голографической интерферометрии. Рис. 11.16. Деформации объекта, зарегистрированные методом голографической интерферометрии.
Благодаря указанной особенности можно осуществлять голо-графическую интерференцию при отражении света от шероховатых поверхностей рассеивающих тел (например, автомобильных шин, балок, корродирующих поверхностей и т. п.), для объектов, заключенных в сосуд с очень неоднородными стенками и т. д. Поэтому голографическая интерферометрия и получила обширные применения.  [c.271]

В последнее десятилетие в нашей стране был опубликован ряд монографий, посвященных голографии, голографической интерферометрии и лазерной технике. Однако эта литература рассчитана на специалистов, научных работников, студентов старших курсов вузов и аспирантов.  [c.3]


Голографическая интерферометрия — один из наиболее важных и развитых разделов голографии. Уникальные возможности голографической интерферометрии нашли ши-  [c.27]

В основе разнообразных методов голографической интерферометрии лежит принцип сравнения двух во.- НОвых фронтов, причем один и з них или оба записывают и восстанавливают голографическим методом.  [c.28]

Пониженные требования, предъявляемые к качеству используемых оптических элементов, позволяют уменьшить стоимость голографических интерферометров.  [c.31]

Голографическая интерферометрия находит применение в исследованиях как прозрачных, так и отражающих свет объектов. Различия, имеющиеся в исследовании объектов. этих двух типов, не носят принципиального характера, хотя исследование прозрачных фазовых неоднородностей обычно выделяют в отдельное направление голографической интерферометрии. Это объясняется спецификой используемых схем и методов интерпретации результатов, которые, в свою очередь, определяются типичностью характера вносимых такими объектами фазовых искажений. К числу этих объектов относятся газовые потоки, ударные волны, плазма, тонкие пленки. Группу объектов, вносящих сильные  [c.31]

Как правило, раз.тичны и задачи исследований объектов этих двух групп. Если исследование методами голографической интерферометрии слабых фазовых объектов ставит своей конечной целью определить по распределению показателя преломления плотность газа, концентрацию атомов и электронов, температуру и другие параметры, то применение этих методов к оптическим. элементам дает возможность проверить их характеристики на качество.  [c.32]

Спекл-интерферометрия, также как и голографическая-интерферометрия, где для освещения обычно используют лазерные источники, позволяет измерять смещения (статические и динамические) и исследовать форму оптически грубой поверхности с чувствительностью порядка длины волны света. По.этому новые интерферометрические методы можно рассматривать как перенос методов классической интерферометрии на широкий класс объектов и систем, которые находились ранее за их пределами. Спекл-интерферометрия развивалась на принципах голографической интерферометрии и базируется на спекл-эффекте, который приводит к формированию случайной интерференционной картины, наблюдаемой при рассеянии когерентного света на оптически грубой поверхности.  [c.33]

Первый из выделенных выше методов — корреляционная спекл-интерферометрия — представляет собой измерительный метод, в котором происходит когерентное сложение (интерференция) поля, имеющего спекл-структуру, с плоской опорной волной или с другим полем, имеющим спекл-структуру. Чувствительность. этого метода сравнима с чувствительностью голографической интерферометрии.  [c.33]

Голографические установки для исследования нестационарных процессов предназначены для регистрации быстропротекающих процессов методами импульсной голографии и голографической интерферометрии и позволяют исследовать оптически прозрачные, отражающие, рассеивающие и самосветящиеся объекты. Типичной установкой для решения этих задач является отечественная голографическая установка УИГ-1М. Конструктивно она выполнена в виде металлического каркаса, в верхней части которого смонтирован пульт управления и оптическая скамья с набором оптических. элементов и импульсным лазером с двумя усилителями. Внутри каркаса размещены блоки питания лазеров и усилителей.  [c.74]

Ал йз+Л,,= 0,04 мкм. Таким образом, метод голографической интерферометрии позволяет с требуемой точностью контролировать форму оптических элементов как готовых изделий, так и изделий в процессе различных технологических операций.  [c.104]

Контроль ко.эффициента преломления оптических элементов, выявление неоднородности стекла, включений типа пузырей и свилей являются важными. этапами контроля качества оптических изделий. С конца прошлого столетия основным оптическим инструментом, применяющимся для количественных измерений прозрачных неоднородных материалов, был интерферометр Маха-Цендера, на основе которого разработаны теневые и интерференционные методы контроля. Ограничением ЭТИХ методов являются аберрации оптических систем самого интерферометра. Методы голографической интерферометрии позволяют компенсировать аберрации и тем самым существенно улучшать качество проводимых измерений.  [c.105]


Рассмотрим схему голографического интерферометра фазовых объектов (рис. 43). Узкий пучок света от лазера 13 через щель II падает на полупрозрачную пластину 5, где он делится на два. Отраженный пучок зеркалом 6 направляется на микрообъектив 4, который находится в фокусе сферического зеркала 1. Расширенный луч, отражаясь от зеркала 1, формирует плоскую волну, проходящую через рабочую зону интерферометра и направляется вторым сферическим зеркалом 2, плоскими зеркалами 7, 4 и линзой 15 на фотопластинку 17. Это объектная световая волна.  [c.105]

Рис. 43. Голографический интерферометр фазовых объектов на основе двух сферических зеркал Рис. 43. Голографический интерферометр <a href="/info/174688">фазовых объектов</a> на основе двух сферических зеркал
Это соотношение показывает весьма важную особенность метода голографической интерферометрии распределение интенсивности в восстановленной интерференционной картине не зависит от фазы объектного и опорного пучков. Восстановленная интерференционная картина характеризует распределение фазы, вызванное только исследуемым объектом.  [c.107]

Для этих целей можно использовать различные методы измерения оптические, индуктивные, емкостные и т. д. Метод голографической интерферометрии обладает рядом преимуществ по сравнению с другими методами. Например,  [c.115]

Для регистрации прогибов консольной пластины используют оптическую схему Лейта, а в случае с малыми размерами объектов удобно применять голографическую интерферометрию сфокусированных изображений (см. гл. I, 2).  [c.116]

Имеется несколько вариантов метода голографической интерферометрии метод двух экспозиций, метод реального времени, метод усреднения во времени и стробогол01 ра-фический метод.  [c.28]

Второй метод голографической интерферометрии — метод реального времени — соответствует методу двух экспозиций. Разница между ними заключается лишь в том, что при использовании реального времени вместо второй экспозиции голографическое изображение непосредственно интерферирует с предметом, с которого получена голограмма. При восстановлении опорный и объектный пучки освещают голограмму и объект, с которого она получена. Отраженные волны интерферируют между собой. Это позволяет сравнить реальный объект с идеальным , т. е. эталонным объектом. Он может быть представлен, например, 1 олограммой, синтезированной на ЭВМ.  [c.29]

И, наконец, четвертый метод голографической интерферометрии— стробоголографический. Он применяется совместно с методом голографической интерферометрии регщьного времени. Вначале получают голограмму неподвижной поверхности объекта и после проявления возвращают фотопластинку в исходное положение. Затем возбуждают вибрацию поверхности и освещают ее во время каждого периода колебаний коротким световым импульсом. Если импульс достаточно короткий, то этот метод эквивалентен методу голографической интеферометрии реального времени для неподвижных объектов. Но так как световой импульс может освещать вибрирующую поверхность в различных фазах колебания,. этот метод дает возможность сравнивать положение поверхности в любой фазе колебаний с положением неподвижного объекта.  [c.30]

Основным недостатком методов голографической интерферометрии являегея качественный характер информации, получаемой от объекта. Получение количественной информации требует громоздких математических вычислений и сложного аппаратурн01 0 решения измерительного устройства, что приводит в известной мере к увеличению погреш Ости и трудности получения измерительт)й информации в реальном времени.  [c.32]

Главное преимущество метода состоит в простоте оптической схемы и относительной легкости представления и интерпретации результатов. Требования к механической стабильности зачительно менее жесткие, чем при голографической интерферометрии. Чувствительность метода можно варьировать в процессе считывания информации, и она в большинстве случаев меньше, чем для голографической интерферометрии.  [c.34]

Наиболее интересные и перспективные возможности при изучении прозрачных микрообьективов открывает применение в микроскопии методов голографической интерферометрии.  [c.85]

Развитие голографической интерферометрии привело в настоящее время к созданию новых средств и эффективных методов контроля формы оптических поверхностей, клеевых и механических соединений оптических. элементов, а также режимов эксплуатации приборов. Так же, как и обычные интерференционные методы контроля, голографические методы являются бесконтактными и позволяют получать наглядную картину результатов измерений, но при этом имеют ряд преимуществ, позволяющих отнести их к универсальным методам контроля качества оптических. элементов. Во-первых, в большинстве случаев для реализа[щи контроля голографическими методами можно использовать простые оптические схемы, к качеству элементов которых предъявляются весьма умеренные требования, а это, в свою очередь, значительно снижает себестоимость приборов. Во-вторых, голографические методы дают принципиально новые возможности, позволяющие создавать высококачественные измерительные приборы.  [c.99]

Как видно из рис. 43. объектный и опорный пучки в голографическом интерферометре совмещены, что существенно упрощает конструкцию такого типа приборов. Отпадает необходимость установки значительного числа оптических. злементов опорной ветви вне исследуемой зоны. Кроме того, поскольку оба пучка проходят через одни и те же основные оптические. злементы, значительно выше и виброустойчивость тако10 интерферометра.  [c.106]


Рассмотрим принципы работы голографического интерферометра фазовых объектов на примере метода голографической интерферометрии двух экспозиций, хотя в. зтом приборе можно применять и другие известные методы (например, метод реального времени). Основы метода двух экспозиций и возможности его практического применения были рассмотрены в гл. 1. Голографическая интерферометрия фазовых объектов отличается следующими особенностями. Во время первой. зкспозиции фотопластинка в голографическом интерферометре освещается опорной и объектной волнами при отсутствии в рабочей  [c.106]

Рассмотрим применение голографических методов контроля дефектов второго рода на примере склеивания системы из двух прямоугольных пластин. Для этих целей обычно используют метод голографической интерферометрии в реальном времени. Систему из свежесклеенных пластин помещают в схему голографического интерферометра и регистрируют исходное состояние одной из поверхностей пластин на фотопластинке. После ее проявления и установки на прежнее место в реальном времени наблюдают процесс высыхания или полимеризации клея. Если система не деформируется, то через голограмму будет видна чистая поверхность пластины без интерференционных полос, в противном случае возникает покрывающая объект интерференционная картина, которая характеризует изгиб склеиваемых элементов. Такой экспресс-контроль позволяет выбрать наиболее правильные, оптимальные режимы склейки, подобрать необходимые материалы и марку клея для снижения деформаций. В целях проведения контроля деформаций при клеевом соединении оптических. элементов можно использовать голографический интерферометр, представленный на рис. 4.3. Если склеиваемые изделия непрозрачны, то оптическую схему для диффузно отражающих объектов собирают на голографическом стенде.  [c.109]

Для проверки механическ010 соединения конструкцию закрепляют в держатале в оптической схеме голографического интерферометра и регистрируют двухэкспозиционную голографическую интерферограмму. Причем между первой и второй экспозициями контролируемый объект подвергают вибрационному воздействию. При наличии люфта в соединении на восстановленном голограммой изображении изделия будут наблюдаться интерференционные полосы. Вибрационное воздействие (его мощность и частоту) подбирают /щя конкретного типа соединения.  [c.110]

В методе двухэкспозиционной голографической интерферометрии для регистрации деформации подложек во время первой экспозиции на фотопластинке фиксируется исходное состояние их поверхности с той стороны, где нет пленки. После удаления пленки, например с помощью химического травления, производится временная выдержка для установления термодинамического равновесия и осуществляется вторая экспозиция той же поверхности подложки. В результате, при восстановлении интерферограммы наблюдается интерференционная картина, которая характеризует прогиб образца W (х) в зависимости от координаты X N-v темной полосы  [c.116]

Следует отметить ряд особенностей применения метода голографической интерферометрии для определения остаточных напряжений, связанных с требованиями голографического эксперимента. Прежде всего необходимо создать специальные приспособления для держателей образцов и для травления пленок, исключающие жесткое смещение объекта во время экспозиции и одновременно позволяющие с требуемой точностью убирать и возвращать образцы в исходное положение в оптической схеме. Обычно прямоугольные пластинки приклеивают эпоксидным клеем к металлическим держателям, которые во время полимеризации клея задают необходимое поджатие подложки. Просушенные образцы жестко крепятся в кинематическом устройстве. Такое устройство состоит из двух дисков. Верхний диск имеет запресованные в основание три стальных шара, а нижний — три призматических прорези. Каждый шар касается прорезей в двух точках. Таким образом, верхний диск можно снимать и устанавливать обратно с точностью не менее, чем л/8 (X — длина волны источника излучения). Это дает возможность исключить появление во время перестановок интерференционных полос, характеризующих смещение объекта, а также проводить какую-либо операцию, в частности, травление пленки вне голо-графической установки.  [c.117]

В контактной. 5адаче наиболее ин( )ормативной частью относительно влияния начального напряженного состояния является характер дс-(1)ормирования поверхности в окрестности отпечатка. Распределениям деформаций и перемещений в этой зоне характерны локальность и высокие градиенты изменения. В связи с этим в качестве способа измерения используется голографическая интерферометрия с регистрацией нормальной компоненты вектора перемещения, а в качестве исходной информации, соответственно, нормальные деформационные перемещения.  [c.65]

Далеко не все проблемы могут быть решены расчетом. Эксперимент, подчас очень тонкий и сложный, по-прежнему играег важную роль в вопросах прочности и деформирования. Здесь большие возможности представляют такие экспериментальные методы исследования, как метод фотоупругости, голографической интерферометрии и муаровых полос. Их использование возможно только в соединении с методами механики деформирования.  [c.390]


Смотреть страницы где упоминается термин Голографическая интерферометрия : [c.339]    [c.222]    [c.426]    [c.271]    [c.27]    [c.108]    [c.116]    [c.119]    [c.104]   
Смотреть главы в:

Техническая диагностика и оценка ресурса аппаратов  -> Голографическая интерферометрия

Оптические голографические приборы  -> Голографическая интерферометрия

Сопротивление материалов с основами теории упругости и пластичности  -> Голографическая интерферометрия

Фоторефрактивные кристаллы в когерентной оптике  -> Голографическая интерферометрия

Интерференция и дифракция света  -> Голографическая интерферометрия

Методы неразрушающих испытаний  -> Голографическая интерферометрия


Оптика (1977) -- [ c.222 ]

Оптическая голография Том1,2 (1982) -- [ c.54 , c.504 , c.549 ]



ПОИСК



Голографическая интерферометри

Голографическая интерферометри

Голографическая интерферометрия (Дж. Брандт)

Голографическая интерферометрия в полевых условиях

Голографическая интерферометрия реальном времени

Голографическая интерферометрия с усреднением во времени

Голографическая интерферометрия специальные методы

Голографическая интерферометрия сравнение с классической

Голографическая интерферометрия сфокусированных изображений

Голографическая интерферометрия сфокусированных изображений в реальном времени

Голографическая интерферометрия сфокусированных изображений методом двух экспозиций

Голографическая интерферометрия требования к источнику света

Голографическая интерферометрия трехмерных диффузных объектов

Голографическая интерферометрия увеличенных сфокусированных изображений в реальном времени

Двухдлиннсвслновая голографическая интерферометрия

Двухэкспозкционная голографическая интерферометрия

Деформация - Измерение методом голографической интерферометрии 269, муаровых

Деформация - Измерение методом голографической интерферометрии 269, муаровых полос 269, рентгенографическим методом

Изучение деформаций методом голографической интерферометрии

Интерпретация полос в голографической интерферометрии

Интерферометр

Интерферометр голографический Схема установки для автоматического контроля деформаций

Интерферометрия

Интерферометрия и оптический синтез изображения (сложение комплексных амплитуд) методом последовательного наложения голографических картин на одну голограмму

Интерферометры голографические

Интерферометры голографические

Интерферометры голографические применение в спектроскопии

Метод голографической интерферометрии

Метод контроля голографической интерферометрии

Определение коэффициента интенсивности напряжений для сквозных трещин в цилиндрических оболочках с помощью весовых функций, полученных методом голографической интерферометрии

Оптическая разность хода в обычной голографической интерферометрии

Особенности голографической интерферометрии прозрачных объектов

Производные от оптической разности хода в обычной голографической интерферометрии

Промышленный контроль формы изделий методом голографической интерферометрии

Стробоскопическая голографическая интерферометрия

Тепловые методы неразрушающего контроля, ультразвуковая голография и голографическая интерферометрия

Фабри- Перо интерферометрия голографическая

Чувствительность методов голографической и с пекл-интерферометрии к вращательному сдвигу спекл-полей

Чувствительность методов голографической и спекл-интерферометрии при регистрации в фурье-плоскости



© 2025 Mash-xxl.info Реклама на сайте