Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация высокоэластическая

Ордината MN кривой ползучести в момент времени / (рис. 5.2, б) включает в себя значения упругой деформации высокоэластической Ёиэ и пластической е , т. е.  [c.216]

Существенную роль в описании свойств аморфных полимеров играет диаграмма деформационно-прочностных состояний (рис. 4.93). Как уже отмечалось, в зависимости от температуры аморфный материал находится в одном из трех физических состояний стеклообразном (на рис. 4.93—область упругих деформаций), высокоэластическом (на рис. 4.93 — область высокоэластических деформаций) и вязко-текучем (на рис. 4.93 — область необратимых деформаций). На рис. 4.93 изображены предельные напряжения, т. е. напряжения, при которых материал разрушается — по-разному в разных температурных областях. Все температурные границы смещаются к высоким температурам с увеличением скорости деформации (в особенности при ударе) и уменьшением продолжительности действия нагрузки. Проследим за поведением материала в каждой из температурных областей, рассматривая соответствующие диаграммы напряжений  [c.341]


Полное развитие высокоэластической деформации несколько отстает от момента приложения нагрузки, а исчезновение ее происходит не одновременно со снятием напряжения. Это явление обусловлено релаксационным характером высокоэластической деформации. Макромолекулярные цепи не успевают изменить свою форму мгновенно с изменением нагрузки. Поэтому в отличие от упругой деформации высокоэластическая зависит от длительности приложения нагрузки и частоты смены знакопеременной нагрузки. При одинаковой температуре материал, эластичный в случае действия плавной нагрузки, окажется хрупким при резком приложении нагрузки. Эта закономерность сохраняется до температуры текучести Т .  [c.144]

Удельная работа ч. 1. 55 -56 Деформация высокоэластическая ч. 1. 106 --вязкая ч. I. 106  [c.360]

В высокоэластическом состоянии полимеры под действием небольших усилий подвергаются значительным обратимым деформациям. Высокоэластическое состояние характерно только для полимеров. Оно обусловлено способностью длинных цепных молекул непрерывно изменять свою форму благодаря большой их гибкости.  [c.12]

Движение дислокации 145 Девиатор тензора напряжений 100 Деформация высокоэластическая 178  [c.452]

В самом деле, касательная в точке А перехода от упругой деформации к высокоэластической является общей для упругого участка О А и участка А В кривой ползучести (пунктир 1 на рис. 5.10). Случай скачка касательной в точке А из положения 1  [c.232]

Обширные экспериментальные исследования, проводившиеся в области реологии полимеров в течение последних 10 лет, позволяют утверждать, что большинство полимеров в условиях переработки обладает свойствами аномально-вязких неньютоновских жидкостей [65]. Полимерам в этом состоянии присуща способность к высокоэластическим деформациям. Существование аномалии вязкости полимеров требует определения функциональной зависимости между эффективной вязкостью и скоростью сдвига (или напряжением). В настоящее время разработано и создано большое количество реометров, на которых можно экспериментально определять реологические свойства термопластов.  [c.114]

Основной особенностью высокоэластической деформации является ее релаксационный характер. Различают релаксацию напряжения и релаксацию деформации.  [c.42]

Из уравнений (1.35) и (1.36) видно, что поведение эластомеров существенно зависит от соотношения между временем релаксации т и временем деформации /. При длительно действующих нагрузках, когда / > X, в эластомере в полной мере успевают протекать релаксационные процессы и он ведет себя как типичное высокоэластическое тело. При кратковременно действующих нагрузках (ударах, высокочастотных вибрациях и т. д.), при которых релаксационные процессы протекать не успевают, эластомеры, в частности резины могут вести себя как хрупкие тела, что необходимо учитывать при использовании их в РЭА.  [c.44]


Высокоэластическая деформация и напряжение связаны между собой соотношением, аналогичным закону Гука  [c.44]

Вязкотекучее состояние. До сих пор мы полагали, что при высокоэластической деформации не происходит вязкого течения полимера и поэтому вся деформация является обратимой. Однако в реальных условиях такая картина наблюдается редко и процесс высокоэластической деформации сопровождается обычно процессом вязкого течения.  [c.44]

Обозначим через Бу— упругую деформацию, возникающую в образце под действием постоянного напряжения а, через e j,- — высокоэластическую деформацию и через — деформацию вязко-  [c.44]

Течение полимера состоит во взаимном перемещении молекул друг относительно друга. Это перемещение происходит путем последовательного смещения звеньев цепи, приводящего в конце концов к смещению центра тяжести молекулы. Сопровождаясь распрямлением гибких цепей, течение неразрывно связано с высокоэластической деформацией полимера. Разделение этих двух процессов возможно, строго говоря, только после снятия нагрузки. Поэтому определение механических констант полимера предпочтительнее вести по кривой разгружения, чем по кривой нагружения (рис. 1.33).  [c.45]

Для эксплуатации полимеров наибольшее значение имеют область вынужденной эластичности, в которой полимер, обладая высокой прочностью, е является хрупким, и область высокоэластической деформации, позволяющей использовать полимеры как эластомеры (резины). Область, лежащая выше температуры пластичности используется для переработки полимеров в изделия.  [c.57]

Второе слагае.мое — неравновесная часть модуля, соответствующая вкладу высокоэластических сил и сил трения в сопротивляемость деформации.  [c.345]

В процессе растяжения в области высокоэластических деформаций полимер, находящийся в аморфном состоянии, может перейти в кристаллическое состояние. Такой переход во времени происходит почти скачком. Во время этого скачка в образце происходит огромная деформация, в результате которой он превращается в струну. Изменение деформации во времени, относящееся к описанному случаю, изображено на рис. 4.108.  [c.349]

Интересное явление было обнаружено при создании перерывов в действии нагрузки на образец (отдыха), во время которых, вследствие обратимости высокоэластической деформации, последняя полностью снималась. Однако всякий раз после повторного загружения деформация догоняла тот уровень, которого она достигла бы к этому моменту, если бы образец не подвергался отдыху (время отдыха при этом из рассмотрения исключается, т. е. учитывается то чистое время, в течение которого образец нагружен). Описанная картина изображена ка рис.4.109. Интересно заметить, что чем больше отношение отрезков времени отдыха  [c.349]

После разделения деформаций может быть найден модуль высокоэластической упругости как тангенс угла наклона касательной к первоначально прямолинейному графику.  [c.350]

Рассмотренное упругое тело называется наследственно-упругим, так как к мгновенной упругой деформации, характерной для гуковского тела, здесь добавляется упругая деформация, унаследованная от всех прошлых воздействий. Наследственная упругость свойственна почти всем полимерам в определенном (для каждого материала своем) интервале температур при этих температурах полимер находится в так называемом высокоэластическом состоянии.  [c.765]

Т. к. высокополимеров имеют более сложный вид (рис. 2, кривые 4—7). Выше 7 ,. происходит значительное увеличение деформации, к-рая остается обратимой. Далее деформация с темп-рой меняется мало, вплоть до темп-ры текучести f у, после чего становится необратимой. Между стеклообразным и вязкотекучим состояниями, в интервале от Tg до Тр находится вы-сокоэластич. состояние (см. Деформация высокоэластическая). Область высоко эластичности нек-рых линейных полимеров характеризуется несколькими площадками на Т. к. Объясняется это набором различного тина вторичных поперечных связей между макромолекулами, причем при более низкой темп-ре разрушаются наиболее слабые из них, затем более прочные и т. д. В результате при определенных темп-рах материал частично разрушается и деформация скачком возрастает. Резкое возра-  [c.315]

Линейные полимеры обладают особым видом упругой деформации — высокоэластической, отличающейся от гу-ковской упругой деформации тем, что расстояния между элементарными частицами не изменяются. Вместе с тем, резко различны и показатели, характеризующие упругую деформацию по закону Гука и упругую высокоэластическую деформацию. Например, упругая деформация стали приблизительно равна 0,1 %, каучука — около 1000%. Однако модуль упругости стали (20 00J кПмм ) больше модуля упругости.каучука в 10 —10" раз.  [c.39]


Существуют пластические массы — эластомеры, которые обладают способностью деформироваться в значительных пределах, имеют так называемую высокоэластическую деформацию. Высокоэластическая деформация исчезает при снятии нагрузки, но от обычной упругой деформации отличается по величине и по механизму проявления. Напомним, что упругая деформация стали составляет около 0,1% и резко отграничена пределом текучести. Деформация эластомеров может превысить 1000 , а модуль их упругости очень мал и колеблется в пределах 20—200 кГ1см . При растяжении высокоэластичных тел зависимость между напряжением и деформацией не является линейной. Диаграмма деформации здесь имеет вид кривой, напоминающей по форме букву 5 (рис. 184). Таким образом, высокоэластические деформации не подчиняются закону Гука, и модуль упругости эластомеров является переменной величиной. Для суждения об упругих свойствах высокоэластичных материалов на основании кривой растяжения обычно пользуются значением  [c.309]

Линейные полимеры отличаются большой длиной молекулы при малом ее поперечнике. Например, у полистирола при коэффициенте полимеризации п, равном 6000, длина молекулы составляет около 1,5 -10- см, при поперечном размере 1,5-10 см. Линейные полимеры обычно более легко растворимы и более гибки, чем пространственные. Многие линейные полимеры сгюсобны перерабатываться в тонкие волокна и пленки. Некоторые из них являются эластомерами — резиноподобными материалами. Аморфные полимеры с линейной структурой молекул имеют характерную зависимость деформации от температуры, представленную на рис. 3-10. На этой диаграмме ясно видны три стадии стеклообразное состояние ниже температуры стеклования Тс при температуре в пределах от Т до температуры вязкотекучего состояния полимер находится в высокоэластическом состоянии при температуре выше наступает вязко гекучее состояние. Рабочую температуру полимеров следует выбирать не выше температуры стеклования.  [c.116]

Таким образом, сущность высокой эластичности состоит в распрямлении свернутых длинных гибких цепей под действием приложенной нагрузки и в возвращении их к первоначальной форме после снятия нагрузки. Этим объясняется, во-первых, обратимость высокоэластической деформации во-вторых, исключительно большая величина удлинений, которая при этом может достигаться. Так как при высокоэластической деформации не происходит изменения валентных углов и расстояний между атомами в цепи, то уже незначительные внешние силы способны вызывать значительные деформации. Этим объясняется малость эластического модуля упругости Ед . Расчеты, основанные на этих пpeд taвлeнияx, приводят к следующему приближенному выражению  [c.41]

На рис. 1.33 показана кривая зависимости деформации е от времени t при нагружении образца (область I) и после снятия нагрузки (область II). После приложения нагрузки в образце практически мгновенно возникает деформация Бу, которую можно назвать условно упругой. Затем с течением времени на участке АВ развивается высокоэластическая деформация, сопровождающаяся вязким течением. Если к концу промежутка времени развитие выокоэласти-ческой деформации завершается, то далее происходит лишь вязкое течение, описываемое в простейшем случае уравнением  [c.45]

После разгрузки образца в момент времени г г происходит обратный процесс — восстановление длины образца. При этом практически мгновенно снимается условно упругая деформация Ву, равная отрезку D, затем релаксирует высокоэластическая деформация бэл, равная отрезку DE. Оставшаяся после завершения процесса релаксации деформация Ет = EF преставляет собой необратимую деформацию течения.  [c.45]

Кривая течения полимера, показанная на рис. 1.33, позволяет определить его основные механические константы. В самом деле, согласно (1.39) т) = al de /dt). Из кривой течения видно, что d /dt = B dti = EFU2. Таким образом, измеряя время t , в течение которого протекала деформация, и зная приложенное напряжение а, можно определить т). Далее можно найти условный упругий модуль Еу = а/бу, где бу = ОЛ = D , и модуль высокоэластической деформации = а/ д , где 63 = АВ = DE.  [c.45]

С этой точки зрения следовало бы ожидать, что при температурах на 20—30° ниже точки стеклования полимеры будут жесткими твердыми телами, подчиняющимися закону Гука. Это действительно так. Однако оказалось, что под действием достаточно высоких напряжений большинство полимеров при этих температурах проявляют весьма большую (сотни процентов) деформацию, которая может сохраняться в них как угодно долго после снятия нагрузки, но практически полностью исчезает при нагревании выше температуры стеклования. Это дает основание считать ее такой же обратимой деформацией, как и высокоэластическую. Она была названа А. П. Александровым вынужденноэластической, а само явление возникновения больших деформаций в стеклообразных полимерах п зыъаю1 вынужденной эластичностью.  [c.46]

Деформация прозрачного полимерного материала сопровождается образованием в нем оптической анизотропии. Механизм образования оптической анизотропии под действием напряжения связан с поляризуемостью отдельные атомов и частей макромолекул.. В стеклообразном и высокоэластическом состоянии оптическая анизотропия связана с поляризуемостью различных элементов структуры полимера, поэтому и оптическая чувствительность в этик состояниях различна. В стеклообразном состоянии происходит изменение межатомных расстояний и валентных углов полимерной цепи, поэтому оптическая чувствительность более связана с. поляризуемостью атомов цепи или отдельных звеньев. В высокоэластическом состоянии происходит раскручивание и ориентапия макромолекул, поэтому оптическая чувствительность связана в основном с поляризуемостью кшетичес1ких сетментов [24, 39, 74].  [c.18]


На третьем участке (в) происходит уменьшение поперечных размеров шейки. Достигнув определенных поперечных размеров, шейка перестает суживаться с этого момента начинается четвертый участок диаграммы напряжений (отмечен на рис. 4.94, в буквой г). Однако шейка захватывает все больший участок по длине образца. На образце создаются области, в которых резко отличаются поперечные размеры шейки и крайних участков. К тому моменту, когда шейка распространится на всю длину образца (конец участка г), деформации достигают сотен процентов. В процессе развития шейки материал ориентируется — молекулярные цепи расправляются и располагаются вдоль образца (вдоль направления растя-нсения). Материал приобретает свойство анизотропности—большую прочность вдоль направления растяжения. Этим (ориентационным) упрочнением и объясняется тот факт, что, пока шейка не охватила по длине весь образец, утонения (сужения) ее не происходит — шейка легче распространиться на еще не охваченные ею участки, чем сужаться. Так обстоит дело до полного распространения шейки на весь образец. Скорость стабилизации поперечного сечения шейки зависит от ориентационного упрочнения материала. Если для приобретения ориентационного упрочнения, препятствующего сужению шейки, не требуется большой вытяжки, то четвертый участок диаграммы (отмечен буквой а на рис. 4.94, в) сокращается и может совсем отсутствовать, т. е. диаграмма растяжения получается без максимума (например, у целлулоида). Вообще картина растяжения различных полимеров зависит от их склонности к ориентационному упрочнению. Явление значительного удлинения образца на участке г диаграммы (рис. 4.94, в) носит название вынужденной эластичности, происхождение термина будет пояснено ниже. При разгрузках и повторных нaгpyнieнияx, в частности при колебаниях в процессе распространения шейки на всю длину образца, вследствие наличия последействия возникают петли гистерезиса (рис. 4.94, а, кривая, соответствующая температуре Т ). Наиболее широкие петли наблюдаются в области Tg. Вынужденно-эластическая деформация термодинамически необратима, при больших деформациях большая часть работы деформации переходит в тепло. Одиако от пластической деформации она отличается тем, что после разгрузки и нагрева до температуры Tg эта деформация исчезает. Отсюда название еластическая. Однако для возникновения обсуждаемой деформации необходимо довести напряжения до — предела вынужденной эластичности. Этим отличается вынуяаденно-эластическая деформация от высокоэластической, которая возникает при Т > Tg, т. е. в другом диапазоне температур, в процесса нагружения от нулевых напряжений. Отсюда становится понятным и слово вынужденная в названии деформации. Другим отличием вынужденно-эластической деформации от высокоэластической является то, что высокоэластическая деформация по устранении нагрузки исчезает без нагрева.  [c.343]

Следующая температурная область примыкает к Tg со стороны больших температур. Выше уже было показано, что при приближении к Tg со стороны меньших температур понижается о э и сглаживается соответствующий ему максимум на диаграмме напряжений. При Т= Tg — АТ максимума нет вовсе и диаграмма о — е состоит из сопрягаемых криволинейным участком прямолинейных участков — первого — крутого со вторым — пологим (рис. 4.94, в, диаграмма Tg — АТ). Точке пересечения этих двух прямолинейных участков соответствует так называемое критическое напряжение о р. В диапазоне температур Т гй Гкр диаграмма имеет вид, изображенный на рис. 4.94, г по мере роста Т в указанном диапазоне диаграмма располагается все ниже и ниже, вместе с этим уменьшается и а р. Наконец, Оцр обращается в нуль. Та температура, при которой это происходит, называется критической (Ткр). Начиная с Г = Т р и при более высоких температурах (в диапазоне Гкр s Г < Г ) вид диаграмм растяжения становится таким, какой показан на рис. 4.94,й. Напомним, что вся деформация в этом диапазоне температур (небольшая упругая и огромная высокоэластическая) Появляющиеся в температурной области Г < Г,, высокозластические деформации происходят с образованием шейки и ориентированием всего образца. Однако вся картина в общем-то аналогична той, которая была рассмотрена в области Т р < 7 < Tg, но все же отличается тем, что начало образования шейки соответствует весьма малому напряжению, тогда как при Т < Tg ориентационное упрочнение происходит быстрее, чем в высокоэластическом состоянии. В следующем диапазоне темпера-тур (Т Г < ту) деформация е содержит два слагаемых высокоэластическую деформацию e j, и остаточную деформацию 8о . Измеряя деформацию в конце каждого шага нагружения и производя разгрузку, можно отделить одно слагаемое от другого. По мере роста Т в указанной выше области доля остаточной деформации растет. Наконец, при Т = Tf деформация становится полностью необратимой и образец течет при очень малом напряжении.  [c.344]

Модуль упругости у полимера в стеклообразном состоянии (рис. 4.94, о, б, в) имеет величину порядка 10 кГ1см , что меньше, чем у конструкционных металлов примерно в 100—200 раз, однако больше, чем у этого же полимера, но в высокоэластическом состоянии, примерно на три десятичных порядка. Модуль высокой эластичности в процессе воздействия нагрузки уменьшается, стремясь к равновесному Е . Динамический модуль упругости высокоэластичных полимеров зависит от скорости деформаций и частоты колебаний и складывается из двух частей  [c.345]

Рис. 4.110. Высокоэластическая деформации И течение, с которым связаны осТа-ма° Г ЗГ а"о°бТтилен"а зЙ то е деформации. Последние при данной на-симости от интегрального фак- грузке возрастают СО временем. Эти доли детора напряженности образца во формации могут быть Отделены одна от другой времени. путем разгрузки идаительной после нее выдерж- Рис. 4.110. Высокоэластическая деформации И течение, с которым связаны осТа-ма° Г ЗГ а"о°бТтилен"а зЙ то е деформации. Последние при данной на-симости от интегрального фак- грузке возрастают СО временем. Эти доли детора напряженности образца во формации могут быть Отделены одна от другой времени. <a href="/info/46497">путем разгрузки</a> идаительной после нее выдерж-

Смотреть страницы где упоминается термин Деформация высокоэластическая : [c.467]    [c.504]    [c.515]    [c.517]    [c.487]    [c.21]    [c.115]    [c.41]    [c.44]    [c.45]    [c.57]    [c.18]    [c.18]    [c.19]    [c.23]    [c.350]    [c.350]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.344 , c.349 , c.350 ]

Ротационные приборы Измерение вязкости и физико-механических характеристик материалов (1968) -- [ c.16 , c.65 , c.86 , c.96 ]

Расчёты и конструирование резиновых изделий Издание 2 (1977) -- [ c.8 , c.9 ]

Сопротивление материалов (1962) -- [ c.178 ]



ПОИСК



Деформация аддитивная см высокоэластическая

Деформация высокоэластическая вторичная

Каучук деформация высокоэластическая

Обратимость высокоэластической деформации

Полимеры деформация высокоэластическая

Резина деформация высокоэластическая



© 2025 Mash-xxl.info Реклама на сайте