Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Остановка Характеристики

Динамическими характеристиками ЭМУ являются время срабатывания прошедшее с момента подачи напряжения на катушку до полной остановки якоря, и время отпускания с момента выключения напряжения до остановки якоря. Вре,мя срабатывания ср = + дв> — время от подачи напряже-  [c.306]

Характеристики у-излучения продуктов деления ядерного горючего, которые можно использовать при расчете защиты реактора после его остановки, подробно описаны в гл. ХП1.  [c.7]


Температурная зависимость к используется в методе Робертсона для определения значений Vk и других характеристик сопротивления хрупкому разрушению по критерию остановки распространяющейся трещины. По этому методу в статически растянутой напряжением Ок пластине трещина инициируется односторонним надрезом, который расклинивается ударом (рис. 3.9,а). Другим способом инициирования трещины в предварительно  [c.51]

Таким образом, определение характеристик кт, Gi и Ki осуществляется на стадии статического или динамического инициирования, стадии распространения и стадии остановки трещины.  [c.52]

Низкая работоспособность насосов имеет в основном две причины одна связана с нарушением технологических правил эксплуатации насосов, а другая — основная,— с агрессивными свойствами перекачиваемой воды. К первой группе причин следует отнести изменение режима пуска и остановки насосов. Так, при внезапной остановке насоса происходит резкое изменение гидравлической характеристики потока жидкости, усугубляющее агрессивное воздействие сточной воды. Совместное влияние технологических и коррозионных факторов  [c.170]

Нестационарная теплопроводность. В химической технологии нестационарная теплопроводность связана с прогревом или охлаждением материала и оборудования при запуске, остановке или изменении технологического режима процесса. Особый интерес представляет анализ нестационарной теплопроводности в тех случаях, когда химический процесс сопровождается экзотермическим или эндотермическим эффектом. В этом случае расчет теплопроводности с учетом внутренних источников теплоты позволяет получить важные кинетические и термодинамические характеристики химического процесса.  [c.191]

Турбомуфта Т-90 (см. рис. XI.2) с дополнительным объемом, расположенным со стороны турбинного колеса, конструктивно проще турбомуфт с дополнительным объемом, расположенным со стороны насосного колеса, широко применяемых в приводе скребковых конвейеров, стругов и других горных машин. Однако динамические характеристики таких турбомуфт уступают характеристикам турбомуфт с дополнительным объемом, расположенным со стороны насосного колеса. Это объясняется тем, что при быстром росте момента сопротивления на валу рабочей машины жидкость из рабочей полости турбомуфты Т-90 сливается в дополнительный объем через отверстия ограниченного сечения и, кроме того, при сливе поток рабочей жидкости должен быть повернут примерно на 90°. Все это обусловливает незначительную скорость опоражнивания рабочей полости и поэтому при быстрых перегрузках (остановка ведомого вала за 0,1—0,5 сек) в рабочей полости остается значительное количество жидкости и передаваемый турбомуфтой момент в 2—3 раза превышает момент при медленном нагружении.  [c.235]


Режимы движения машинного агрегата. Из приведенного выше примера можно сделать важные заключения и не прибегая к отысканию ф = ф ( ). На рис. 2.24 совмещены характеристики Мд и М с + М с = М(.. В начальный момент времени при подключении электродвигателя к сети о === О и отрезок Л С на рис. 2.24 изображает результирующий момент М в уравнении (2.12). Под действием этого момента возникает положительное ускорение а > О и угловая скорость о растет. С увеличением скорости избыточный момент уменьшается и в точке В становится равным нулю. Изменение скорости также прекращается, и дальнейшее движение может совершаться только с постоянной установившейся скоростью со = (о . В нужный момент выключают двигатель, и тогда под действием отрицательного момента сил сопротивлений произойдет постепенная остановка вентилятора. Таким образом, полный цикл работы, представленный на рис. 2.25, складывается из трех частей разгона, когда в течение времени скорость увеличивается установившегося движения в течение времени с равновесной установившейся скоростью сО(. (это состояние не может прекратиться самопроизвольно, без вмешательства извне) н, наконец, выбега, при  [c.60]

Общая характеристика подшипников качения. Подшипники качения имеют большие радиальные размеры, чем подшипники скольжения, но обычно короче последних. Они предпочтительнее опор скольжения, если последним приходится работать при полу-жидкостном трении, и особенно подходят для машин, имеющих частые остановки и пуски, так как коэффициент трения подшипников качения шло зависит от скорости.  [c.338]

Ходовые испытания предназначены для проверки в процессе движения судна надежности, экономичности и других характеристик энергетической установки. Во время ходовых испытаний апробируют также правила технической эксплуатации всех механизмов, устройств, аппаратов и приборов при пуске, остановке и работе на различных режимах.  [c.340]

Ненадежная машина не сможет эффективно функционировать, так как каждая ее остановка из-за повреждения отдельных элементов или снижения технических характеристик ниже допустимого уровня, как правило, влечет за собой большие материальные убытки, а в отдельных случаях может иметь катастрофические последствия.  [c.6]

Для машин, непрерывно работающих в течение всего периода эксплуатации, остановка для ремонта невозможна, а техническое обслуживание либо допустимо (турбины ГЭС), либо также невозможно (спутники). В этом случае допустимое значение Р (t)— 1 и характеристикой надежности будет запас надежности при расчете на заданную длительность эксплуатации или фактический срок службы, если изделие эксплуатируется до отказа.  [c.523]

Конечная цель всех исследований закономерностей усталостного разрушения управлять процессом распространения трещин путем его моделирования, вводя обоснованный контроль в зонах распространения трещин, сопоставляя прогноз с реализуемым процессом. По результатам контроля уточняются данные моделирования и обосновывается периодичность осмотров деталей по критерию роста трещин, а также разрабатывается система воздействия на деталь с трещиной в условиях эксплуатации или при ремонте с целью уменьшения скорости роста трещины вплоть до ее полной остановки. С точки зрения организационной структуры несомненно, что полностью система управления может быть реализована при взаимодействии многих организаций и научных направлений. Вместе с тем следует выделить решение задачи, являющейся основной, связанной с представлением о том, как ведет себя металл с развивающейся усталостной трещиной при эксплуатационном нагружении. В этом направлении выполнено множество исследований, которые обобщены, например в [6-11]. Из рассмотрения в качестве характеристики процесса разрушения скорости роста трещины и коэффициента интенсивности напряжения изучены различные внешние воздействия для множества конструкционных материалов. Однако все попытки ввести единообразное описание кинетического процесса до настоящего времени не дали положительного результата.  [c.21]

У канальных реакторов прочный корпус отсутствует, и их активная зона с отражателем нейтронов заключается в тонкостенный кожух, свариваемый на монтажной площадке, что позволяет доводить мощность до нескольких тысяч мегаватт. Кроме того эта конструкция позволяет перегружать ядерное горючее и заменять дефектные каналы без остановки реактора, поддерживать высокие параметры пара, применяя ядерный перегрев, имеет лучшие маневренные характеристики.  [c.162]


Емкость и коэффициент рассеяния конденсаторов не подверглись серьезному воздействию излучения. Изменения емкости оставались в пределах 2% от первоначальной величины. Значения коэффициента рассеяния во время облучения возросли на 30—60%, а после остановки реактора суммарное увеличение снизилось до 10%. Наиболее чувствительной к излучению характеристикой является произведение мегом X микрофарада , которое при измерении внутри реактора уменьшилось на порядок по сравнению с измерениями вне реактора, а затем еще на порядок при пуске реактора. Эти снижения обусловлены ионизацией диэлектриков сначала остаточным у Излуче-нием, а затем дополнительной ионизацией при пуске реактора. Измерения внутри реактора, проведенные в конце опыта после остановки реактора, показали, что характеристики конденсаторов восстанавливаются и возвращаются к исходным значениям, замеренным внутри реактора перед его пуском. Вероятно, возможен полный возврат к исходным величинам, замеренным вне реактора, если бы такие измерения были возможны после окончания опыта.  [c.383]

При вибрационных обследованиях проводили измерение вибрации подшипниковых опор электродвигателей, редукторов, нагнетателей, элементов фундаментов и трубной обвязки нагнетателя выявление амплитудно-частотных характеристик при пусках и остановках агрегатов снятие спектральных характеристик редукторов, нагнетателей и подшипниковых опор динамическую балансировку роторов электродвигателей в собственных подшипниках выявление расцентровок электродвигатель—редуктор-нагнетатель и др. В результате выявлены как механические, так и электрические причины повышенной вибрации остаточная неуравновешенность ротора электродвигателя, о чем свидетельствуют многочисленные пуски двигателя без редуктора остаточная неуравновешенность колеса редуктора неуравновешенность, вызванная смещением текстолитовых клиньев и смещением пазовых латунных клиньев от чрезмерного нагрева нарушения жесткости подшипниковых опор из-за разрушения текстолитовых изоляционных шайб большие зазоры в подшипниках (0,45—0,6 мм), что приводило к срыву масляного клина (масляное биение) осевое давление ротора на вкладыш вследствие несовпадения магнитных осей ротора и статора в переходных процессах при работе агрегата под нагрузкой межвитковое замыкание в обмотке возбуждения.  [c.28]

Наличие скачков на R-кривых и на диаграммах нагрузка — смещение у никелевых сталей является предметом для обсуждения. Эти скачки представляют собой быстрый рост трещины с последующей его остановкой. Остановки могут быть связаны с характеристиками вязкости материала, но могут быть также результатом падения приложенной нагрузки из-за жесткости испытательной машины. Результаты определения вязкости разрушения, полученные в настоящей работе, дают более полную характеристику свойств материала и призваны помочь при выборе материала в каждом конкретном случае его применения. Проведенные испытания показывают, что работоспособность сварной конструкции, изготовленной из сталей, легированных никелем, зависит от свойств зоны термического влияния. Это необходимо учитывать наряду с расчетными, технологическими и экономическими факторами при окончательном выборе материала.  [c.219]

Важнейшими количественными характеристиками остановки машины г-го вида являются наработка на остановку которая определяется временем непрерывной работы машины средняя продолжительность остановки— средняя стоимость выявления причины и устранения остановки —  [c.69]

Возвратные колебания водила механизмом свободного хода 3 преобразуются в импульсивное вращение ведомого вала 2 в определенную сторону. За один оборот дебалансов водило успевает разогнаться до своего максимума, затем замедлиться до полной остановки, следующий поворот дебалансов цикл повторяет. С появлением на выходном валу 2 нагрузки время стояния водила в течение одного оборота дебалансов увеличивается, и при нагрузке, равной величине вращающего момента центробежных сил, водило останавливается. Таким образом, привод имеет мягкую характеристику. Зависимость угла поворота водила за один оборот дебалансов от действующей нагрузки показана на рис. 3.  [c.12]

В соответствии с принятой расчетной схемой и составленным математическим описанием проведены теоретические исследования на ВМ. Типичная осциллограмма, полученная для условий, близких к имевшимся при экспериментальном исследовании, представлена на рис. 2. Сопоставление теоретической и экспериментальной осциллограмм показывает, что принятая расчетная схема и составленное математическое описание достаточно полно отражают основные динамические свойства исследуемой системы и позволяют переносить результаты теоретического исследования на реальные системы. Проведенные теоретические исследования позволили получить более полные характеристики переходных и неустановившихся процессов, возникающих при разгоне и торможении системы, с учетом упругости жидкости и трубопроводов, выбраны рациональная последовательность работы и характеристики управляющей и регулирующей аппаратуры. Результаты исследований показали, что при наилучших параметрах тормозного режима клапана величина тормозного давления составляет 362 и 365 кгс/см , сила удара клапана о седло 6,7 и 5 т соответственно при закрывании и открывании клапана, имеют место отскоки клапана от конечных положений с последующими его ударами о седло или упоры, а в напорной магистрали во время торможения возникают динамические перегрузки. Теоретические исследования режима торможения клапана встроенным гидротормозом, закон изменения проходного сечения которого в функции перемещения поршня уточнен по результатам предварительных теоретических исследований, показали, что такой тормозной режим обеспечивает плавный подход и точную остановку клапана в конечном положении, причем давления в гидросистеме при торможении не превосходят номинальных.  [c.142]


Для получения максимальной производительности при заданной точности скорость вращения привода круговой координаты желательно менять в зависимости от наклона профиля, иначе говоря, от величины рассогласования. Для этой цели использован блок оптимального управления. Блок производит оптимизацию скорости вращения детали с целью достижения максимальной производительности при заданной точности измерения. Характеристика этого блока (рис. 2) выбрана такой, чтобы при обходе пологих участков профиля, когда динамическая ошибка рассогласования не превышает значения + Xq, скорость вращения была максимальной, а при увеличении угла подъема профиля и превышении величиной динамической ошибки значения Xq скорость вращения привода падала по параболическому закону вплоть до полной остановки при углах подъема профиля 90°. Величина динамической ошибки не может превысить значения пред, которое предвари-  [c.164]

Кроме того, будем пренебрегать изгибно-контактными деформациями зубьев, а также ограничимся рассмотрением лишь упругих свойств подшипниковых опор сателлитов и механических соединений, посредством которых осуществляется остановка центральных колес или связь основных звеньев одно- и двухступенчатых передач, образующих рассматриваемый планетарный механизм. Анализ, основанный на учете упругости опор сателлитов, приводит еще к одной схематизации в представлении одно- и двухступенчатых передач. Предполагается, что оси сателлитов этих передач располагаются на условном безынерционном водиле 5, которое связано с конструктивным водилом 3 упругим соединением, эквивалентным по своей характеристике подшипниковым опорам сателлитов (рис. 57, а, б).  [c.127]

На рис. 1. 3 показана характеристика асинхронного двигателя. При работе двигателя на верхней устойчивой ветви характеристики от 5 = о до 5 = и при изменении момента сопротивления от нуля до М, ах вне зависимости от продолжительности действия каждого значения указанного момента двигатель будет сохранять способность автоматически развивать движущий момент в соответствии с моментом сопротивления. Когда же момент сопротивления Мд достигнет значения Мо, т. е. превысит Мтах, то двигатель опрокинется и рабочая точка характеристики, перейдя на неустойчивую ветвь, может дойти до положения с1, соответствующего нулевой угловой скорости. Однако, если увеличенное значение момента сопротивления Мо будет действовать кратковременно, то остановки двигателя не произойдет, так как процесс опрокидывания двигателя, связанный с изменением скорости движущихся масс, требует определенного времени.  [c.419]

Учитывая наиболее оптимальные характеристики двигательных актов человека и инженерно-технические особенности управляемой оператором машины, художник-конструктор выбирает тот или иной вид органов управления. По роду выполнения операций и по характеру процесса переключения органы управления разделяются на следующие типы органы включения и выключения (пуск и остановка) органы переключения с одного вида работы на другой или с одного агрегата на другой органы регулирования параметров работы машины органы аварийного выключения, включения или переключения.  [c.27]

Получив для испытываемого ГСП данные по распределению давления в рабочих камерах в зависимости от действующей нагрузки, можно впоследствии (при испытаниях насоса) путем измерения давлений в камерах ГСП экспериментально определить фактические усилия на опорах. Это позволит выявить возможное несоответствие фактических и расчетных усилий и, при необходимости, внести изменения в конструкцию ГЦН. Особенно важно проверить работоспособность ГСП в режимах пуска и на выбеге (при остановке ГЦН). Как правило, необходимый для работы ГСП перепад давления создается основным рабочим колесом ГЦН. Поэтому в период пуска и остановки насоса ГСП имеет переменную грузоподъемность (от нуля при стоящем ГЦН до максимума при достижении номинальной частоты вращения). В то же] время величина реакций на опорах определяется как силами, не зависящими от частоты вращения ГЦН (например, составляющие массы ротора), так и силами, зависящими от нее (например, гидродинамические силы, силы от дисбаланса ротора и др.). Вследствие этого в период пуска или остановки имеют место моменты, когда ГСП работают не во взвещенном состоянии, а как обычные подшипники скольжения. На продолжительность этих периодов влияют характеристики разгона и выбега (зависимость частоты вращения ротора от времени), с одной стороны, и характер изменения реакций на опорах в период разгона и выбега, с другой. Эти обстоятельства приводят к необходимости проверки работоспособности ГСП в режимах пуска и остановки только в составе натурного образца ГЦН путем проведения определенного числа пусков и остановок с последующей разборкой ГЦН и проверкой износа ГСП.  [c.233]

За время испытаний были проведены многократные пуски и остановки ГЦН при полном перепаде давления на уплотнении. Износ трущихся поверхностей за все время испытаний как на специальном, так и на натурном стендах не превысил 4 мкм и не влиял на рабочие характеристики уплотнения.  [c.239]

Перед чистовым проходом необходимо обязательно производить смену инструмента независимо от величины его притупления. Исключение допускается при машинном времени чистового прохода меньше 2—3 час. Смена инструмента, изменение режимов резания и остановка станка при чистовом проходе не допускаются. Перед чистовым проходом ответственных зубчатых колес с диаметром более 500 мм обязательно проводится контрольная проверка и выверка заготовки. Прежде чем выполнить чистовое нарезание зубьев, делают так называемый пробный заход по длине зуба, необходимый для получения обкатанного профиля и позволяющий делать промеры зубомерным инструментом. При пробном проходе проверяют размеры и чистоту поверхности профиля зуба, а также величину припуска, подлежащего снятию при чистовом проходе. При выборе станка для зубофрезерования рекомендуется назначать станок возможно меньшего размера, учитывая резкое повышение стоимости станка при увеличении его размеров. Однако, несмотря на это, при нарезании зубчатых колес 7 степени точности и выше диаметр нарезаемого колеса не должен превышать диаметра делительного больше чем на 50%. Наибольший модуль нарезаемого колеса при этом назначается на два модуля меньше, чем указано в характеристике станка, а вес заготовки не должен превышать допустимую грузоподъемность станка.  [c.436]

Ю и Yi2 = я в кривошипно-коромысловом и кривошипно-ползун-h Jm механизмах и при взаимно перпендикулярном расположении кривошипа и кулисы в кулисном механизме. Конструктивным развитием кулисного механизма является мальтийский механизм, позволяющий осуществлять длительную остановку выходного звена при непрерывном равномерном вращении входного звена. Основными характеристиками мальтийского механизма (рис. 7.16) являются  [c.77]

Наличие я-мезонных пучков позволило уточнить характеристики л-мезонов, найденные раньше, а также установить новые. В частности, уточнили значение времени жизни я -мезонов, которое было измерено методом сравнения количества медленных я -мезоиов на разных расстояниях от мишени, а также прямым методом определения промежутка времени между остановкой я+-мезона и его распадом. В этом методе момент остановки л+-мезона и момент его распада обнаруживались по возникновению сцинтилляционных импульсов в кристаллическом счетчике. Импульсы образуются за счет энергии, которая выделяется в процессе быстрого (10 сек) торможения медленного л+-ме-зона, и за счет энергии (л — ц)-распада и регистрируются осциллографом. Так как скорость развертки электронного луча осциллографа известна, то по расстоянию между импульсами можно было определить время жизни я -мезона. Одновременно в этом опыте измерялось время жизни ji+-MeaoHa по расстоянию на экране осциллографа между им пульсами, образовавшимися в счетчике в момент (л — ц) -распада и (р. — е) -распада. Из этих и других более поздних измерений были получены следующие значения времени жизни л и ц -мезонов  [c.571]


МР 71-82. Методические указания. Расчеты и испытания на прочносдъ в машиностроении. Методы механических испытаний металлов. Определение характеристик вязкости разрушения (трещиностойкости) на стадии остановки трещины.— ВНИИНМАШ, 1982.— 27 с.  [c.204]

При создании конструкций и оборудования в коррозпонностойком исполнении прежде всего необходимы сведения о параметрах и характеристиках рабочих сред, режимах работы. Особенно важно учесть возможные отклонения в технологическом процессе, ситуации, которые могут возникнуть при остановках, случайные попадания других сред и т. п. Особое внимание следует обратить на состав среды, температуру, давление, скорость движения.  [c.79]

Характеристики толкателей данного типа, выпускаемые фирмой Сименс-Шуккерт (ФРГ), приведены в табл. 86. Максимальное число включений в час, указанное в таблице, достигается при неизменном направлении вращения ротора двигателя толкателя. В центробежных толкателях типа МД5—МД8 (фиг. 301) предусмотрено регулирование времени остановки вращающихся масс толкателя, а, следовательно, и регулирование времени замыкания тормозной системы. Для этого на валу ротора укрепляется тормозной конус /, имеющий возможность небольшого осевого перемещения вдоль вала, но вращающийся вместе с валом, а на корпусе толкателя — неподвижный конус 2.  [c.497]

Основной характеристикой безостановочности производственно-техноло-гической машины следует считать среднее значение наработки между каждыми последовательно возникающими остановками.  [c.72]

Особо следует остановиться на механической характеристике асинхронного двигателя (фиг. 13). Эта характеристика делится на две части ординатой максимального момента Al.nax- Левая часть ее называется нерабочей или неустойчивой, а правая — рабочей или устойчивой. Асинхронный двигатель может поддерживать угловую скорость постоянной только на рабочей части характеристики, так как в нерабочей части всякое увеличение нагрузки влечет за собой остановку двигателя, а уменьшение нагрузки приводит к увеличению скорости с выходом в рабочую часть. Пуск такого двигателя можно производить только при моменте сопротивления, меньщем минимального момента нерабочей части характеристики.  [c.22]

В машинах и машинных агрегатах, имеющих в своем составе более сложные в структурном отношении механизмы (стержневые шарнирные механизмы, некруглые зубчатые колеса, кулачковые механизмы), обеспечение уравновешивающихся сил для рабочего режима затруднено в силу сложных соотношений между такими силами, так как эти машины имеют иную кинематическую характеристику, заключающуюся в том, что соотношение между линейными и угловыми скоростями их звеньев не остается все время постоянным, что связано с переменным передаточным отношением в их механизмах, приводящим вместе с тем к переменной приведенной массе (см. гл. VIII). Поэтому в таких машинах не только пусковой период и период остановки, но и нормальный рабочий режим машины протекают под действием неуравновешивающихся сил и, следовательно, сопровождаются изменением кинетической энергии. Рабочий режим характеризуется здесь особым видом движения, называемого также установившимся, но уже не являющегося равновесным. Раскрытие условий для этого неравновесного установившегося движения составляет одну из задач динамики машин.  [c.6]

Ввиду опасных и вредных условий в кузнечных и прессовых цехах (не менее чем в литейных цехах) актуальна комплексная автоматизация, включающая диагностирование кузнечно-штамповочного оборудования. В штамповочном производстве для изготовления деталей из рулона, листа или ленты широко применяются одно- и многопозиционные прессы различных типов, манипуляторы, роботы, поворотные столы и транспортеры. Вопросы диагностирования поворотных столов, транспортеров, манипуляторов и роботов были рассмотрены выше. Специфичным для этих линий, как и для ряда литейных, является диагностирование прессов. У прессов с электроприводом целесообразно применение датчиков крутящего момента, с помощью которых контролируется характер изменения нагрузок на коленчатый вал как при холостых, так и при рабочих перемещениях ползуна. Запись частоты вращения или скорости этого вала позволяет обнаруживать разрегулировку и износ фрикционной муфты. Датчик остановки ползуна в верхней мертвой точке дает дополнительную информацию о работе муфты и коман-доаннарата [54]. Широко применяется измерение напряжений в станине пресса с помощью тензометрических датчиков (с целью предотвращения поломок, своевременной смены инструмента). Здесь целесообразно использовать микроусилители, расположенные в месте измерения напряжений. Ударные нагрузки при вырубке, пробивке отверстий и т. п. можно определять с помощью пьезоакселерометров, установленных на ползуне пресса. Диагностирование гидросистем и привода гидравлических прессов мало чем отличается от рассмотренных выше методов, разработанных для другого автоматического оборудования. Здесь ввиду ударного характера рабочих нагрузок требуется контроль энергии удара и предъявляются более высокие требования к частотным характеристикам датчиков и аппаратуры. Большие размеры прессов и рас-  [c.150]

Рассмотрим особенности диагностирования роторных автоматических штамповочных линий, получивших широкое применение в промышленности, освбенно при массовом выпуске деталей (сотни и тысячи штук в минуту). Практика эксплуатации линий показала, что наибольшие потери производительности возникают вследствие поломок, выкрашивания в меньшей мере — из-за износа инструмента [21, 24]. Поэтому особенно актуален контроль рабочих нагрузок на инструменте с применением тензометрирова-ния деталей ротора или с помощью съемных датчиков крутящего момента, а также диагностирование механизмов автоматической смены инструментов (см. гл. 7 и 8). Контроль привода вращения рабочих и вспомогательных роторов может осуществляться по равномерности вращения роторов (определяющей надежность передачи заготовок или инструмента с одного ротора на другой) и по характеристикам двигателей (сила тока, температура). Достоверность проверки двигателей здесь особенно актуальна, так как выход их из строя вызывает остановку всей линии.  [c.151]

Важной характеристикой теплоносителя при его применении в реакторе является надежное расхолаживание высоконапряженной активной зоны быстрого реактора при аварийных ситуациях. В наиболее тяжелых авариях, таких, как остановка насосов при обесточивании электродвигателя или при заклинивании ротора, разрыв главных трубопроводов (подводящих или отводящих), при-.менение диссоциируюгцего теплоносителя N2O4 в схеме газожидкостного цикла может обеспечить надежное ох-  [c.36]

Для технологических машин и механизмов (например, етанков, силовых головок и т. д.) точностные характеристики являются основными показателями их качества (допустимое биение шпинделя на различном расстоянии от передней бабки, смещение оси передней бабки относительно оси задней бабки, точность остановки поворотного стола относительно силовых головок и т. д.) и числовое значение этих характеристик, а также способы и средства их контроля после сборки задаются в технической документации на изделие.  [c.512]

Шаржнрные краны — Эксплоатационные характеристики 9 — 849 Шарнирно-рычажные механизмы с остановками  [c.345]


Смотреть страницы где упоминается термин Остановка Характеристики : [c.56]    [c.422]    [c.51]    [c.172]    [c.594]    [c.264]    [c.118]    [c.362]    [c.283]    [c.151]    [c.104]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.50 ]



ПОИСК



Остановки —



© 2025 Mash-xxl.info Реклама на сайте