Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Активная зона

При длительности пребывания запыленных газов в активной зоне электрофильтра не менее 8 с правильно запроектированные и хорошо выполненные электрофильтры могут обеспечить степень очистки дымового газа от золы до  [c.166]

Приведены теоретический расчет коэффициента сопротивления струи в шаровой ячейке методика и результаты экспериментальных работ ио гидродинамическому сопротивлению, среднему и локальному коэффициентам теплоотдачи ири течении газа через различные укладки шаровых твэлов. На основе обобщенных критериальных зависимостей коэффициентов сопротивления и теплообмена разработана методика оптимизационных расчетов размера шаровых твэлов и геометрических размеров активных зон для различной объемной плотности теплового потока. Приводится количественный расчет по предложенной методике.  [c.2]


Использование в активной зоне конструкционных материалов с малым сечением поглощения нейтронов, в частности графита в качестве замедлителя и отражателя, карбидов или окислов урана и тория в качестве ядерного горючего. Это увеличивает глубину выгорания горючего и коэффициент воспроизводства и уменьшает стоимость собственно реактора.  [c.3]

Повышение ядерной безопасности реактора из-за невозможности расплавления керамических материалов и образования в активной зоне вторичной критической массы, отрицательного температурного коэффициента реактивности топлива я невозможности хрупкого разрушения корпусов из предварительно  [c.3]

Наиболее подходящим типом реактора ВГР для решения этой задачи является реактор с шаровыми твэлами, перемещающимися по мере их выгорания в активной зоне в одном направлении с гелиевым теплоносителем. За рубежом такой режим работы реактора получил название принцип ОТТО [8]. Одноразовое прохождение активной зоны шаровыми твэлами должно быть осуществлено таким образом, чтобы глубина выгорания ядерного горючего в выгруженных твэлах была бы одинаковой. При этом свел<ее горючее находится в зоне с большим тепловыделением и холодным газовым теплоносителем, а выгоревшие твэлы — в зоне с малым тепловыделением, но высокой температурой теплоносителя.  [c.6]

Процесс непрерывной замены отработавшего топлива свежим увеличивает глубину выгорания примерно в 1,5 раза по сравнению с глубиной выгорания топлива в неподвижной зоне. Повышается при этом и радиационная безопасность ядерного реактора, поскольку отпадает необходимость в компенсации начальной избыточной реактивности стержнями СУЗ. Реализация принципа одноразового прохождения активной зоны значительно уменьшает удельный расход урана, а также удельную загрузку ядерного горючего.  [c.7]

На рис. 1.2 приведены типичные кривые неравномерности тепловыделения по высоте реактора для неподвижной и перемещающейся активной зоны, а также распределение относительной температуры газа [6].  [c.19]

Рис., д.2. Распределение тепловыделения (кривые i, 2) и температуры газа (кривые 3, 4) по высоте активной зоны  [c.19]

Чтобы повысить тепловыделение в периферийной области активной зоны, необходимо использовать разное обогащение ядерного топлива. При этом по мере удаления от центра активной зоны обогащение свежих твэлов должно увеличиваться. Простейшим случаем является образование двух зон с разным обогащением. Размеры зон и обогащение в них выбираются из условия получения минимального коэффициента неравномерности Кг-  [c.21]


В проекте реактора ВГР по принципу одноразового прохождения активной зоны шаровыми твэлами мощностью 500 МВт с уран-плутониевым топливным циклом приведены данные по температуре газа и топлива активной зоны с профилированием тепловыделения и без профилирования. Оптимальная концентрация— рс/рм=350, средняя объемная плотность теплового потока в зоне — 5 кВт/л. Активная зона высотой 568 см и диаметром 473 см окружена графитовым отражателем толщиной 40 см сверху, 150 см снизу и 100 см сбоку и заполнена шаровыми твэлами диаметром 60 мм. Применение двух зон с разным обогащением снижает радиальную неравномерность и повышает температуру гелия на выходе из реактора от 810 до 950° С.  [c.21]

Рис. 1.4. Распределение тепловыделения по радиусу активной зоны реактора ВГР при профилировании разным обогащением подпиточного ядерного топлива а — 2,5% в центральной области, 3% — в периферийной б — Рис. 1.4. Распределение тепловыделения по радиусу <a href="/info/117360">активной зоны реактора</a> ВГР при профилировании разным обогащением подпиточного <a href="/info/105934">ядерного топлива</a> а — 2,5% в центральной области, 3% — в периферийной б —
В реакторе ВГР с шаровыми твэлами можно использовать и другой способ уменьшения радиальной неравномерности. Если организовать в активной зоне два потока твэлов с одинаковым  [c.22]

Рис. 1.5. Распределение тепловыделения по радиусу активной зоны реактора ВГР при профилировании разными скоростями перемещения шаровых твэлов в центральной и периферийной областях при одинаковом обогащении подпиточного ядерного топлива Рис. 1.5. Распределение тепловыделения по радиусу <a href="/info/117360">активной зоны реактора</a> ВГР при профилировании разными <a href="/info/136485">скоростями перемещения</a> шаровых твэлов в центральной и периферийной областях при одинаковом обогащении подпиточного ядерного топлива
Существенным недостатком бесканальной активной зоны является необходимость вывода вместе с выгоревшим ядерным топливом и всего необходимого для ядерной реакции графитового замедлителя, содержащегося в каждом шаровом твэле.  [c.29]

В канальной активной зоне с шаровыми твэлами, где име-  [c.29]

Объемная доля теплоносителя в активной зоне, %  [c.33]

Коэффициент воспроизводства КВ Параметры теплоносителя давление, МПа температура на выходе, °С Размеры активной зоны диаметр, м высота, м  [c.33]

Книга посвящена вопросам гидродинамики и теплообмена, возникающим ири проектировании и эксплуатации высокотемпературных газоохлаждаемых ядерных реакторов на тепловых и быстрых нейтронах с шаровыми макро- и микротвэлами. Предложена физическая модель течения газового теплоносителя через различные укладки шаровых твэлов и микротвэлов в бесканальной и канальной активных зонах. Анализируется структура шаровых ячеек и связь параметров с объемной пористостью.  [c.2]

Реализация этого принципа позволяет выравнить температуры топлива в объеме активной зоны, уменьшить разницу между температурами топлива и гелия, добиться увеличения объемной плотности теплового потока.  [c.6]

Шаровая форма твэла позволяет добиться меньших температурных напряжений в оболочке по сравнению с напряжениями в цилиндрических стержневых твэлах при одинаковой объемной плотности теплового потока и равных геометрических размерах. Шаровая форма также допускает значительное уменьшение их размеров, поскольку обычно такие твэлы не являются конструкционными элементами активной зоны, а заполняют в виде шаровой насадки либо всю активную зону, как в реакторах AVR, THTR-300, либо какие-то ее части.  [c.7]

Таким образом, высокотемпературные реакторы с шаровыми твэлами, выполненные по принципу одноразового прохождения активной зоны, наиболее полно удовлетворяют требованию достил<ения высокой температуры гелия на выходе из реактора. Возможности измельчения твэлов и перехода к непосредственному охлаждению гелием микротопливных частиц привели к идее создания газоохлаждаемого реактора-размножителя на быстрых нейтронах (БГР) с полыми коническими кассетами с засыпкой в них микротопливных частиц и продольно-поперечным охлаждением [10].  [c.7]


В этом случае при задержке во времени на переработку накопленного вторичного ядерного топлива 6 месяцев удалось бы получить время удвоения порядка 5 лет [И]. Наиболее подходящим вариантом реактора БГР, отвечающим этим условиям, является высокотемпературный реактор с засыпанным в пустотелых перфорированных кассетах керамическим микротопливом и продольно-поперечным охлаждением топливного слоя гелиевым теплоносителем. При температуре гелия на выходе из активной зоны 750—800° С удается снизить затраты энергии на прокачку гелия до 8% и обеспечить объемную плотность теплового потока 700 MBt/m при максимальной температуре топлива 1000° С [12].  [c.8]

Таким образом, шаровая форма твэлов оказывается весьма перспективной как для реакторов ВГР, так и реакторов-размно-жителей БГР. Однако реализация преимуществ шаровой формы топливных элементов наталкивается на серьезные затруднения, связанные, в первую очередь, с недостаточными сведениями в области гидродинамики, теплообмена и структуры подвижных шаровых засыпок при высоких теплонапряженностях активной зоны. Не менее важными являются экспериментальные сведения о распределении газовых потоков, возможности образования застойных зон как на поверхности шарового твэла, так и в макрополости, о сохранении стабильности структуры шаровой засыпки в случае подвижной активной зоны. Для правильного выбора размера шаровых твэлов реактора ВГР и микротоплив-ных частиц реактора БГР необходимо располагать методикой оптимизационных исследований. Решению некоторых из этих вопросов и посвящен предлагаемый материал.  [c.8]

Особенность этих-реакторов — бесканальная активная зона, образованная графитовой кладкой, и коническая конфигурация нижнего отражателя — пода с одним центральным каналом выгрузки шаровых твэлов, заполняющих собственно активную зону. И опытный, и промышленный прототипы энергетического реактора выполнены по одной топливной схеме с многократной перегрузкой шаровых твэлов, вызванной существенной неравномерностью скоростей прохождения активной зоны шаровыми твэлами при наличии только одной выгрузки. В настоящее время этот существенный недостаток конструкции подробно обсуждается специалистами [18]. Предложены мероприятия, связанные с усложнением конструкции, но позволяющие обеспечить более равномерное продвижение всех шаровых твэлов и осуществить принцип одноразового прохождения активной зоны. Как указывалось выше, это даст возможность получить большие объемную плотность теплового потока и глубину выгорания и более высокую температуру гелия на выходе из реактора.  [c.17]

При разработках высокотемпературных энepгotexнoлoгичe-ских ядерных установок с реакторами ВГР на температуру гелия 900° С и выше ориентируются практически невыполнение реактора ВГР с шаровыми твэлами по принципу норазового прохождения активной зоны либо с несколькими каналами выгрузки, либо со специально выполненной конструкцией нижнего графитового отражателя — пода, обеспечивающей достаточную равномерность движения шаровых твэлов в активной зоне [19].  [c.17]

Наиболее важные характеристики реактора — топливный цикл, относительная ядерная концентрация топлива и замедлителя, взаимное их расположение в ячейке и энергонапряжен-ность активной зоны.  [c.17]

В бесканальных активных зонах с шаровыми твэлами реакторов типа THTR (ФРГ) и реакторов типа HTGR (США) с призматическими твэлами все необходимое количество замедлителя (графита) находится вместе с тяжелыми ядрами в твэле и выводится после выгорания топлива из реактора [20]. В канальных реакторах с шаровыми твэлами и реакторах типа Драгой (Великобритания) в твэлах находится только часть необходимого количества замедлителя, а остальное количество размещено в стенках каналов и может находиться в активной зоне несколько кампаний. В первом случае расчетной физиче-,-ской ячейкой является непосредственно твэл, во втором случае  [c.17]

Важной характеристикой топливного цикла является энергонапряженность активной зоны. Увеличение энергонапряженности при постоянном ядерном соотношении рс/рм и продолжительности приводит к уменьшению количества ежегодно перерабатываемого ядерного топлива, а также размеров активной зоны и капитальных затрат, но повышает температуру ядерного топлива и затраты энергии на прокачку теплоносителя. По данным фирмы Дженерал атомик , для реакторов типа HTGR оптимальной по стоимости электроэнергии является объемная плотность теплового потока 7,5 кВт/л при ядерном соотношении рс/рм = 240 и кампании топлива примерно четыре года [20].  [c.18]

Неравномерность распределения тепловыделения по высоте и радиусу активной зоны с шаровыми твэлами, особенно в варианте бесканальной активной зоны, существенным образом сказывается на температуре топлива и, следовательно, на объемной плотности теплового потока и энергонапряженности ядерного топлива.  [c.18]

При одноразовом прохождении активной зоны количеств делящихся тяжелых ядер должно поддерживаться в равновесном режиме постоянным. При увеличении обогащения подпи-точного свежего топлива до 8—10% уменьшается количество-ядер или Th в активной зоне, что приводит к меньшему количеству делящихся ядер во всем объеме активной зоны Это вызывает сокращение кампании твэлов и увеличение темпа их замены. При увеличении скорости продвижения уменьшаете количество воспроизведенных новых делящихся ядер, т. е. уменьшается коэффициент воспроизводства, и неравномерность тепловыделения по высоте активной зоны увеличивается. При росте неравномерности тепловыделения падает средняя объемная теплонапряженность активной зоны.  [c.19]

Рис. 1.3. Зависимость распределения тепловыделения по высоте активной зоны реактора ВГР и коэффициента Kz от изотопного состава подпиточиого ядерного топлива Рис. 1.3. Зависимость распределения тепловыделения по высоте <a href="/info/117360">активной зоны реактора</a> ВГР и коэффициента Kz от изотопного состава подпиточиого ядерного топлива

Если высотная неравномерность тепловыделения сказывается лищь на ходе кривой нагрева газа и местонахождении горячей точки топлива в твэлах, то радиальная неравномерность в " есканальной активной зоне с щаровыми твэлами приводит к разному нагреву газа в сечении активной зоны. Если предположить, что массовый расход в сечении активной зоны одинаков и отсутствуют радиальные перетоки и турбулентный обмен, то температура газа в выходном сечении определяется непосредственно видом радиальной неравномерности тепловыде-  [c.20]

На рис. 1.4 показано распределение тепловыделения по радиусу активной зоны, пронормироаанного к среднему значению, равному 1, для двух вариантов двухзонного профилирования. Как видно из рисунков, коэффициент неравномерности во втором варианте больше, чем в первом, что объясняется слишком большой разницей в обогащении топлива. Глубина выгорания в центральной зоне увеличивается, а в периферийной —  [c.21]

По-видимому, можно создать такую схему движения топлива в активной зоне, при которой выгружаемые из периферийной области недовыгоревшие твэлы после соответствующей проверки на целостность и герметичность направляются вторично в центральную зону. Подбором скоростей движения и размеров зон можно добиться и в этом случае минимальной радиальной неравномерности тепловыделения.  [c.23]

Конструкция реактора ВГР с шаровыми твэлами по принципу одноразового прохождения активной зоны без профилирования тепловыделения обогаш,ением топлива должна обеспечить одинаковую глубину выгорания во всех выгружаемых твэлах. Это возможно только в том случае, когда относительная скорость прохождения твэлом активной зоны будет обратно пропорциональна относительному радиальному распределению-тепловых нейтронов или (приближенно) тепловыделению. При-этом интегральный поток в каждом твэле и выгорание топлива будут также одинаковы. В случае идеального профилирования радиального распределения тепловыделения (/Сг=1,0) скорость продвижения или время нахождения твэлов должны быть одинаковыми. Однако первые реакторы с шаровыми твэлами и бес-канальной зоной (эксплуатируемый реактор AVR и строящийся THTR-300) не обладают конструкцией, удовлетворяющей принципу одноразового прохождения. Различное время пребывания твэлов в активной зоне с одним центральным каналом выгрузки и отсутствие профилирования тепловыделения по радиусу разным обогащением топлива в свежих твэлах приводят к тому, что глубина выгорания топлива в твэлах сильно различается [19].  [c.24]

Твэлы, находящиеся длительное время в активной зоне, облучаются слишком большим интегральным потоком нейтронов, и микротопливо имеет весьма высокие значения относительного выгорания тяжелых ядер (fima), что может привести к разрушению микротвэлов и повышению активности теплоносителя. Твэлы, быстро проходящие активную зону, наоборот, мала выгорают, и их нужно вернуть в активную зону на повторное использование. Таки.м образом, требуется систе.ма возврата невыгоревших твэлов в активную зону реактора со специальной установкой для измерения выгорания топлива в выгружаемых твэлах и сложным перегрузочным устройством.  [c.24]

Перегрузочное устройство реакторов AVR и THTR-300 помимо выгрузки шаровых твэлов из активной зоны должно провести отбраковку и сортировку твзлов по геометрическому признаку, проверку механической прочности и вторичную отбраковку по этому признаку, контроль выгорания и разделение твэлов по глубине выгорания, обнаружение и вывод поглощающих элементов с бором, возврат невыгоревших и догрузку свежих твэлов, удаление выгоревших и дефектных твэлов. Устройство для измерения выгорания в реакторе AVR построено по принципу облучения каждого поступающего твэла потоком тепловых нейтронов и определения ослабления интенсивности его из-за поглощения в делящихся ядрах топлива.  [c.24]

Принцип измерения основан на изменении реактивности-физической сборки при прохождении шарового твэла с постоянной скоростью через измерительный участок. Время задержки исследуемого образца в активной зоне реактора ADIBKA не-превышадт 0,2 с, однако анализ измеряемых сигналов и управление всеми операциями может быть осуществлено только с помощью ЭВМ. Реактор с одноразовым прохождением активной зоны не требует такой сложной установки, поскольку достаточно контролировать лишь выборочно выгружаемые твэлы в целях определения их выгорания. Конструкция его должна обеспечивать выполнение условия равного выгорания всех проходящих через активную зону шаровых твэлов. Это может потребовать либо профилирования обогащением в свежих твэлак,. загружаемых в разные точки зоны, либо специальной конфигурации пода и расположения каналов выгрузки, обеспечивающих необходимую скорость и время нахождения твэлов в активной зоне [19].  [c.25]

Идея использования в реакторах ВГР шаровых твэлов была высказана более тридцати лет назад. Были предложены конструкции бесканальных активных зон со свободной засыпкой в них шаровых твэлов или смеси шаровых твэлов и шаровых элементов из замедляющих нейтроны материалов графита и окиси бериллия. Однако в силу ряда причин к началу шестидесятых годов сложилась определенная концепция бесканаль-ного реактора с шаровыми твэлами, которые содержат в себе необходимое количество замедлителя (например, реактор AVR).  [c.26]

Теплопроводность изотропного графита при облучении при T Mnepaitype выше 600° С на 30—40% ниже, чем теплопроводность без облучения, коэффициент линейного расширения в результате облучения интегральным потоком нейтронов 4-1021 нейтр./см2 при температуре выше 1000°С сначала увеличивается примерно на 20%, а потом уменьшается на 30—75% начального значения. Физико-механические характеристики прессованных сортов графита под влиянием облучения меняются больше, чем изотропных сортов. Изменения происходят в направлениях вдоль и поперек оси прессования или выдавливания, причем эти изменения по осям довольно различи , что практически исключает возможность использования анизотропных сортов графита в виде крупноразмерных блоков в качестве конструкционного материала активной зоны реактора В ГР с призматическими твэлами [6]. Этот факт является весьма важным доказательством преимущества варианта реактора ВГР с шаровыми твэлами, поскольку твэлы при достижении интегрального потока (5—7)-10 нейтр./см и глубине выгорания топлива 10—15 /о выводятся из активной зоны, графитовые же блоки отражателя находятся в зоне существенно меньших температур и потоков нейтронов.  [c.29]

Химическая инертность гелия и возможность высокой степени его очистки от примесей в контуре опытных реакторов ВГР позволяют использовать в качестве оболочек твэлов не только нержавеющие стали, но и ванадий, пироуглерод, карбид кремния и другие керамические материалы [21]. По-видимому, одно из основных преимуществ применения гелия — это возможность использовать в качестве топлива карбиды урана и плутония, что сулит существенное увеличение коэффициента воспроизводства по сравнению с окисным топливом. Нулевая активация гелия, отсутствие существенного замедления им быстрых нейтронов при прохождении через активную зону реактора БГР, а также успешное решение задачи удержания продуктов деления в микротвэлах с керамическими защитными слоями при больших значениях глубины выгорания и возможность непосредственного охлаждения микротвэлов газовым теплоносителем — все эти положительные факторы позволяют реактору БГР конкурировать с реактором-размножителем БН. Основной недостаток гелиевого теплоносителя по сравнению с натриевым — трудности отвода тепла остаточного тепловыделения в аварийных ситуациях при потере герметичности основным  [c.31]

В 1969 г. Ок-Риджской лабораторией и фирмами Галф дженерал атомик и Бабкок энд Уилкокс под руководством Отделения реакторов и технологии КАЭ были выполнены расчетные проработки газоохлаждаемого реактора-размножителя, которые показали, что использование в таком реакторе разработанных для БН стержневых твэлов со стальными оболочками и окисным уран-плутониевым топливом позволяет получить более высокий коэффициент воспроизводства, однако объемная плотность теплового потока активной зоны оказывается меньшей, что существенно снижает преимущества реакторов ВГР. Переход в реакторах ВГР к более теплопроводному карбидному топливу и использование более тонких стальных покрытий и конструкции вентилируемых твэлов позволяет существенно увеличить объемную плотность теплового потока, что наряду с большим коэффициентом воспроизводства обеспечивает их решающее преимущество, по сравнению с реакторами ВН, в снижении почти вдвое времени удвоения ядерного топлива. В табл. 1.6 приведены результаты исследований влияния вида топлива на важнейшие характеристики реактора ВГР мощностью 1 млн. кВт с обычными стержневыми твэлами и температурой металлической оболочки 700° С.  [c.32]



Смотреть страницы где упоминается термин Активная зона : [c.8]    [c.18]    [c.18]    [c.18]    [c.19]    [c.19]    [c.20]    [c.21]    [c.23]   
Основы ядерной физики (1969) -- [ c.313 , c.315 ]

Введение в ядерную физику (1965) -- [ c.385 ]

Атомы сегодня и завтра (1979) -- [ c.80 ]

Накопители энергии (1991) -- [ c.0 ]



ПОИСК



А автобетоносмесители активная зона

Адиабатическая зона тепловой трубы активная зона конденсатора

Активнаи зона реактора, требования к твэлам и ТВС

Активная зона атарея аккумуляторная

Активная зона леей лова я конструкция

Активная зона межфазового теплообмена

Активная зона пруда-охладителя

Активная зона реактора

Активная зона реактора как источник излучения . . Ю Распределение источников нейтронов и у-квантов в активной зоне реактора

Активная зона с гладким магнитопроводом

Активная зона с зубчатым магнитопроводом

Вибрации элементов активной зоны в потоке теплоносителя

Влияние облучения на конструкционные материалы активной зоны

Гидродинамика в кассетах и активной зоне

Защита активной зоны ядерного реактора

Измерение температуры в активной зоне реактора

Коррозия поверхностей внутри активной зоны реактора

Методика сопоставления основных характеристик активной зоны реактора с шаровыми твэлами

Ослабление излучений активной зоны

Особенности расчета гидродинамики в кассетах и активной зоне

Особенности расчета температурного поля в активной зоне

Остаточное тепловыделение в активной зоне

Приближенное тепловое моделирование элементов активной зоны

Применение модели пористого тела к расчету гидродинамики активной зоны

Распределение среднего коэффициента теплоотдачи в бесканальной активной зоне с шаровыми твэлами

Системы аварийного охлаждения активной зоны

Температура газов на выходе из активной зоны

Температурное поле в кассетах и активной зоне

Температурный контроль активной зоны реактора

Тепловое напряжение зоны активного горения

Тепловое напряжение зоны активного объема топки

Тепловое напряжение зоны активного сечения топки

Тепловое напряжение зоны активного яруса горелок

Теплогидравлика ТВС и активной зоны с некипящим теплоносителем

Теплогидравлика технологического канала и активной зоны при двухфазном теплоносителе

Тепломассообмен в активной зоне

Теплонапряжение лучистой поверхности экрана в зоне активного горения

Теплотехническая надежность активной зоны

Термомеханика элементов активной зоны

Эиергонапряженность ядерного топлива в активной зоне



© 2025 Mash-xxl.info Реклама на сайте