Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние температуры на строй

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СТРОЙ  [c.316]

При горячих испытаниях на кручение строят первичные кривые напряжение — деформация (в данном случае крутящий момент— угол закручивания (рис. Г7б), а также результативные диаграммы, показывающие влияние температуры на изменение предела прочности при кручении, угла закручивания, модуля упругости и т. д.  [c.220]

Эффективность свертывающихся диафрагменных уплотнений зависит от свойств используемых уплотнительных материалов, к которым предъявляются требования высокого сопротивления усталости, повышенного сопротивления ползучести и высокой химической стойкости при воздействии масла или водорода. Обнадеживающие результаты были получены при использовании полиуретановой резины. Стендовые испытания показали, что срок службы уплотнения в значительной степени зависит от температуры, перепада давления на уплотнении и отношения толщины диафрагмы к размеру зазора между поршнем и стенкой цилиндра. Установлено, что наиболее важным параметром является температура. При частоте вращения вала двигателя 1500 об/мин и температуре окружающей среды 25 С уплотнения работали больше года (10 ООО ч) однако при повышении температуры до 100 °С уплотнения выходили из строя через 150 ч. Это было связано с влиянием температуры на прочность материала диафрагмы. При температуре 100 С прочность материала диафрагмы составляла лишь 20 % прочности на растяжение при нормальных условиях работы.  [c.239]


Чтобы иметь представление о колебаниях, измеренных при испытании величин, строятся кривые, на оси абсцисс которых откладывается время (за опыт), а на оси ординат— измеренные в наиболее характерных точках величины (температура, давление, состав газов и пр.). Так же строятся графики влияния разных параметров работы котельной установки на тепловые потери, например, влияния температуры уходящих газов и коэффициента избытка воздуха в продуктах сгорания на потери тепла с уходящими газами <72, влияния коэффициента избытка воздуха в топке на величину СО и потерн тепла от химической неполноты сгорания < з, влияния тонкости помола i 90, длины факела и температуры в топке, на потери тепла от механической неполноты сгорания q , влияния паропроизводительности котельной установки D на качество пара и пр.  [c.270]

Влияние температуры и скорости, деформации. Обычно это влияние изучают в опытах на сжатие, так как при повышенных температурах деформационное упрочнение невелико, и образование шейки начинается практически сразу после начала растяжения образца. Строят графические зависимости сопротивления  [c.159]

Основная методика заключалась в доведении образцов до разрушения при постоянно действующем растягивающем напряжении. По Полученным данным строилась зависимость долговечности материала от напряжения в координатах а—Igt , где а — напряжение, при котором разрушился образец, иг — время до разрушения. Таким образом определялась временная зависимость прочности стеклопластиков при постоянной температуре и различных концентрациях агрессивной жидкости или при постоянной концентрации, но при различных температурах, т. е. изучалось влияние концентрации и температуры на длительную прочность стеклопластиков. На построенных зависимостях 0—IgT каждая точка наносилась как средняя величина, полученная от испытаний минимум трех образцов. В тех случаях, когда наблюдался большой разброс результатов, опыты повторялись так, что на одну точку приходилось по 5—6 образцов.  [c.169]

Для углеродистых, сталей главным образом инструментальных, прокаливаемость которых определяют в небольших сечениях — диаметром (стороной) до 25—30 мм — применяют следующий более простой способ. Образец квадратного или круглого сечения (длина его должна быть больше толщины или диаметра в 2,5—3 раза) нагревают до температуры закалки, выдерживают для прогрева по сечению, а затем охлаждают в воде или иной среде, влияние которой на прокаливаемость требуется изучить. Охлажденный образец ломают поперек по срединному сечению (разрезать этот образец металлорежущим инструментом затруднительно ввиду высокой твердости закаленного слоя абразивный круг вызывает значительный разогрев и снижает твердость стали ), затем осторожно шлифуют в месте излома и измеряют твердость по диаметру через каждые 2 мм. На основании полученных данных строят диаграмму в координатах твердость — расстояние от центра образца. Соответствующая кривая (рис. 194) характеризует прокаливаемость, но лишь в образцах данного диаметра. Для получения более полной характеристики необходимо повторять определение для образцов разного диаметра  [c.291]


Влияние степени переохлаждения на устойчивость аустенита и скорость превращения представляют графически в виде диаграмм. Эти диаграммы строят в координатах температура превращения — время обычно время откладывают на логарифмической шкале (рис. 6.12).  [c.166]

Под влиянием остаточных напряжений, создаваемых в обработанном поверхностном слое металла, структура последнего становится неустойчивой, она постепенно изменяется, и особенно быстро при температуре рекристаллизации, когда мелкозернистая структура переходит в крупнозернистую. В. Д. Кузнецов предполагает, что на практике детали иногда выходят из строя раньше срока вследствие изменения в них структуры обработанного слоя. Опыт показал, что остаточные напрял<ения можно уменьшить путем увеличения жесткости системы СПИД (станок — приспособление — инструмент — деталь), применения оптимальных режимов резания и геометрии инструмента (острые кромки, положительные передние углы), а также термической обработкой.  [c.11]

По степени влияния на работоспособность автомобиля отказы делят на полные и частичные (неисправности). К полным относят такие отказы, без устранения которых дальнейшее использование автомобиля по назначению невозможно или недопустимо вследствие ограничений, накладываемых техническими условиями или требованиями техники безопасности (безопасности движения). При полном отказе автомобиль восстанавливают на месте выхода из строя или буксируют в парк для устранения отказа соответствующими ремонтными средствами. Примерами таких отказов являются выплавление подшипников коленчатого вала двигателя, разрыв трубопроводов смазочной системы, выход из строя тормозной системы, повышение температуры масла в трансмиссии сверх установленной нормативами.  [c.297]

Отрицательное влияние на резину оказывает низкая температура. Начиная с — 10°С резина приобретает хрупкость, а при —(15—50) °С практически вся шина (за исключением покрышек, специально изготовленных для эксплуатации при низких температурах) теряет эластичность. Эксплуатация обычных шин при таких температурах неизбежно приведет к их преждевременному выходу из строя.  [c.110]

Наряду с этим студенты в данной работе изучают влияние ре-кристаллизационного отжига на механические свойства сплава, для чего им предоставляются три плоских образца, вырезанных из листов, прокатанных в холодном состоянии на максимальную степень обжатия того же сплава, который исследовался в предыдущей работе 9. Студенты отжигают образцы при температуре соответственно 100, 200 и 400° в течение 1 —1,25 часа, а затем испытывают их на растяжение с определением предела прочности и удлинения, как это было описано в работе 9, и строят кривые зависимости и 6 от температуры отжига холоднодеформированного сплава.  [c.103]

По полученным данным каждый студент строит две диаграммы изотермического превращения аустенита в координатах температура превращения аустенита — время превращения аустенита в секундах. Путем сопоставления двух диаграмм выявляется влияние (качественное и количественное) легирующих элементов на С-образную диаграмму. Для стали ЗОХГСА точка А = 760°, а точка М = 330° (найдено экспериментально рядом исследователей).  [c.186]

Обычно изучают изотермическое превращение аусте-нита (нроисходящее при выдержке при постоянной температуре) для эвтектоидной стали. Влияние температуры на скорость и характер превращения представляют в виде диаграммы изотермического превращения аустени-та (рис. 4.2). Диаграмма строится в координатах температура — логарифм времени. Выше температуры 727°С на диаграмме находится область устойчивого аустенита. Ниже этой температуры аустенит является неустойчивым и превращается в другие структуры. Первая С-образ-ная кривая на диаграмме соответствует началу превращения аустенита, а вторая — его завершению. При небольшом переохлаждении — приблизительно до 550°С происходит упомянутое выше диффузионное перлитное превращение. В зависимости от степени переохлаждения образуются структуры, называемые перлит, сорбит и тростит. Это структуры одного типа — механические смеси феррита и цементита, имеющие пластинчатое строение. Отличаются они лишь степенью дисперсности, т.е. толщиной пластинок феррита и цементита. Наиболее крупнодисперсная структура — перлит, наиболее мелкодисперсная — тростит. По мере увеличения степени дисперсности структур изменяются и механические свойства стали—возрастают твердость и прочность и уменьшаются пластичность и вязкость. Твердость перлита составляет 180-250 НВ, сорбита 250-350 НВ и тростита 350-450 НВ. В отличие от перлита, сорбит и тростит могут содержать углерода больше или меньше 0,8 %.  [c.115]


И r OлтJзyя столбцы 7 и 9 из табл. 13-2 и столбцы 5 и 6 из табл. 13-3, для каждой температуры составляют таблицы по типу табл. 13-4. По данным таких таблиц строится зависимость перепада давления на диафрагме от расхода для каждой постоянной температуры. Пример такой зависимости показан на рис. 13-3. Рассмотренный метод градуировки не учитывает влияния температуры на изменение сужающего устройства (его размеров). Поэтому такой метод применяют при температуре среды не более 400 Т , Для проверки данных, полученных в табл. 13-4, обычно строят зависимость ЕиКе = /-(Ке), используя величины, приведенные а столбцах 8 и 9 табл. 13-2. Все точки указанной зави-симостн должны ложиться на одну кривую, как показано на рис, 13"4.  [c.218]

Область лавирного умножения. В эту область транзистор попадает при превышении допустимого коллекторного напряжения д п- Вследствие лавинного размножения носителей заряда под действием повышенного электрического ПОЛЯ в переходе ток коллектора самопроизвольно возрастает, причем распределение тока может стать резко неравномерным. Это приводит к сильному перегреву отдельных точек, перехода и к расплавлению кристалла. Происходит вторичный пробой перехода, являющийся основной причиной выхода из строя транзисторов в мощных каскадах радиопередатчиков. Поэтому принимаются специальные меры для защиты от вторичного пробоя в многоэмиттерных транзисторах последовательно с каждым эмиттером создается стабилизирующий резистор, что способствует равномерному распределению тока в структуре транзистора и снижает влияние температуры на ток перехода, повышает электрическую  [c.126]

Влияние излучения проявилось почти сразу после начала облучения. Все четыре конденсатора создали состояние разомкнутой цепи при интегральном потоке быстрых нейтронов 9-10 нейтрон см и интегральной дозе у-облучения 2,0-10 эрг г. Выход из строя связан с разрывом оболочек конденсаторов газами, выделяющимися при воздействии у-излуче-ния на бумагу, пропитанную полибутаном. Результаты этого опыта показали, что конденсаторы изученного типа могут использоваться при интегральных потоках до 10 нейтрон см . Были проведены исследования влияния излучения на бумажные конденсаторы с целью установления надежности нескольких типов конденсаторов [67]. 100 бумажных конденсаторов типа GP08A1KE105M подвергли облучению при повышенной температуре. Окружающую температуру поддерживали равной 85° С в течение 24 ч при мощности реактора 1 Мет, а затем мощность реактора была поднята до 10 Мет. Облучение в этом опыте проводилось при следующих условиях  [c.376]

В тех случаях, когда предполагалось, что разрушение образцов не сможет произойти за достаточно длительный срок (1000—2000 ч), применялась вторая методика, которая заключалась в следующем. Образцы выдерживались под напряжением при заданных условиях, и через промежутки времени, кратные 200—240 ч, нагрузка снималась, образцы извлекались из среды, сушились на воздухе до постоянного веса и разрушались на разрывной Д1ашине. По результатам таких опытов строились зависимости время экспозиции — прочность после экспозиции , которые дают кинетику снижения прочности. Исследования показали, что интенсивное снижение прочности наблюдается в первые 200 ч выдержки образцов в среде под напряжением, а на участке от 200 до 700 ч кривая снижения прочности практически вырождается в прямую линию. Экстраполяцией этой кривой до линии, параллельной оси абсцисс с ординатой, равной заданному напряжению, можно приблизительно определить момент разрушения материала, т. е. его долговечность. Эта методика весьма полезна при качественной оценке материала и при сравнении его характеристик в различных условиях эксперимента, особенно при изучении влияния температуры, так как для некоторых стеклопластиков долговечность при комнатной температуре во много раз выше, чем,  [c.169]

До недавнего времени считали, что теплофизические свойства сталей мало меняются в зависимости от их структурного состояния, хотя в общей формулировке известна зависимость свойств, в том числе и тепло-физических, от структуры металла. Поэтому были исследованы основные теплофизические свойства ряда сталей после обработки их в оптимальных для механических свойств режимах ТЦО. Теплофизические свойства, в частности теплопроводность к сплава, определяются следующими его структурными факторами химическим составом, размером и формой зерен, строением границ и ориентацией зерен, ликвацией, стро-чечностью, упорядоченностью твердых растворов и т. д. Имеющиеся в справочной литературе данные о теплопроводности получены в основном для металлов, находящихся в равновесном состоянии после отжига, высокого отпуска, и не отражают в полной мере влияния ТО на теплопроводность. Это привело к распространению мнения о независимости к от режимов ТО. Однако известно, что у закаленных стальных образцов Я на 30—40 % ниже, чем у отожженных. Исследование показало, что в результате ТЦО сплавов в соответствующих режимах к существенно изменяется. В отдельных случаях к снижалась в 2 раза по сравнению с отожженным состоянием сплава. В табл. 3.32 приведены результаты определения к при комнатной температуре ряда сплавов, прошедших стандартный отжиг и СТЦО. В последней колонке  [c.126]

Решение уравнения (3) можно строить, исходя из следующей аналогии с массовыми силами влияние температуры эквивалентно действию дополнительных объемных и поверхностных сил, т. е. вместо действительных массовых и поверхностных сил Хи рг можно взять массовые силы Хг — и поверхностные нагрузки рг- - уПг . В самом делб, из структуры уравнений (3) и краевых условий на поверхности тела Л  [c.39]

Кроме напряженного состояния на прочность материала оказывают влияние температура, градиенты напряжений, масштабный фактор и т. п. Поэтому поверхности равной прочности следовало ы строить вГпространстве с максимальным количеством измерений. Однако выдвинутые до последнего времени гипотезы позволяют составить уравнения предельной поверхности лишь в трехмерном пространстве напряжений.  [c.67]


Чтобы определить влияние температуры закалки на твердость стали, берут ряд образцов из исследуемой стали с 0,4% С и нагревают до разных температур 675, 700, 735, 770, 820 и 850°, а затем закаливают в воде. Закаленные образцы зачищают от окалины с двух сторон и испытывают на твердость по Роквеллу алмазом при нагрузке 150 кгс. По полученным данным строят кривую изменения твердости данной стали в зависимости от температуры ее закалки (по оси абсцисс откладывают температуру закалки). По такой кривой с достаточной для практики точностью можно определить критические точки стали при нагреве, т. е. точки A i и Асз.  [c.126]

Чтобы определить влияние температуры отпуска на твердость стали, закаленные в воде образцы из исследусмой стали с 0,4% С (нагрев под закалку производился до температуры Лсз, найденной ранее) подвергают отпуску при 200, 400 и 600° с выдержкой в течение 30 мин. После отпуска все образцы охлаждают в воде (напомним, что скорость охлаждения при отпуске не влияет на твердость, поэтому охлаждать после отпуска можно в масле и на воздухе) и испытывают на твердость. По полученным данным строят кривую изменения твердости стали в зависимости от температуры ее отпуска-  [c.126]

Структурные изменения в зоне термического влияния рассмотрим на однопроходном стыковом соединении из малоуглеродистой стали, содержащей 0,2% С. При этом над сечением соединения строим кривую распределения максимальных температур и в том же масштабе рядом размещаем часть диаграммы состояния железо — углерод.  [c.83]

До сих пор мы рассматривали данные, относящиеся лишь к одной температуре 800 К. Если предположить, что п то же самое, что По в (7.7), то уравнения (7.3), (7.4) и (7.5) описывают влияние температуры Г на 5 и а. Теоретические и экспериментальные кривые сравниваются на рис. 7.5 и 7.6. Видно, что имеются небольшие расхождения, которые возрастают с температурой и при х- 2/3. Этого и следовало ожидать из качественных соображений в результате возбуждения электрон-дыроч-ны-х пар через запрещенную зону. Если вкладом дырок в явления переноса можно пренебречь (вследствие захвата дырок в локализованных состояниях между краем валентной зоны о и порогом подвижности Evi в ней), то а и S по-прежнему будут связаны соотношениями (7.4) и (7.5), но вместо зависимости для о нужно строить зависимость для 800а/Г. Оказывается, что это действительно так, за исключением области Т 1000 К. Поэтому оказалось возможным определить концентрацию дырок р = = п — о как функцию Т с помощью уравнений (7.3) и (7.4), и эта зависимость была проанализирована в рамках простой двухзонной модели с псевдощелью. Предполагая несколько произвольно, что край валентной зоны имеет параболическую форму, так что плотность состояний в валентной зоне —  [c.128]

На основе анализа повреждений трубной системы, обнаруженных в период полной разборки двухходового подогревателя, сделан вывод о преимущественном влиянии на разрушение латунных трубок из Л68 высокой температуры питательной воды в зоне охлаждения пара и на участках трубок зоны конденсации, омываемых паром после охладителя [1]. В зону охлаждения пара поступает вода с расчетной температурой всего на 5 °С меньше температуры насыщения. Разрушение трубок ускоряется вследствие возникновения пульсаций температуры в зоне начала закипания. Уменьшение скорости питательной воды при переходе на двухходовой поток сказывается на увеличении срока службы латунных трубок поверхности нагрева зоны конденсации, так как значительно уменьшаются местные сопротивления и возможность вскипания питательной воды, но надежная эксплуатация трубок зоны охлаждения пара при этом не обеспечивается. В связи с тем что латунные трубные элементы в зоне охладителя пара ПНД (последних по ходу питательной воды) быстро выходят из строя, необходимо их изготавливать из нержавеющей стали 12Х18Н10Т (12,5 % общего количества трубок подогревателя).  [c.195]

В те времена металлургические печи, построенные из 1гварцевого огнеупорного кирпича-динаса, сравнительно быстро выходили из строя. Под влиянием высоких температур динасовая кладка печей увеличивалась в своих размерах, приводя к разрушению агрегата. Тщательные исследования Грум-Гржимайло показали, что виной всему является превращение кварца в другое аллотропическое состояние с меньшим удельным весом. Ученый разработал способ получения так называемого черного динаса, огнестойкого и прочного огнеупора, размеры которого остаются неизменными при самых длительных воздействиях высоких температур. Совершенствованием огнеупорных материалов он занимался и в последующие годы. Его открытия в этой области были обобщены в докладе Огнестойкость динаса , прочитанном 8 февраля 1910 г. на первом заседании только что созданного тогда Русского металлургического общества.  [c.141]

Температура различных элементов тормоза измерялась с помощью железоконстантановых термопар, установленных на этих элементах, а температура поверхности трения фрикционной накладки, определяющая степень надежности тормоза в целом, измерялась с помощью скользящей термопары. Применение скользящих термопар имеет тот недостаток, что показания их искажаются теплом от собственного трения термопары по поверхности трения, так как термопара истирается вместе с накладкой. Однако применение их не требует экстраполяции температур, необходимой при использовании термопар, заложенных в толще исследуемого изделия. Следовательно, неоднородность материала фрикционной накладки, изменение ее свойств в процессе работы и изменение геометрии накладки при изнашивании не оказывают влияния на результаты измерений скользящими термопарами. Скользящая термопара позволяет определить не фактическую температуру в контактной точке двух трущихся тел, а некоторую усредненную температуру по поверхности трения, но эта особенность не является недостатком. Важно лишь, чтобы во всех случаях измерения — при определении температуры поверхности трения для данных условий использования тормоза и при определении допускаемой температуры нагрева для данного фрикционного материала — применялась одна и та же методика измерений и однотипная измерительная аппаратура. На основании результатов измерений температур строились графики нагрева отдельных точек тормоза в процессе работы (фиг. 356).  [c.623]

Казалось бы, такой самоподстраивающийся, корректирующий свою программу на ходу станок-автомат,— верх совершенства. Но нетрудно подметить, что и его возможности ограничены. Хорошо, если шлифуемый диаметр получился больше или меньше заданного станок это исправит, продолжив обработку. Ну, а если перекосится ось всей обрабатывемой поверхности Кстати, это типичный, часто встречающийся случай. Тщательные исследования показали, что достаточно обычному круглошлифовальному станку постоять два часа на солнце, как станина его заметно коробится и стол начинает отклоняться от прямолинейного перемещения на 0,05 миллиметра — целых 50 микрон. Еще большие неточности в работу станка вносит нагрев электродвигателя, подшипников, коробки скоростей. Вообще с повышением точности обработки чувствительность станков к внешним воздействиям неизбежно растет. Не только смена температур, но и влажность воздуха, пары химических веществ, толчки от проходящего транспорта — все оказывает на них влияние. Даже магнитные и электрические поля, бесплотные радиоволны могут повлиять на точность обработки, так как они способны исказить работу электронной аппаратуры. Чтобы исключить вредные влияния, станки устанавливают на упругие фундаменты, строят термоконстантные цехи, в которых температура колеб-  [c.238]


Экспериментальный материал, собранный при испытаниях, позволяет оценить коэффицианты теплоотдачи от пара к различным поверхностям роторов и корпусов паровых турбин [106, 88]. Влияние погрешностей в задании температур сред сказывается на величинах напряжений и суммарной относительной повреждаемости роторов в значительно большей степени, чем погрешности в задании коэффициентов теплоотдачи. Отсутствие указанных сведений определялось, в основном, трудностью надежной установки в условиях монтажа или капитального ремонта турбины сложной оснастки в труднодоступных местах проточной части диафрагменных, концевых и промежуточном уплотнениях, на лопатках диафрагм и т. д. В большинстве случаев, когда такую оснастку удалось установить, она выходила из строя в первые месяцы экспериментального исследования.  [c.67]

Для определения резонансной частоты вращеиня строится частотная диаграмма, изображенная на рис. 17, а, б [10] соответственно для компрессорной и турбинной лопаток. На диаграмме нанесены кривые изменения частот собственных колебаний лопатки /j, (п), определенные с учетом влияния центробежных сил и температуры. Точки пересечения этих кривых с лучами гармоник определяют резонансные частоты вращения ротора Пр з.  [c.249]

Окна из возможных причин выхода из строя аппаратуры цри осуществлении ультразвукового контроля по горячей поверхности -тепловое воздействие на искатель, кабель и дефектоскоп. QosToi y при щюведении такого контроля нельзя щ>именять искатели при температурах выше допустимых, а дефектоскоп следует по возиожнос-ти удалять из зоны термического влияния.  [c.21]

Твердость сталей, измеряемая при комнатной и главным образом при более высоких температурах, помимо сказанного, в большей мере зависит от количества и свойств (твердости) более стабильных и болёё твердых, чем мартейсИт, фаз карбидов, интерме-таллидов, и от их размеров. Влияние крупных карбидов на твердость быстрорежущих сталей показано на рис. 10. Кроме того, в случае неравномерного распределения карбидов в сталях с большим количеством карбидов могут возникать твердые карбидные строчки с мягкими промежутками между ними. Размер зерен аустенита не оказывает существенного влияния на твердость закаленной стали.  [c.27]

Каков уровень требований, которые следует выдвигать при синтезе СОЖ В принципе,. как полагает М. Б. Гордон, реальны.м является полное устранение адгезии на поверхностях трения и достижение там гомогенного граничного трения. Одновременно реальным является требование предотвратить разрушающее влияние естественной среды (кислорода) в тех условиях, когда оно вызывает деструкцию твердых сплавов или в условиях, когда Окисные пленки затрудняют обработку новерхности методами резания (шлифования), а также в тех случаях, когда на стружке и поверхности резания интенсивно образуются, разрушаются и вновь регенерируются толстые и твердые окионые пленки, абразивно разрушающие контактные поверхности режущего инструмента. Охлаждающее действие СОЖ наиболее сильно молсет понизить температуру обрабатываемой детали и массы режущего инструмента, а моющее действие — предотвратить преждевременный выход и строя абразивного инструмента по причине засаливания, многократно уменьшить из нос лезвийных инструментов и способствовать резкому улучшению шероховатости обработанных поверхностей.  [c.54]

Для опор конвертеров характерны большие радиальные нагрузки при медленном вращении в сочетании с вибрацией системы и сильными ударами при загрузке конвертера, а также при скалывании застывшего металла значительное осевое смещение в плавающей опоре вследствие большого перепада температур несоосность опор от статического или динамического прогиба, от деформаций при нагреве, а также от неточности установки цапф и корпусов обычно несоосность опор при точной выверке не превышает 1° высокая температура окружающей среды и значительный нагрев подшипников в результате теплопроводности, излучения, выброса жидкого металла и шлака (влияние высоких температур может быть уменьшено при установке экрана на цапфе либо охлаждением водой, циркулирующей внутри корпуса или цапфы) сложность герметизации подшипникового узла, которая предохраняет узел от проникновения в него пыли, вы дуваемой в большом количестве в окружающую атмосферу при плавке, а также частиц жидкого металла и шлака (значительние угловое смещение при несоосности опор и линейное смещеное при тепловом расширении элементов конвертера не позволяют использовать лабиринтные уплотнения, а наличие высоких температур усложняет возможность применения контактных уплотнений) сложность монтажных операций (в частности, замена вышедшего из строя подшипника с приводной стороны конвертера связана с демонтажом привода).  [c.512]

Изделия из свинца имеют высокую коррозионную стойкость при воздействии ряда агрессивных сред. Поэтому свинец получил значительное распространение в химической промышленности для изготовления аппаратов и трубопроводов. Однако свинец хорошо защищает стальную аппаратуру и конструкции от влияния агрессивных сред только в том случае, если покрытие выполнено качественно. При малейших дефектах покрытия аппаратура преждевременно выходит из строя, поэтому повреждение свинца недопустимо. Характерной особенностью листового свинца является его способность растягиваться от собственной массы, когда он находится в вертикальном положении, особенно при повышенной температуре. Для уменьшения растяжения листового свинца его необходимо дополнительно крепить лентами, бандажами. Такелажные работы по перемещению готовых изделий из свинца, а также при монтаже оборудования должна выполнять бригада такелажников, п рик реплен-ная к сварщику свинца. Эта бригада должна иметь до-стато чный навык в обращении оо овиицом и изделиями из него.  [c.153]

Рассматривается обтекание плоской полубесконечной пластины равномерным сверхзвуковым химически неравновесным потоком вязкого газа при больших, но докритических числах Рейнольдса Re, Предполагается, что газ представляет собой бинарную смесь атомов и двухатомных молекул, состоящих из тех же атомов, а температура поверхности пластины не превышает уровня, при котором начинается диссоциация молекул при локальном давлении. Исследуется влияние скачкообразного изменения температуры и каталитических свойств поверхности пластины на некотором расстоянии I от передней кромки на обтекание и нагревание пластины. Строится решение уравнений Навье-Стокса совместно с уравнением сохранения массовой концентрации атомов при Re = p u i/oo. Ниже в данном параграфе используются те же безразмерные переменные, что и в предьщущих параграфах, температура отнесена к /R (т — молекулярный вес молекулярного компонента газа, R — универсальная газовая постоянная), тепловой поток к pooU , коэффициент ка-талитичности поверхности к Uoo, удельные теплоемкости к R/m, остальные функции течения к своим значениям в набегающем потоке.  [c.123]

Влияние хрома, марганца и никеля на свойства феррита проявляется более значительно после термической обработки. Это объясняется тем, что они в отличие от других элементов оказывают влияние на скорость полиморфного 7- -а-превращения железа, уменьшая ее (понижают температуру точки Лз). Поэтому при медленном охлаждении безуглеродистого легированного железа (С<0,02%) образуется обычный феррит, имеющий равноосные зерна. При быстром же охлаждении превращение Fe.j,->Fe происходит по мартенситному меха низму безуглеродистый аустенит превращается в бе-зуглеродистый мартенсит с типичным игольчатым строе-  [c.219]

Шелевая ячейка (рис. 9) состоит из разборного анода 2, представляющего собой 25 пластинок, закрепленных на общем основании и соединенных между собой с помощью медной шины, а также из катода 1 и ванны из диэлектрика 3 (например, органическое стекло) особой формы. Для определения равномерности и глубины проникновения покрытия строят кривую распределения массы покрытия вдоль анода в координатах Дffгi—I, где hmi — масса покрытия на -той пластинке, 1 — номер пластинки. Метод удобен в лабораторной практике, особенно при исследовании влияния различных факторов (температуры, напряжения, продолжительности электроосаждения) на рассеивающую способность.  [c.27]

На надежность аппаратуры управления и контроля влияют две группы факторов аппаратурные (технические) и неаппаратурные (внешние). К аппаратурным факторам относятся старение элементов аппаратуры и их износ в процессе эксплуатации, отклонение технических характеристик от номинальных значений, несовершенство структурной схемы, выход из строя защитных элементов. К неаппаратурным факторам относятся влияние внешней среды (температура, влажность, агрессивная среда), квалификация обслуживающего персонала, качество обслуживания аппаратуры.  [c.219]

В книге сделана попытка обобщить опыт повышения надежностх поршней отечественных тепловозных дизелей с анализом зарубежных данных. Так, в главе I в систематизированном виде рассмотрены конструктивные особенности поршней, виды их повреждений, изменения характера повреждений и сроков службы в процессе усовершенствования конструкции, технологии изготовления и эксплуатации дизелей. В связи с тем что преждевременные выходы поршней из строя вызываются высоким уровнем температуры и напряжений, в главах II и III описаны методы экспериментального и расчетного исследований и приведены их фактические величины. Путем сопоставления температур и напряжений с характером трещин, образующихся в поршнях, показаны ( 4 гл. III) причины, механизм возникнойения и методы их устранения. На основе расчетных и экспериментальных исследований в главе IV рассмотрены общие методы снижения теплового и напряженного состояния поршней, а также влияние материала, качества изготовления, ремонта и условий эксплуатации на надежность и долговечность поршней. В этой же главе дан анализ методов ускоренных испытаний для сравнительной оценки конструктивных вариантов поршней, материалов, применяемых для изготовления, а также масел, используемых для охлаждения. Автор надеется, что книга будет полезна эксплуатационникам, а также конструкторам и научным работникам, занимающимся повышением надежности и долговечности поршней. Экспериментальные и расчетные методы, рассмотренные в книге, могут быть использованы для исследований теплового и напряженного состояний и других деталей дизелей (цилиндровых крышек, клапанов и т. п.).  [c.4]



Смотреть страницы где упоминается термин Влияние температуры на строй : [c.101]    [c.197]    [c.362]    [c.246]    [c.202]    [c.26]    [c.138]    [c.146]    [c.123]   
Смотреть главы в:

Акустика музыкальных инструментов  -> Влияние температуры на строй



ПОИСК



Влияние Влияние температуры

Строев

Строчка 261, XIV

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте