Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая неполнота сгорания

Составляющие тепловых потерь указаны в формуле (18.5). Из них потери теплоты от химической неполноты сгорания <Эз и от механического недожога Q< для современных котельных агрегатов невелики, что связано с высоким совершенством горелочных устройств (см. гл. 17). Несколько больше потери в окружающую среду через ограждение (стены) котла, но и они обычно не превышают 2,5 %, поскольку плотные относительно холодные экраны топки и изоляционный слой обмуровки как топки, так и газоходов достаточно надежно защищает котел от теплопотерь в окружающую среду. Наибольшие теплопотери (5 % и более) составляют потери с уходящими газами, поскольку они удаляются из котла с температурой ПО—150°С (см. 18.1), что намного превышает температуру окружающей среды.  [c.216]


В уравнениях (2.1) и (2.2) QI — располагаемая теплота Gi Ч ) — теплота, полезно использованная в котлоагрегате на получение пара Qi (qi) — потери теплоты с уходящими газами бз ( з) — потери теплоты от химической неполноты сгорания топлива Q4 (q ) — потери теплоты от механической неполноты сгорания топлива Q% (qs) — потери теплоты в окружающую сре-ду Qe (qe) — потеря теплоты с физической теплотой шлака.  [c.31]

Потери теплоты (кДж/кг) от химической неполноты сгорания  [c.33]

Потери теплоты (%) от химической неполноты сгорания топлива  [c.34]

Потери теплоты от химической неполноты сгорания топлива, по формуле (2.14),  [c.37]

Задача 2.15. В топке котельного агрегата сжигается челябинский уголь марки БЗ состава С = 37,3% Н = 2,8% SS=1,0% N = 0,9% 0 =10,5% = 29,5% И =18,0%. Определить в кДж/кг и процентах потери теплоты от химической неполноты сгорания топлива, если известны содержание в уходящих газах оксида углерода С0 = 0,25% и трехатомных газов R02 = 17,5% и температура топлива на входе в топку /т = 20°С.  [c.42]

Задача 2.16. Определить в кДж/кг и процентах потери теплоты от химической неполноты сгорания топлива, если известны из данных анализа содержание оксида углерода в уходящих газах СО = 0,28% и содержание трехатомных газов R02= 19%. Котельный агрегат работает на каменном угле с низшей теплотой сгорания 2 =22 825 кДж/кг, содержание в топливе углерода С = 58,7% и серы Sp = 0,3%.  [c.43]

Задача 2.19. Определить в процентах и кДж/кг потери теплоты в окружающую среду, если известны температура топлива на входе в топку /, = 20°С, теплота, полезно использованная в котло-агрегате, i = 84% потери теплоты с уходящими газами 2=11%, потери теплоты от химической неполноты сгорания топлива О з = 0,5%, потери теплоты от механической неполноты сгорания топлива 4 = 4%. Котельный агрегат работает на подмосковном угле марки Б2 с низшей теплотой сгорания Ql=lO 516 кДж/кг, содержание в топливе влаги = 32,0%. Потерями теплоты с физической теплотой шлака пренебречь.  [c.44]

Задача 2.21. Определить в процентах потери теплоты в окружающую среду, если известны теплота, полезно использованная в котлоагрегате, 51 = 87%, потери теплоты с уходящими газами 2 = 8%, потери теплоты от химической неполноты сгорания топлива 3 = 0,5%, потери теплоты от механической неполноты сго-  [c.44]


Задача 2.24. В топке котельного агрегата сжигается каменный уголь, состав горючей массы которого = 88,5% Н -4,5% 8л = 0,5% 1,8% 0 =4,7% зольность сухой массы А"=13,0% и влажность рабочая И = 7,0%. Определить кпд котельного агрегата (брутто), если известны температура воздуха в котельной / = 25°С, температура воздуха, поступающего в топку, /, = 175°С, коэффициент избытка воздуха в топке а =1,3, потери теплоты с уходящими газами 62 = 2360 кДж/кг, потери теплоты от химической неполноты сгорания 147,5 кДж/кг, потери теплоты от механической неполноты сгорания 24 = 1180 кДж/кг, потери теплоты в окружающую среду Q,  [c.47]

D — 5,9 кг/с, если известны давление перегретого пара Ра.а=1А МПа, температура перегретого пара ,i = 250° , температура питательной воды / .,= 120°С, кпд котлоагрегата (брутто) / а=86,5%, тепловое напряжение площади колосниковой решетки QjR= 1260 кВт/м , потери теплоты от химической неполноты сгорания топлива 2з = 107,5 кДж/кг и потери теплоты от механической неполноты сгорания топлива Й4= 1290 кДж/кг. Котельный агрегат работает на кизелов-ском угле марки Г с низшей теплотой сгорания горючей массы 2в = 31 349 кДж/кг, содержание в топливе золы = 31% и влаги И = 6%.  [c.52]

Теоретическая температура горения топлива в топке (0 ) представляет собой температуру, до которой нагрелись бы продукты сгорания, если бы на их нагрев пошла вся теплота, введенная в топку, за вычетом потерь теплоты от химической неполноты сгорания топлива и физической теплоты шлака.  [c.54]

Задача 2.40. Определить теоретическую температуру горения топлива в топке котельного агрегата, работающего на донецком угле марки Д состава С =49,3% Н = 3,6% Sp = 3,0%> N =1,0% 0 = 8,3% = 21,8% И = 3,0Уо, если известны температура воздуха в котельной в = 30°С, температура горячего воздуха fi..B = 295° , коэффициент избытка воздуха в топке а = 1,3, присос воздуха в топочной камере Aot = 0,05, потери теплоты от химической неполноты сгорания топлива 3 = 0,5%, потери теплоты от механической неполноты сгорания топлива 4 = 3% и потери теплоты с физической теплотой шлака б 0,5%.  [c.55]

Величина химической неполноты сгорания в турбулентном потоке значительно ниже, так как при высокой интенсивности процесса уменьшается время нагрева газа и снижается возможность термического разложения углеводородов.  [c.236]

Потеря теплоты от химической неполноты сгорания имеет место в том случае, если в дымовых газах появляются продукты неполного горения (СО, Нг и др.). Химическая неполнота сгорания увеличивается при недостаточном количестве воздуха в топке, недостаточно интенсивном перемешивании воздуха с горючими газами в топке, низкой температуре в топке или недостаточно развитом объеме топочной камеры.  [c.244]

При эксплуатации котлов потери от химической неполноты сгорания (0 — 2 %)  [c.162]

Qs — потеря теплоты от химической неполноты сгорания топлива Q4 —потеря теплоты от механической неполноты сгорания топлива  [c.62]

Летучие вещества, выделяющиеся в топке из топлива, не успевают полностью сгореть в топочном пространстве, вследствие чего в дымовых газах, покидающих топку, остается небольшое количество продуктов газификации топлива (СО, Н, СН4 и др.), с которыми уносится часть химически связанного тепла, заключенного в топливе. Это приводит к появлению потери, называемой потерей тепла от химической неполноты сгорания дз и обычно выражаемой в процентах от теплоты сгорания топлива QP.  [c.262]

Потеря тепла от химической неполноты сгорания.  [c.302]

Qi — полезно использованное тепло Q , Qa, Q , Q , Qa — потерн тепла соответственно с уходящими газами, от химической неполноты сгорания, механической неполноты сгорания, в окружающую среду через наружные ограждения котла, с физическим теплом шлака.  [c.142]


Потери тепла от химической неполноты сгорания в процессе эксплуатации и при тепловых испытаниях котельных агрегатов определяют с помощью анализа продуктов сгорания на газоанализаторах. В продуктах сгорания определяют содержание СО, Из и СН4 и по формуле  [c.143]

Датчик устройства установлен непосредственно в газоходе в зоне температур около 400 С. Помимо фиксации параметров, контролируемых штатными приборами станции (в том числе нагрузки В и коэффициента избытка воздуха а), определяли содержание О2, 80з, СО, N0 в уходящих газах, а также потери теплоты с химической неполнотой сгорания 3.  [c.97]

Задача 2.22. В пылеугольной топке котельного агрегата па-ропроизводительностью 0 = 5,56 кг/с сжигается бурый уголь с низшей теплотой сгорания Ql=l5 ООО кДж/кг. Определить кпд котло агрегата (брутто) и расход натурального и условного топлива, если известны давление перегретого пара Ри.а = 4 МПа, температура перегретого пара /ц. = 450°С, температура питательной воды /цв=150°С, величина непрерывной продувки Р = 3%, потери теплоты с уходящими газами q2 = lVo, потери теплоты от химической неполноты сгорания топлива з = 0,5, потери теплоты  [c.45]

Задача 2.32. Определить площадь колосниковой решетки, объем топочного пространства и кцд топки котельного агрегата паропроизводительностью /) = 5,45 кг/с, если известны давление перегретого пара Ри.и= А МПа, температура перегретого пара /п.п = 280°С, температура питательной воды t = 100°С, кпд котло-агрюгата (брутто) rjl = i6%, величина непрерывной продувки Р = 3%, тепловое напряжение площади колосников ой решетки Q/R=1015 кВт/м тепловое напряжение топочного объема Q/Ft=350 кВт/м , потери теплоты от химической неполноты сгорания топлива з = 0,5% и потери теплоты от механической неполноты сгорания топлива <74 = 5,5%. Котельный агрегат работает на кузнещсом угле марки Т с низшей теплотой сгорания горючей массы 2 =34 345 кДж/кг, содержание в топливе золы = 16,8% и влаги И = 6,5%.  [c.50]

Задача 2.33. В топке котельного агрегата паропроизводите-льностью Z) = 7,05 кг/с сжигается природный газ Саратовского месторождения состава С02 = 0,8% СН4 = 84,5% QH6 = 3,8% СзН8 = 1,9% С4Н,о = 0,9% sH,2 = 0,3% N2 = 7,8%. Определить объем топочного пространства и кпд топки, если известны давление перегретого пара р п=1,4 МПа, температура перегретого пара /п, = 280°С, температура питательной воды n.B=HO° , кпд котлоагрегата (брутто) / а = 91%, величина непрерывной продувки Р=4%, тепловое напряжение топочного объема Q/Vj = 3l0 кВт/м , потери теплоты от химической неполноты сгорания топлива з = 1,2% и потери теплоты от механической неполноты сгорания топлива q — 1°/о.  [c.51]

Задача 2.37. В шахтно-мельничной топке сжигается донецкий уголь марки Г с низшей теплотой сгорания 6 = 22 024 кДж/кг. Определить площадь колосниковой решетки, объем поточного пространства и кпд топки, если тепловое напряжение площади колосниковой решетки 0Л=127О кВт/м , тепловое напряжение топочного объема 2/К = 280 кВт/м , расход топлива 5 = 0,665 кг/с, потери теплоты от химической неполноты сгорания топлива 3 = 0,6% и потери теплоты от механической неполноты сгорания топлива 4 = 4,4%.  [c.52]

Задача 2.38. Определить полезное тепловыделение в топке котельного агрегата, работающего на подмосковном угле марки Б2 состава С = 28,7% tf = 2,2% SS==2,7% N = 0,6% 0 = 8,6% А = 25,2% И = 32,0%, если известны температура топлива на входе в топку tj = 20° , температура воздуха в котельной в=30°С, температура горячего воздуха /, =300°С, коэффициент избытка воздуха в топке atr= 1,3, присос воздуха в топочной камере Aoj = 0,05, потери теплоты от химической неполноты сгорания топлива дз — 0,5%, потери теплоты от механической неполноты сгорания топлива д = Ъ%, объем рециркулирующих газов Грц=1,1 м /кг, температура рециркулирующих газов 0рц=1ООО°С и средняя объемная теплоемкость рециркулирующих газов с рд= 1,415 кДж/(м К).  [c.55]

Задача 2.39. Определить, на сколько изменится полезное тепловыделение в топке котельного агрегата за счет подачи к горелкам предварительно подогретого воздуха, если известны температура воздуха в котельной в = 30°С, температура горячего воздуха /г.в = 250°С, коэффициент избытка воздуха в топке (Хг=1,15, присос воздуха в топочной камере А(Хг = 0,05 и потери теплоты от химической неполноты сгорания топлива 93= 1%. Котельный агрегат работает на природном газе Саратовского месторождения состава С02 = 0,8% СН4 = 84,5% С2Нб = 3,8% СзН8=1,9% С4Н,0 = 0,9% С5Н,2 = 0,3% N2 = 7,8%.  [c.55]

Задача 2.41. Определить теоретическую температуру горения в топке котельного агрегата, работающего на природном газе состава СН4 = 92,2% С2Нб = 0,8% 41,0 = 0,1% N2 = 6,9%, если известны температура воздуха в котельной /,= 30°С, температура горячего воздуха fT.B = 250° , коэффищ1ент избытка воздуха в топке (Хг= 1,1, присос воздуха в топочной камере Аат = 0,04 и потери теплоты от химической неполноты сгорания топлива  [c.57]

Задача 2.46. Определить количество теплоты, переданное лучевоспринимающим поверхностям топки котельного агрегата, работающего на донецком каменном угле марки Т состава С -62,7% Н" = 3,1% S> -2,8% N" = 0,9% 0"=1,7% а = 23,8% ff = 5,0%, если известны температура воздуха в котельной /, = 30°С, температура горячего воздуха /гв = 300°С, коэффициент избытка воздуха в топке а =1,25, присос воздуха в топочной камере Аат = 0,05, температура газов на выходе из топки 0 = 11ОО°С, потери теплоты от химической неполноты сгорания топлива з = 0,6%, потери теплоты от механической неполноты сгорания 4 = 3%, потери теплоты в окружающую среду 5 = 0,5% и потери теплоты с физической теплотой шлака 96=0,4%.  [c.62]


Задача 2.47. Определить количество теплоты, переданное лу-чевоспринимающим поверхностям топки котельного агрегата, работающего на карагандинском угле марки К состава С = 54,7% Н = 3,3% S = 0,8% N = 0,8% 0 = 4,8% Л = 27,6% W = 8,0%, если известны температура воздуха в котельной /,=30°С, температура горячего воздуха г., = 350°С, коэффициент избытка воздуха в топке От= 1,3, присос воздуха в топочной камере А(Хт = 0,05, температура газов на выходе из топки 0т=1ООО°С, потери теплоты от химической неполноты сгорания топлива 3 = 0,6%, потери теплоты от механической неполноты сгорания топлива 4 = 3,0%, потери теплоты в окружающую среду qs = 0,5% и потери теплоты с физической теплотой шлака  [c.64]

Задача 2.48. Определить количество теплоты, переданное лу-чевоспринимающим поверхностям топки котельного агрегата, работающего на природном газе состава С02 = 0,2% СН4 = 97,9% С2Н4 = 0,1% N2=1,8%, если известны температура воздуха в котельной /в = 30°С, температура горячего воздуха /г.в = 230°С, коэффициент избытка воздуха в топке а.,= 1,1, присос воздуха в топочной камере АОт = 0,05, температура газов на выходе из топки 0 = 1ООО°С, потери теплоты от химической неполноты сгорания топлива дз = 1% и потери теплоты в окружающую среду 5=1,0%.  [c.64]

Задача 2.50. Определить количество теплоты, переданное лу-чевоспринимающим поверхностям топки котельного агрегата, работающего на донецком угле марки Д с низшей теплотой сгорания QI—19 453 кДж/кг, если известны температура воздуха в котельной /в = 30°С, температура горячего воздуха fr, = 295° , коэффициент избытка воздуха в топке 1 = 1,3, присос воздуха в топочной камере Ааг = 0,05, теоретически необходимый объем воздуха F° = 5,17 м /кг, энтальпия продуктов сгорания / = = 12 160 кДж/кг, потери теплоты от химической неполноты сгорания топлива 9з = 0,7%, потери теплоты от механической непо-  [c.64]

Задача 2.51. Определить лучевоспринимающую поверхность нагрева топки котельного агрегата паропроизводительностью D — 4,09 кг/с, работающего на природном газе Ставропольского месторождения с низшей теплотой сгорания 6 = 35 621 кДж/м , если известны давление перегретого пара = 4 МПа, температура перегретого пара r = 425° , температура питательной воды в=130°С, величина непрерывной продувки Р=3%, теоретически необходимый объем воздуха F =9,51 м /м , кпд котлоаг-регата (брутто) >/ р=90%, температура воздуха в котельной te = 30° , температура горячего воздуха гв = 250°С, коэффициент избытка воздуха в топке о =1,15, присос воздуха в топочной камере Aotj = 0,05, теоретическая температура горения топлива в топке 0т = 2О4О°С, температура газов на выходе из топки б = =1000 С, энтальпия продуктов сгорания при в 1 — = 17 500 кДж/м , условный коэффициент загрязнения С = 0,65, степень черноты топки Дт = 0,554, расчетный коэффициент, зависящий от относительного местоположения максимума температуры в топке. Л/=0,44, потери теплоты от химической неполноты сгорания топлива q = 1% и потери теплоты в окружающую среду 95=1,0%.  [c.65]

Задача 2.52. Определить лучевоспринимающую поверхность нагрева топки котельного агрегата паропризводительностью D= 13,9 кг/с, работающего на каменном угле с низшей теплотой сгорания Ql = 25 070 кДж/кг, если известны давление перегретого пара />п.п = 4 МПа, температура перегретого пара /п = 450°С, температура питательной воды /пв=150°С, величина непрерывной продувки Р=4%, теоретически необходимый объем воздуха F° = 6,64 м /м , кпд котлоагрегата (брутто) >/ а = 87%, температура воздуха в котельной /в = 30°С, температура горячего воздуха в = 390 С, коэффициент избытка воздуха в топке 0 = 1,25, присос воздуха в топочной камере Лат = 0,05, теоретическая температура горения тогшива в топке бт = 2035 С, температура газов на выходе из топки 0 = 1О8О С, условный коэффициент загрязнения С = 0,6, степень черноты топки = 0,546, расчетный коэффициент, зависящий от относительного местоположения максимума температуры в топке, М=0,45, потери теплоты от химической неполноты сгорания топлива з=1,0%, потери теплоты от механической неполноты сгорания топлива 174 = 3% и потери теплоты в окружающую среду = 1 %.  [c.66]

ТГысокой эффективностью отличаются трубчатые печи с излучающими стенками. В этих печах боковые стенки составляются из беспламенных панельных горелок, позволяющих сжигать топливо с малым коэффициентом избытка воздуха без потерь от химической неполноты сгорания и при больших тепловых напряжениях топочного объема (рис. 4.5). Необходимое для горения количество воздуха инжектируется топливным газом непосредственно из атмосферы. Газовоздушная смесь поступает через распределительную камеру горелки в керамические туннели, равномерно расположенные по всей поверхности горелки  [c.259]

Величину потери тепла от химической неполноты сгорания в эксплуатации и при тепловых испытаниях котельных агрегатов находят по содержанию в дымовых газах продуктов неполного сгорания — СО, Нг, СН4, СтНп, определенному на основе химического анализа дымовых газов. При проектировании же котельных агрегатов значением потери с химической неполнотой сгорания задаются в пределах 0,5—1,5%, руководствуясь нормами теплового расчета котельных агрегатов.  [c.304]

Здесь Щах — потеря тепла от охлаждения в фо Ярх — потеря тепла с уходящими газами в О/о qx — потеря тепла от химической неполноты сгорания в % qx — потеря тепла от механической неполноты сгорания (провала, уноса и пр.) в о/о, 1 — теплосодержание свежего пара в ккал1кг — теплосодержание отработанного пара в /скал кг q — теплосодержание питательной воды в ккал1кг А11 — индикаторная работа машины в ккал кг-, — работа идеальной машины в ккал кг.  [c.245]

Горелочные устройства предназначены для подачи в топку котла необходимого количества топлива и воздуха, для эффективного перемешивания топлива с воздухом при оптимальном аэродинамическом сопротивлении каналов го-релочного устройства, а также для обеспечения устойчивого воспламенения и минимального образования токсичных веществ. Компоновка горелок на котле, аэродинамическая структура потока, выдаваемого каждой горелкой, в сочетании с аэродинамикой топочного устройства должны создавать благоприятные условия для процесса горения в топке, обеспечивая минимум потерь с механической и химической неполнотой сгорания.  [c.3]


Смотреть страницы где упоминается термин Химическая неполнота сгорания : [c.158]    [c.50]    [c.53]    [c.58]    [c.273]    [c.142]    [c.281]    [c.305]    [c.102]    [c.251]    [c.79]   
Паровые котлы средней и малой мощности (1966) -- [ c.58 ]

Промышленные парогенерирующие установки (1980) -- [ c.55 ]



ПОИСК



Глава двенадцатая. Упрощенная методика определения потерь тепла с уходящими газами и от химической неполноты сгорания

Подсчет потерь тепла вследствие химической неполноты горения при сжигании бензина в двигателе внутреннего сгорания

Потери тепла от химической неполноты сгорания

Потери тепла от химической неполноты сгорания в окружающую среду и с физическим теплом золы и шлака

Потеря на транспорт химической неполноты сгорания топлива в котле

Потеря теплоты на охлаждение панелей, балок химической неполноты сгорани

Потеря теплоты от химической неполноты сгорания

Снижение потери тепла от химической и механической неполноты сгорания



© 2025 Mash-xxl.info Реклама на сайте