Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения в слоях поверхностных — Определение — Методы

Рентгеновские методы исследования остаточных напряжений основаны на определении расстояния между кристаллографическими плоскостями, т. е. деформации кристаллографической решетки, с помощью измерения угла отражения луча. Остаточные напряжения этим методом можно определить с невысокой точностью и только в тонком поверхностном слое. Для рентгеновских методов исследования остаточных напряжений характерны большая трудоемкость и высокая стоимость проведения эксперимента.  [c.424]


Важнейшей эмиссионной характеристикой твердых тел является работа выхода еср (е — заряд электрона, Ф — потенциал), равная минимальной энергии, которая необходима для перемещения электрона с поверхности Ферми в теле в вакуум, в точку пространства, где напряженность электрического поля практически равна нулю [1]. Если отсчитывать потенциал от уровня, соответствующего покоящемуся электрону в вакууме, то ф— потенциал внутри кристалла, отвечающий уровню Ферми. Согласно современным представлениям в поверхностный потенциальный барьер, при преодолении которого и совершается работа выхода, основной вклад вносят обменные и корреляционные эффекты, а также — в меньшей степени — электрический двойной слой у поверхности тела. Наиболее распространенные методы экспериментального определения работы выхода — эмиссионные по температурной, спектральной или полевой зависимости соответственно термо- фото- или полевой эмиссии, а также по измерению контактной разности потенциалов между исследуемым телом и другим телом (анодом), работа выхода которого известна [I, 2]. В табл. 25.1, 25.3 и 25.4 приведены значения работы выхода простых веществ и некоторых соединений. Внешнее электрическое поле уменьшает работу выхода (эффект Шоттки). Если поверхность эмиттера однородна, то уменьшение работы выхода. эВ, при наложении электрического поля напряженностью В/см, равно  [c.567]

Экспериментальные методы определения остаточных напряжений. Наиболее разнообразны и широко применяются механические методы, дающие наиболее полную картину распределения остаточных напряжений по сечениям детали или конструкции. Физические методы большей частью применяют для качественного определения остаточных напряжений, а химические — для определения остаточных напряжений только в поверхностных слоях детали.  [c.212]

Одним из факторов, влияющих на износостойкость, усталостную прочность, является наличие остаточных напряжений в деталях. Изучение вопросов, связанных с механизмом появления остаточных напряжений в поверхностных слоях деталей и их влияние на эксплуатационные свойства деталей, предусматривается лабораторной работой Определение остаточных напряжений, возникающих в поверхностных слоях деталей при механической обработке, и их роль в обеспечении надежности изделий . Во время выполнения данной работы студенты знакомятся с методами определения остаточных напряжений, изучают конструкцию прибора ПИОН-2, предназначенного для установления остаточных напряжений механическим методом, и учатся экспериментально определять остаточные напряжения первого рода, оказывающие наибольшее влияние на эксплуатационные свойства и надежность деталей.  [c.306]


Перспективным является метод определения остаточных напряжений по изменению электромагнитных свойств поверхностного слоя, который позволяет определять остаточные макронапряжения в тонком поверхностном слое без разрушения. Однако для построения полной эпюры напряжений требуется послойное стравливание металла.  [c.112]

В монографии обобщены закономерности влияния структуры на модуль упругости и совместного влияния геометрических параметров поверхности на коэффициент жесткости и несущую способность литых деталей. Дан сравнительный анализ существующих способов физико-термического, химического и механического упрочнения поверхности деталей. Приведены методы определения и практического регулирования структуры, физико-химических свойств и остаточных напряжений в поверхностном слое отливок. Рассмотрены процессы заполнения форм жидким металлом, формирование и классификация дефектов поверхности и поверхностного слоя литых и механически обработанных деталей. Описаны особенности технологической оснастки и технологии новых и существующих способов формообразования для получения отливок с упрочняющим геометрическим орнаментом.  [c.2]

Методика определения остаточных напряжений в сварных однородных и разнородных соединениях. Для определения остаточных напряжений в плоских плитах сварных однородных и разнородных соединений использовался метод механической обработки столбиков, который позволяет достаточно надежно находить уровень остаточных напряжений в поверхностных слоях различных мест сварного соединения [20, 38, 63].  [c.24]

Нами было проведено определение рентгеновским методом напряжений первого рода в приповерхностном слое образцов, закаленных т. в. ч., которое показало, что в зоне концентратора возникли благоприятные остаточные напряжения — сжатия (из-за увеличения объема поверхностного слоя в результате образования мартенсита) они упрочнили образец в этом месте и предотвратили его разрушение по концентратору. Однако невдалеке от концентратора напряжений наблюдалось снижение остаточных осевых напряжений сжатия, что превращает эти места в наиболее слабые там и происходит разрушение.  [c.132]

Из приведенных выше данных видно, что микроударное воздействие вызывает в микрообъемах поверхностного слоя различного рода остаточные напряжения, и в том числе сжимающие напряжения I рода, обусловливающие появление в металле наклепа. Для определения глубины наклепанного слоя применяли рентгенографический способ, позволяющий снимать рентгенограммы методом обратных отражений. Исследованию подвергали плоскость образца до и после микроударного воздействия, а также после снятия с этой плоскости тонкого слоя металла (толщиной 10—40 мкм).  [c.110]

Молекулярная (теоретическая) прочность стекла, определенная различными методами, равна примерно 1000—1200 кГ/мм . Следовательно, техническая прочность обычного промышленного стекла при растяжении и изгибе в 100—300 раз меньше его теоретической прочности. В условиях эксплуатации таких стекол используется только около 1% молекулярной прочности стекла. Такое огромное несоответствие между теоретической и практической прочностью стекла объясняется рядом причин, основными из которых являются во-первых, свойственная стеклу высокая хрупкость и обусловленный этим специфический характер его разрушения во-вторых, неупорядоченность и неоднородность строения практических стекол и, в-третьих, появление поверхностного дефектного слоя на изделиях из стекла в процессе их производства и эксплуатации. Стекло как хрупкий материал практически не имеет пластической деформации, обладает особенно низкой прочностью нри растяжении (в 10— 15 раз меньшей, чем при сжатии) и характеризуется относительно высоким модулем упругости в связи с тем, что даже при малых деформациях (около 0,2%) в таком хрупком материале возникают напряжения, достигающие уже предела прочности при растяжении. Хрупкое разрушение стекла под действием нагрузки вызывается возникновением и развитием поверхностных и внутренних трещин, образующих так называемые очаги хрупкого разрушения.  [c.166]


Известная зависимость, согласно которой пластический момент сопротивления превышает упругий, причем тем в большей степени, чем менее выгодна форма сечения, отражает ту же закономерность. Может быть установлено определенное соотношение между отношением прочностей поверхностного слоя и сердцевины и относительной толщиной слоя. Наивыгоднейшим является совпадение эпюр Ос и стн по всему сечению. Конечно, следует учитывать влияние состояния поверхностного слоя не только на Ос, но и на Он, так как, например, методы поверхностного упрочнения (цементация, азотирование, поверхностный наклеп и т. п.) создают значительные остаточные напряжения. В тонкостенных изделиях градиент Он обычно мал, а поэтому невыгоден и большой градиент Ос- По-видимому, этим объясняется малая эффективность поверхностного упрочнения для многих тонкостенных деталей.  [c.348]

Экспериментально доказано, что сила сопротивления относительному перемещению поверхностей в условиях качения или скольжения в той или иной степени всегда зависит от скорости, что часто является проявлением несовершенной упругости не самих взаимодействующих тел, а тонких поверхностных слоев, их покрывающих. Взаимодействие поверхностей, покрытых тонкими твердыми слоями или пленками, исследуется путем анализа контактных задач для слоистых сред. При этом реологические свойства поверхностных слоев учитываются при постановке контактных задач путем моделирования поверхностного слоя вязкоупругой средой. В работе [9] методом преобразований Фурье рассмотрена задача в плоской постановке о движении нагрузки по границе вязкоупругой полосы, сцепленной с вязкоупругой полуплоскостью, и исследованы деформации и напряжения сдвига в слое и основании. Контакт качения двух цилиндров, покрытых вязкоупругими слоями, изучался теоретически и экспериментально [10, 11]. В этих работах развиты численные методы определения напряжений в контактных задачах для слоистых упругих и вязкоупругих тел. Заметим, что полученное А. Ю. Ишлинским решение задачи о качении жесткого цилиндра по вязкоупругому основанию [1 позволяет оценить влияние реологических свойств поверхностного слоя на силу сопротивления перекатыванию, если предположить, что модуль упругости основания много больше модуля упругости слоя (т. е. в предположении абсолютной жесткости основания).  [c.279]

Вследствие недостаточной строгости основных положений, на которых построен метод ломаных сечений, неточность при определении внутренних напряжений будет еще большая, чем местных напряжений в поверхностных слоях материала зубьев. Следует учитывать также, что определение истинных напряжений в подкорковом слое зубьев, подвергнутых химико-термической обработке, затрудняется тем, что еще не разработаны эффективные методы численной оценки остаточных напряжений сжатия в упрочненном слое, появляющихся после термической обработки.  [c.183]

МЕТОДЫ ОПРЕДЕЛЕНИЯ ОСТАТОЧНЫХ НАПРЯЖЕНИИ В ПОВЕРХНОСТНЫХ СЛОЯХ ИЗДЕЛИИ  [c.59]

На основе дальнейшего изучения качества поверхностей деталей машин должна быть разработана необходимая конструкторам методика установления оптимального качества поверхности по всем его показателям (шероховатость поверхности, микротвердость и структура поверхностного слоя, остаточные напряжения в поверхностном слое) для заданных конкретных условий работы сопряженных деталей. Технологи должны обеспечивать целенаправленное формирование поверхностного слоя с заданными конструктором изделия стабильными свойствами методами технологического воздействия в процессе обработки. Нерешенной задачей остается разработка быстрых и эффективных методов производственной оценки качества поверхности по всем его основным показателям. Представляет интерес исследование технологического наследования свойств исходной заготовки готовой деталью и определение закономерностей  [c.411]

Преимущество этого метода заключается в том, чго рентгенографическим методом можно измерять напряжения только после окончания электролиза и только в тонком поверхностном слое, а методом гибкого катода можно получить данные о напряжениях, возникающих в ходе самого процесса отложения, начиная с самых малых толщин осадка. Кроме того, определение параметра решетки хрома, лежащее в основе рентгенографического метода, весьма затруднено вследствие сильного размытия дебаевских колец.  [c.54]

К механическим методам определения остаточных напряжений в поверхностных слоях деталей произвольной формы следует отнести метод освобождения и метод отверстий.  [c.66]

Основными параметрами качества поверхностного слоя деталей после механической обработки металлическим или абразивным инструментом является шероховатость поверхности, глубина и степень наклепа и технологические макронапряжения. Для определения степени влияния каждого из них в отдельности на характеристики усталости, в данной работе использован метод изотермических нагревов в вакууме образцов после заданных режимов механической обработки. Вакуум необходим для предохранения от окисления поверхностного слоя образцов при нагревах. Для этой цели образцы после механической обработки на заданных режимах разделены на три группы. Образцы первой группы испытывали на усталость непосредственно после механической обработки, образцы второй и третьей групп до испытания на усталость подвергали изотермическим нагревам в вакууме для снятия технологических макронапряжений (вторая группа) и для снятия поверхностного наклепа (третья группа). Относительную значимость каждого параметра качества поверхностного слоя в отдельности оценивали путем сравнения характеристик усталости образцов после термообработок для снятия остаточных напряжений, поверхностного наклепа и образцов, не подвергавшихся термической обработке.  [c.173]


Повышение усталостной прочности связано с созданием в поверхностных слоях благоприятных остаточных внутренних напряжений. Принято различать три рода остаточных напряжений 1-го рода — напряжения, которые уравновешиваются в пределах детали или участка ее поверхности 2-го рода — напряжения, которые уравновешиваются в пределах отдельного зерна, и 3-го рода — напряжения, которые уравновешиваются в пределах кристаллической решетки. Усталостная прочность зависит от напряжений 1-го рода, именно их создает поверхностная пластическая обработка. Остаточные напряжения порождаются и термической обработкой и обработкой резанием. Однако получение остаточных напряжений не является целью указанных методов, они являются неизбежным, но побочным и часто нежелательным результатом воздействия нагрева и охлаждения при термической обработке, сил пластической деформации и нагрева при резании. При поверхностном пластическом деформировании в поверхностном слое формируются остаточные напряжения определенной величины и определенного знака. Обычно поверхностные слои деталей в работе испытывают напряжения растяжения.  [c.95]

Рентгенографический метод является единственным методом, позволяющим определять остаточные напряжения без разрушения детали, а также при исследовании остаточных напряжений 2-го рода. Кроме того, он позволяет определять остаточные напряжения при небольшой базе измерения, что особенно ценно при измерении остаточных напряжений с высоким градиентом распределения. Недостатками метода являются применение дорогого и сложного оборудования определение остаточных напряжений только в поверхностных слоях изделия пригодность метода только для металлов, дающих достаточно отчетливые дифракционные линии.  [c.216]

Глубина наклепа, создаваемого при данном технологическом процессе, обычно не превышает 1 мм. Толщина наклепанного слоя возрастает с увеличением диаметра дроби и ее скорости и падает с увеличением твердости обрабатываемой детали. Наклепанный слой и его толщину для малоуглеродистой стали удается выявить по той специфической текстуре поверхностного слоя, которая возникает в результате дробеструйного наклепа. Толщину наклепанного слоя можно также определить путем измерения твердости на поперечных или косых шлифах детали, обработанной дробью. Для высокоуглеродистой стали, подвергнутой термообработке на высокую твердость, эти методы определения глубины наклепа неэффективны. В таких случаях о толщине наклепанного слоя судят по характеру эпюры остаточных напряжений по сечению детали.  [c.587]

В табл. 16 приведены значения коэффициента упрочнения Кв в зависимости от эффективного коэффициента концентраций напряжений Кв и метода поверхностного упрочнения. Чем больше Ко, тем эффективнее процесс поверхностного упрочнения. После поверхностной обработки очаг усталостного разрушения смещается под упрочненный слой, поэтому на величину влияет прочность сердцевины (см. табл. 16). Чем больше Кв, тем эффективнее поверхностное упрочнение. С увеличением сечения изделия (масштабный фактор Кйа) коэффициент упрочнения Ко после поверхностной закалки, химико-термической обработки и ППД уменьшается. При оптимальных режимах упрочнения (а < 3) для предварительных расчетов Ко может быть определен по формуле  [c.319]

Под твердостью понимается способность материала сопротивляться внедрению в его поверхность твердого тела — индентора. В качестве индентора используют закаленный стальной шарик или алмазный наконечник в виде конуса или пирамиды. При вдавливании поверхностные слои материала испытывают значительную пластическую деформацию. После снятия нагрузки на поверхности остается отпечаток. Особенность происходяш ей пластической деформации состоит в том, что она протекает в небольшом объеме и вызвана действием значительных касательных напряжений, так как вблизи наконечника возникает сложное напряженное состояние, близкое к всестороннему сжатию. По этой причине пластическую деформацию испытывают не только пластичные, но хрупкие материалы Таким образом, твердость характеризует сопротивление материала пластической деформации. Такое же сопротивление оценивает и предел прочности, при определении которого возникает сосредоточенная деформация в области шейки. Поэтому для целого ряда материалов численные значения твердости и временного сопротивления пропорциональны. Отмеченная особенность, а также простота измерения позволяют считать испытания на твердость одним из наиболее распространенных видов механических испытаний. На практике широко применяют четыре метода измерения твердости.  [c.52]

Если материал колец или деталей, выполняющих их функцию, оказался недостаточно прочным, например имеет слишком тонкий поверхностно-упрочненный слой, то в результате нагружения подшипника могут возникнуть большие пластические деформации, приводящие его в негодность. В этом случае анализ напряженного состояния с целью определения предельно допустимой нагрузки или необходимой толщины поверхностно-упроч-ненного слоя проводится методами теории пластичности с использованием модели идеального жесткопластического материала. Следует отметить, что методы теории пластичности могут применяться и в предыдущем случае, когда пластические деформации невелики.  [c.345]

Примечание, — величина сжимающих напряжений в поверхностном слое закаленного стекла, определенная по методу Давиденкова 11, а, и 03 — прочности стекол соответственно после закалки в жидкости, травления и упрочнения по термофизическому методу Д<гвак — прочность, определяемая общим закалочным эффектом упрочнения стекол по термофизическому методу — величина структурного фактора прочности.  [c.172]

Отпуск шлифованной высокопрочной стал дриводит к некоторому уменьшению напряжений растяжения — с 240 до 170 МН/м (с 24 до 17 кгс/мм ). Внутренние ла-пряжения в поверхностно м слое шлифованной стали, определенные механическим методом на глубине 10 мкм, имеют положительный знак (напряжение растяжения). В поверхностном слое полированной стали рентгеновским методом выявляются напряжения сжатия, равные 20—500 МН/ м2 (2—50 кгс/мм ), механическим методом — растягивающие напряжения, достигаю щие 360 МН/м (36 кгс/м м ). Это указывает на то, что, дри gQQ механическом полировании  [c.118]

Многочисленные исследования показали, что одним из наиболее эффективных методов воздействия на состояние поверхности, приводящих к повышению циклической прочности, является предварительное поверхностное пластическое деформирование (ППД). При этом применение ППД повышает циклическую прочность не столько в области многоцикловой усталости, сколько при больших перегрузках. Известны примеры, когда применение методов ППД позволяет повысить долговечность деталей из титановых сплавов, работающих в области малоциклового нагружения, в 17 — 20 раз, а предел выносливости—в 2 раза [ 187, с. 35, 43]. Вместе с тем по сравнению с многоцикловой усталостью эффективность применения ППД для деталей, работающих в малоцикловой области, изучена меньше. До последних лет отсутствовало даже научно обоснованное объяснение влияния ППД при больших перегрузках (выше предела выносливости), так как при этом роль остаточных сжимающих напряжений не может быть решающей. Возникающие при ППД остаточные сжимающие напряжения при значительных циклических пластических деформациях неизбежно релаксируют при первых же циклах нагружения. С целью установления природы влияния ППД на малоцикловую долговечность титановых сплавов были поставлены специальные опыты по изучению влияния ППД на статическую прочность и характер деформации. Исследование проводили на цилиндрических образцах сплава ВТ5-1 диаметром 10 мм. После механической шлифовки и полировки часть образцов подвергали электрополированию до полного удаления наклепанного слоя. Поверхностное пластическое деформирование осуществляли в трехроликовом приспособлении для обкатки (диаметр ролика 20 мм, радиус профиля ролика г= 5 мм, усилие на ролик изменялось от 300 до 1200 Н при определении статической прочности и равнялось 900Н при оценке характера деформирования). Обкатку вели на токарном станке в 2 прохода при скорости вращения шпинделя 100 об/мин  [c.193]


Отметим основные закономерности повышения предела выносливости титановых сплавов в результате ППД, общие для различных методов. Установлено [191, 192], что эффективность ППД в прлной мере сохраняется до температуры примерно 200°С, а частично до 500°С и даже выше. Эффект не изменяется во времени и в средах, не опасных для титановых сплавов без ППД. Положительное влияние ППД на усталостную прочность в определенной степени сохраняется даже при полном снятии остаточных сжимающих напряжений низкотемпературным отжигом вплоть до рекристаллизационного. В этом случае положительное действие ППД можно объяснить "облагораживанием" микроструктуры поверхностного слоя, которая после наклепа и рекристаллизации становится очень одно-(Х)дной, мелкозернистой, т.е. наиболее благоприятной по сопротивлению появлению усталостных трещин. Кроме того, благодаря измельчению зерна и субзерен процесс образования пластических микросдвигов затрудняется и усталостная прочность растет.  [c.200]

Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]

Многие из величин Ос еще требуется определить количественно или хотя бы качественно. Тем не менее мы предположим, что при определенных составах и микроструктурах сплавов, средах и состояниях напряжения некоторые эффекты должны быть доминирующими. В частности, применяя этот метод анализа к основному примеру поведения I типа, а именно к случаю суперсплава на никелевой основе с умеренно крупным зерном [14, 18—21], мы отметим в соответствии с эффектами, перечисленными в табл. 5, следующие положения. В такой упрочненной системе, как данный сплав (временное сопротивление 1033 МПа даже при 760 °С [169]), маловероятно, чтобы какие-либо эффекты твердого раствора существенно влияли на внутренние напряжения. Выше отмечалось, что зернограничными эф( ектами также пренебрегали. Основной эффект, как можно предположить, в этом случае будет связан с величинами Ос, аналогичными входящим в уравнение (19). Иными словами, упрочнение рассматриваемой системы на воздухе обусловлено противодействием образованию и движению дислокаций со стороны окалины с хорощей адгезией, формирующейся при испытаниях на ползучесть на воздухе, но отсутствующей при испытаниях в вакууме (см. рис. 10) или в горячей солевой среде [14]. Микрофотографии, представленные на рис. 10, показывают также, что в результате ползучести (как на воздухе, так и в вакууме) поверхностные слои подложки постепенно становятся однофазными. На воздухе образуется фаза у, вероятно, посредством селективного окисления алюминия и титана, а в вакууме образуется фаза у вследствие испарения хрома. Важно, что ни в одном случае поверхностные слои подложки не являются дпсперсиоупроч-ненными. Таким образом, эти эффекты будут иметь тенденцию к самокомпенсации при любых попытках, подобных этой, проанализировать сравнительное поведение системы на воздухе и в вакууме.  [c.37]

Кроме того, при наиболее распространенном методе определения износа — микрометраже деталей — не учитывается так называемый отрицательный износ , выражающийся в изменении геометрических размеров чугунных отливок после ликвидации внутренних напряжений. При замере микрометром износа таких деталей, как цилиндры двигателей, иногда приходится встречаться с весьма странным явлением, когда диаметр замеряемого цилиндра не увеличивается после работы двигателя и износа, а, наоборот, уменьшается. Происходит это от ликвидации разного рода напряжений в поверхностном слое, возникающих в результате механической и термической обработки деталей.  [c.65]

Определение остаточных напряжений первого рода проводили по методу Н. Н. Давиденкова. Кольца сглаживались пластиной = мм, г=15 мм) из твердого сплава Т15К6 при следующем режиме обработки 7=400 А у=6,5 м/мин 5 — = 0,2 мм/об Р=200 Н. В отдельных опытах изменялся только тот параметр, влияние которого определялось. Снятие наружных слоев металла осуществлялось электролитическим травлением. Автоматическая регистрация деформаций кольца в зависимости от толщины снятого поверхностного слоя осуществлялась при помощи измерительной установки на базе электронного потенциометра с ленточным самописцем, в котором термометр сопротивления был заменен проволочными тензодатчиками. Такая установка обладает высокой чувствительностью и позволяет регистрировать деформации с точностью до микрометра. Остаточные напряжения в поверхностном слое вычислялись по известным формулам.  [c.62]

Обнаружить неблагоприятное распределение внутренних напряжений в деталях или пониженную твердость поверхностных слоев часто затруднительно. Обычно эти дефекты не отражаются на твердости, измеряемой обш,епринятыми (по Роквеллу, Бри-неллю) или специальными (микротвердость) методами. В первом случае на показаниях твердости отражается влияние глубже расположенных слоев, во втором — разброс, связанный с различной твердостью отдельных составляющих микроструктуры, столь велик, что не позволяет сделать определенных выводов.  [c.25]

Из рис. 4.3 следует, что исходная микротвердость поверхностного слоя цементированной стали 12Х2Н4А после шлифования любым из трех рассматриваемых методов уменьшается, в результате чего в ней возникают растягивающие остаточные напряжения. Это подтверждается экспериментами, в которых определение остаточных напряжений в цементированном слое производилось до шлифования (рис. 4.5, кривая 4) и после (кривые 1—3) при t = 0,07 мм. После цементации, термообработки и пе-  [c.88]

Определение остаточных напряжений производили на приборе ПИОН-2 на заводской методике. Расчет напряжений осуществляли на ЭВМ Минск-32 . Лопатки обрабатывали по спинке и корыту на станках модели 3813Д с помощью твердосплавного копира. Предварительное формообразование лопаток осуществляли методом штамповки с последующим фрезерованием. Численное значение, знак и эпюры распределения остаточных напряжений фрезерованных лопаток принимали за исходные, по которым затем изучали влияние процесса шлифования новыми, затупленными лентами, в начале и конце реверса направления вращения ленты на распределение остаточных напряжений в поверхностном слое лопаток.  [c.128]

Определение внутренних напряжений после дробеструйного наклепа механическим методом в термически обработанных сталях — хромистой 40Х с 0,4% С (7 с = = 56 57) и кремнистой 60С2 с 0,6% С ( с = 48 50) показало, что при оптимальном режиме обработки в тонком поверхностном слое создаются остаточные напряжения сжатия (фиг. 107, а я б), достигающие 100—ПО кг мм к распространяющиеся на глубину  [c.164]


По данным А. А. Маталина [13], изменение твердости поверхностного слоя функционально связано с возникновением остаточных напряжений. Он указывает, что любое изменение твердости (против исходной) поверхностного слоя деталей после обработки сопровождается появлением остаточных напряжений. Из рис. 24 следует, что исходная микротвердость поверхностного слоя цементированной стали 12Х2Н4А после шлифования любым из трех рассматриваемых методов уменьшается, в результате чего в ней возникают остаточные напряжения растяжения. Это подтверждается экспериментами, в которых определение остаточных напряжений в цементированном слое производилось до шлифования (рис. 26, кривая 4) и после (кри-  [c.56]

Во многих случаях требуется определить напряжения только в поверхностных слояу изделий. Для этой цели разработан ряд методов [10, 18, 19], которые позволяют оценить величину остаточных напряжений в поверхностном слое без разрущения изделий путем высверливания небольшого сплошного или кольцевого отверстия и из- мерения деформации поверхностного слоя вблизи отверстия. В некоторых случаях практики наличие небольшого отверстия может быть допущено, если при этом не нарушается нормальная эксплуатация изделий. В крупных поковках отверстие может быть сделано в пределах припуска на обработку. Рассматриваемые методы применимы при любой форме изделий. Для определения напряжений Д. Г. Курносов и М. В. Якутович [18] применили высверливание отверстия, глубина которого составляет не менее 1,5—2 диаметров. Пользуясь струнным методом Н. Н. Давиденкова [20], определяют деформацию расстояния между ножками тензометров после высверливания отверстия.  [c.59]

Несколько другой принцип положен в основу метода, предложенного Л. А. Глик-маном и М. М. Писаревским для определения остаточных напряжений в поверхностном слое крупных изделий [19]. Небольшой участок поверхности разгружают от напряжений, отделяя его с этой целью круговой прорезью (например, трубчатой фрезой, анодно-механическим или искровым способами) от остальной поверхности. Глубина прорези, по данным авторов, практически достаточна, если она не меньше 0,7 диаметра оставшегося столбика. Для определения остаточных напряжений измеряют деформацию поверхности осверлованного участка проволочными датчиками. Если направления главных напряжений известны, то, как выше указывалось, достаточно измерить деформацию в этих двух направлениях. Для этого нужны два простых датчика или один сложный — розеточной формы.  [c.60]

Методы второй группы (см. табл. 2.23, образцы типов 3, 4, 5, 6, 7, 8) позволяют моделировать напряженное состояние и условия разрушения деталей, близких по ( рме и конфигурации, изучать процессы распространения образовавшихся поверхностных трещин в условиях уменьшающихся по мере удаления от поверхности напряжений, а также изучать влияние на число циклов до образования трещин концентраторов напряжений различной формы, изготовленных по разной технологии. В этих методах термические напряжения изменяются с течением времени не только при нагреве, охлаждении и выдержке, но различны и по сечению образцов, причем в процессе термоциклирования эти напряжения в разных точках образца перераспределяются. Все это делает задачу о расчетном определении значений (г и с достаточно сложной величины <г и с оказываются в значительной степени связанными с точностью определения или расчета температурных полей и принятыми гипотезами пластичности и пoлзyчe ти Поэтому такие методы не могут быть использованы в качестве простейших - базовых для определения характеристик материалов, необходимых для проведения расчетов прочности деталей. С их помощью могут решаться задачи по определению термостойкости образцов с поверхностным слоем, имеющим механические свойства и химический состав, отличаю-пщеся от сердцевины, а также с различного рода неметаллическими включениями. Рассмотрим подробнее особенности методик испытаний образцов типов 1, 2 и 7.  [c.191]

В работе [411] исследовано влияние на механические свойства монокристаллов NigAl (сбдержащих 23,75% А1 и легированных 0,25% Hf) различных факторов температуры, формы поперечного сечения, состояния поверхности, вида нагрузки (растяжение, сжатие). Монокристаллы, полученные методом направленной кристаллизации, были ориентированы вблизи [001]. Отмечено, что форма образца слабо влияет на напряжение течения, но во всех случаях обнаружена аномальная температурная зависимость Оод. Кроме того, выявлено сильное влияние остаточных поверхностных напряжений на механические свойства. После удаления слоя 20 мкм (электролитическим способом) <То,2 уменьшалась во всей температурной области аномального изменения предела текучести. Также наблюдали асимметрию свойств при растяжении и сжатии для одинаковой скорости деформирования (1,710 с )- Разность Дт между напряжениями течения при растяжении и сжатии была положительной во всей температурной области аномального изменения предела текучести. Следует отметить, что аномальная температурная зависимость предела текучести проявляется и в случае никелевых сплавов, упрочненных интерметаллической у-фазой (тип NisAl) при ее определенной объемной доле.  [c.255]

Однако использованное в этих работах для вычисления параметра кристаллической решетки смещение линий на рентгенограмме, являясь результатом изменения межплоскостного расстояния перпендикулярно к поверхности образца, может быть вызвано двумя причинами образованием твердого раствора внедрения или возникновением остаточных напряжений первого рода, вызванных наличием в поверхностном слое железа коллекторов, заполненных водородом под высоким давлением. М. М. Швед [76] разработал остроумный метод раздельного определения изменения параметра кристаллической решетки, вызванного образованием твердого раствора, и изменения параметра решетки, вызванного появлением напряжений первого рода, а также вычисления величины этих напряжений. Метод основан на съемке рентгенограмм под углом 90° и под )<90° (обычно 4l3 = 45°). Изменение истинного параметра решетки наблюдалось в лятом знаке (Да == 0,00002 нм), что находится в пределах ошибки измерения [77]. Таким образом, насыщение поверхности армко-железа водородом приводит к возникновению остаточных напряжений первого рода, а истинный параметр кристаллической решетки не меняется. Это может служить доказательством отсутствия твердого раствора атомо)в водорода в наводороженном железе. Причиной наблюдаемого увеличения параметра решетки являются только остаточные напряжения сжатия, вызванные появлением и развитием в приповерхностном слое железа пустот микроскопических и субмикроскопических размеров (начиная от скопления вакансий и дислокаций).  [c.22]

Качество покрытия, нанесенного на поверхность металла методом эмалирования, в основном зависит от качества подготовки поверхности изделий к наиесению покрытия. Цель подготовки — тщательно очистить пг)верхность от жиров, ржавчины удалить с поверхностного слоя неметаллические включе шя, плены, задиры нормализовать (реставрировать) структуру металла в деформированных местах при ковке, вытяжке, штамповке и устранить напряжение растяжения — сжатия в сварных швах и околошовных зонах придать поверхности определенную шероховатость и, если возможно, активировать ее.  [c.130]

Сопоставляя данные, можно заключить, что при всех видах термической обработки сплава ВТ14 меньшие растягивающие остаточные макронапряжения в поверхностном слое наблюдаются в образцах, подвергнутых шлифованию лентой, наибольшие — кругом. Данные по остаточным напряжениям, определенным методом стравливания и рентгеноструктурным методом на дифрактометре УРС-50ИМ, хорошо коррелируют с результатами усталостных испытаний (рис. 5.6, б, в). Результаты экспериментов подтверждают высказанную нами ранее мысль о наличии управляемой связи между методами и режимами шлифования с качеством обработки. Подтверждается возмол<ность осуществления направленного действия режимов шлифования на характер формирования свойств не только поверхностных слоев деталей, но и долговечности службы самих деталей и узлов в целом.  [c.112]


Смотреть страницы где упоминается термин Напряжения в слоях поверхностных — Определение — Методы : [c.62]    [c.11]    [c.89]    [c.302]    [c.251]    [c.383]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.215 , c.218 ]



ПОИСК



208 — Напряжения в слоях

Метод напряжений

Метод определения напряжений в полосе прямоугольного сечеМетоды определения остаточных напряжений в поверхностных слоях изделий

Напряжение Определение

Напряжение поверхностное

Напряжения Определения метода

Слой поверхностный



© 2025 Mash-xxl.info Реклама на сайте