Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Наклеп поверхностный

При наклепе поверхностный слой расплющивается. Если бы он мог свободно удлиняться, то отделился бы от основного металла (рис. 194, и). Но удлинению препятствует сила сцепления с нижележащими слоями  [c.318]

Дробеструйная обработка заключается в наклепе поверхностного слоя потоком стальных закаленных шариков (0 0,5 — 1,5 мм), создаваемым пневматическими или центробежными дробеметами. Дробеструйной обработке можно подвергать фасонные поверхности. Качество поверхности при наклепе несколько снижается (на 1—2 класса по сравнению с исходной), вследствие чего точные поверхности необходимо после наклепа подвергать финишным операциям.  [c.321]


Уменьшить влияние состояния поверхности на усталость можно соответствующими технологическими методами обработки, приводящими к Упрочнению поверхностных слоев. К числу таких методов относятся наклеп поверхностного слоя путем накатки роликом, обдувки дробью и т. п. химико-термические методы — азотирование, цементация, цианирование термические — поверхностная закалка токами высокой частоты или газовым пламенем. Указанные методы обработки приводят к увеличению прочности поверхностного слоя и созданию в нем значительных сжимающих остаточных напряжений, затрудняющих образование усталостной трещины, а потому влияющих на повышение предела выносливости.  [c.608]

В промышленности уже давно и весьма широко применяются методы поверхностного упрочнения деталей, работающих в условиях циклических напряжений (рессоры и полуоси автомашин, зубья шестерен, винтовые клапанные пружины и пр.). Эта специальная поверхностная обработка не преследует целей общего изменения прочностных показателей металла. Речь идет именно об усталостном упрочнении, часто в сочетании с требованиями износостойкости. К числу таких методов, применяемых в различных сочетаниях, относятся химико-термические (азотирование, цементация, цианирование), поверхностная закалка токами высокой частоты и наклеп поверхностного слоя обкаткой роликами или обдувкой дробью.  [c.96]

Для повышения усталостной прочности используют наклеп, поверхностную закалку токами высокой частоты, химико-термическую обработку.  [c.334]

Упрочняющее влияние поверхностного наклепа, поверхностной закалки, цементации, азотирования и других технологических факторов оценивается коэффициентом р, взятым из справочной литературы, который вводится сомножителем к коэффициенту  [c.423]

Применение материалов повышенной прочности снижает массу конструкции. При оценке прочностных характеристик материала необходимо учитывать возможное изменение его свойств в процессе изготовления заготовки, механической обработки и эксплуатации (наклеп, поверхностные трещины, структурные изменения и т. п.). В случае выбора материала—заменителя, обеспечивающего снижение массы детали, экономическим ориентиром может служить  [c.217]

Усталостное изнашивание является следствием циклического воздействия на микровыступы трущихся поверхностей, о чем было сказано выше. Отделение частиц может также происходить в результате наклепа поверхностного слоя, который становится хрупким и разрушается (иногда его называют изнашиванием при хрупком разрушении).  [c.236]


Различные методы поверхностного упрочнения детали могут существенно повысить значение коэффициента качества поверхности. К числу таких методов, применяемых в различных сочетаниях, относятся химико-термические (азотирование, цементация), поверхностная закалка ТВЧ и наклеп поверхностного слоя обкаткой роликами или обдувом дробью.  [c.186]

Результаты экспериментов показывают, что наибольшая масса продуктов коррозии во время обработки в режиме зачистки удаляется при числе проходов проволочек 600—800. Дальнейшее увеличение числа проходов при обработке без ХАС приводит к упрочнению (наклепу) поверхностного слоя металла на участках, освобожденных от окислов. Вследствие этого глубина внедрения кромок проволочек в этот слой уменьшается вплоть до прекращения отделения, стружки и перехода взаимодействия контактирующих поверхностей в режим абразивного износа с затуханием интенсивности очистки (рис. 117, кривая /). При воздействии ХАС режущая кромка проволочки внедряется на глубину пластифицированного слоя и интенсивность очистки не снижается (рис. 118, кри-ъая 2).  [c.255]

Есть основание полагать, что положительное воздействие поверхностного наклепа обусловлено в основном упрочнением поверхностного слоя металла и частично появлением в поверхностном слое остаточных напряжений сжатия. Одной из разновидностей поверхностного наклепа является абразивная ультразвуковая обработка металла. При этом поверхность в процессе обработки подвергается бомбардировке частицами абразива, получающими энергию от ультразвукового магнитостриктора. Повышение коррозионно-механической стойкости сталей в результате ультразвуковой обработки обусловлено наклепом поверхностных слоев металла, т. е, появлением в этих слоях остаточных сжимающих напряжений, и улучшением чистоты поверхности. [71].  [c.126]

Деформационное упрочнение (наклеп) поверхностного слоя оценивают глубиной и степенью наклепа а интенсивность наклепа по глубине поверхностного слоя — градиентом наклепа и р, являющимся особенно важным параметром поверхностного наклепа после окончательной и отделочной обработки поверхностей силовых деталей  [c.53]

Наклеп поверхностного слоя после механической обработки изучали двумя способами рентгеноструктурным и измерением микротвердости на поверхности косых срезов.  [c.84]

По сравнению с другими параметрами режима резания, подача оказывает наиболее сильное влияние на наклеп поверхностного слоя. Глубина и степень наклепа с увеличением подачи возрастают. Так, с изменением подачи от 0,05 до 2 мм/об глубина наклепа возросла от 120 до 259 мкм, а степень наклепа — от 48,9 до 54,1% (рис. 3.6, б).  [c.98]

Износ резца оказывает сильное влияние на наклеп поверхностного слоя, эффективность которого возрастает с увеличением износа. Так, с увеличением износа резца по задней поверхности от нуля до 0,3 мм глубина наклепа возросла от 128,9 до 244 мкм, а степень наклепа от 44,8 до 56,3% (рис. 3.6, г). Характер распределения микротвердости по глубине поверхностного слоя  [c.98]

Наклеп поверхностного слоя при обработке резанием является непосредственным результатом совместного воздействия усилий и температур на металл ниже линии среза. С увеличением силового воздействия возрастает прежде всего глубина наклепа. Трение задней поверхности резца об обрабатываемую поверхность способствует дополнительному увеличению степени наклепа ранее деформированного поверхностного слоя основной волной пластической деформации.  [c.99]

Придерживаясь ранее рассмотренной схемы механизма образования наклепа поверхностного слоя с учетом роли и значения температурно-силового фактора в нем, можно объяснить влияние изменения условий обработки на глубину и степень наклепа.  [c.99]

С увеличением скорости резания растет скорость деформирования и температура на поверхности детали, которые и являются решающими факторами в образовании наклепа поверхностного слоя. Оба фактора способствуют уменьшению глубины и степени поверхностного наклепа. С увеличением скорости деформирования повышается сопротивление металла пластической деформации в зоне резания, что равносильно снижению температуры, уменьшается глубина распространения пластической деформации ниже линии среза, а следовательно, уменьшается и глубина наклепа.  [c.99]


С увеличением подачи и глубины резания повышается силовая нагрузка, в результате чего возрастает наклеп поверхностного слоя.  [c.100]

При точении затупленным резцом увеличивается наклеп поверхностного слоя, который обусловлен в основном резким увеличением трения задней поверхности резца об обработанную поверхность.  [c.100]

Из параметров, характеризующих геометрию режущего инструмента, наибольшее влияние на наклеп поверхностного слоя оказывает радиус скругления режущего лезвия (рис. 3.9). Глубина и степень наклепа резко возрастают с увеличением радиуса скругления режущего лезвия, так как при этом увеличивается объем пластически деформированного металла, уходящего в сторону задней грани режущего лезвия в процессе резания, а также от увеличения дополнительного наклепа, возникающего в процессе скольжения при врезании режущего лезвия зуба фрезы. Передний и особенно задний углы зуба не оказывают существенного влияния на образование поверхностного наклепа.  [c.101]

Результаты исследования показывают, что характер влияния СОЖ на наклеп поверхностного слоя при фрезеровании определяется прежде всего величиной удельного давления резания и скорости резания. С увеличением подачи удельное давление на поверхности контакта между задней гранью и обрабатываемой поверхностью при резании может превосходить величину критического давления (разрывающего масляную пленку) для данной трущейся пары. При выдавливании смазки увеличивается работа сил трения на задней грани при врезании, а это способствует увеличению поверхностного наклепа. С увеличением скорости резания эффект, оказываемый применением СОЖ на наклеп поверхностного слоя, уменьшается, что, вероятно, связано с явлением адсорбции смазки на поверхности металла, время на развитие которого с увеличением скорости резания уменьшается.  [c.101]

Поверхностный наклеп зависит также и от метода фрезерования. При попутном фрезеровании глубина наклепа поверхностного слоя для сплава  [c.102]

Резкое уменьшение глубины наклепа поверхностного слоя после попутного фрезерования объясняется тем, что зуб фрезы при попутном фрезеровании детали работает на выход из обрабатываемого металла и подрезает из-  [c.102]

Влияние режимов резания и геометрии фрезы на наклеп поверхностного слоя при попутном фрезеровании жаропрочных сплавов в основном аналогично влиянию этих же факторов при встречном фрезеровании. Подача оказывает наиболее сильное влияние на поверхностный наклеп. При применении СОЖ снижается наклеп поверхностного слоя и тем заметнее, чем меньше подача. Скорость резания в пределах исследованных значений (v = Зч-- 18 м/мин) оказывает незначительное влияние на глубину и степень наклепа. Можно считать, что глубина резания в пределах от 1 до 6 мм не влияет на наклеп поверхностного слоя при попутном фрезеровании.  [c.103]

Деформационное упрочнение (наклеп) поверхностного слоя в процессе механической обработки подчиняется общим закономерностям упрочнения металлов при их пластической деформации в холодном состоянии, т. е. при температурах, меньших температуры рекристаллизации.  [c.111]

Глубина и степень наклепа поверхностного слоя при механической обработке зависят от состояния и свойств обрабатываемого материала и термомеханического режима обработки — усилия, вызывающего деформацию ниже линии среза, скорости деформирования и температуры в зоне деформации.  [c.112]

Под влиянием технологических факторов, способствующих увеличению нормальной составляющей на поверхности режущей кромки и силы трения, увеличивается наклеп поверхностного слоя.  [c.113]

Глубина наклепа поверхностного слоя после обработки резанием металлическим и абразивным инструментом возрастает с увеличением подачи, глубины резания, скорости детали, радиуса скругления и износа режущего лезвия. Глубина резания при фрезеровании не оказывает заметного влияния на наклеп поверхностного слоя.  [c.129]

Степень наклепа поверхностного слоя при обработке резанием близка к предельному значению. Для жаропрочных сплавов и сталей 30- -50%. Степень наклепа мало зависит от изменения режимов и других условий обработки.  [c.129]

Результатом упругой и пластической деформации материала обрабатываемой заготовки является упрочнение (наклеп) поверхностного слоя. При рассмотрении процесса стружкообразова-ния считают инструмент острым. Однако инструмент всегда имеег радиус скругления режущей кромки р (рис. 6.12, а), равный при обычных методах заточки примерно 0,02 мм. Такой инструмент срезает с заготовки стружку при условии, что глубина резания / больше радиуса р. Тогда в стружку переходит часть срезаемого слоя металла, лежащая выше линии D. Слой металла, ( оизмеримын с радиусом () и лежащий между линиями АВ и D упругоиластически деформируется. При работе инструмента значение радиуса р быстро растет вследствие затупления режущей кромки, м расстояние между линиями АВ и D увеличивается.  [c.267]

У прочнение поверхностной пластической деформацией. Один из главных способов повышения циклической прочности - поверхностная пластическая деформация (ППД), т. е. наклеп поверхностного слоя на глубину х = = 0,2 0,8 мм с целью создания в нем остаточных напряжений сжатия.  [c.318]


Гланной целью механической обработки деталей машин является ги)лучснис заданной геометрической формы, точности заданных размерен и шероховатости поверхностей. Однако в процессе механической обработки развиваются большие удельные усилия, металлы и сплавы в зоне обработки пластически деформируются и упрочняются, значительно повышается температура деформируемых слоев и изменяется их структура. Данные о степени упрочнения (наклепа) поверхностного слоя при основных технологических операциях обработки металлов приведены в табл. 2.3.  [c.48]

Пластическая деформация при температуре ниже температуры рекристаллизации приводит к наклепу поверхностного слоя - его упрочнению, при котором кристаллы сильно деформируются и поворачиваются осями наиболыпей прочности вдоль направления деформации, т е. в направлении скольжения. В то же время у самой поверхности структура несколько ослаблена, микротвердость у поверхности также снижается, увеличиваясь по мере удаления от поверхности и достигая максимума на некоторой глубине. На рис. 4.4 приведены экспериментальные данные но изменению микротвердости, полученные при испытании алюминиевого сплава В95 в паре с композиционным материалом на основе политетрафторэтилена.  [c.85]

Склонность к коррозионному растрескиванию может быть также в значительной степени снята при создании в поверхностном слое сжимающих напряжений, например, дробеструйным наклепом, поверхностной закалкой токами высокой частоты, химико-термической обработкой. Показано, что образование бе-лого> слоя на поверхности стали при механической обработке резанием значительно повышает стойкость ее к коррозионному растрескиванию, что объясняется более высокой коррозионной стойкостью этого слоя, большей гомогенностью его свойств и созданием значительных сжимающих напряжений. Работоспособность образцов с белым слоем (рис. 15), полученным точением Т-1 (J a = l,00— 1,25 мкм, толщина слоя 4—5 мкм), в кислоте повышается в 2 раза, а при точении Т-2 (/ г=10—20 мкм, толщина слоя 8—10 мкм) — в 3 раза. В кипящем растворе Mg lj образцы с меньшей шероховатостью имеют более высокую стойкость. Это свидетельствует о том, что в сильных коррозионно-активных средах микрогеометрия поверхности играет меньшую роль, чем в менее агрессивных.  [c.16]

Степень упрочнения и глубина наклепа поверхностного слоя для разных углеродистых сталей различны наибольшее упрочнение наблюдается у высокоуглероди-<стой стали. Увеличение твердости стали У12 составляет  [c.94]

В работе [146] было установлено, что скорость коррозии стали в 3%-ной H2SO4 уменьшается при переходе от грубой механической обработки к более тонкой в следующей последовательности грубая обработка резцом, пескоструйная обработка, обдувка дробью, обкатка роликами, шлифование, полировка бязевыми кругами, электролитическая полировка. Измерение электродных потенциалов в водопроводной воде показало, что более грубой обработке поверхности соответствует более отрицательное значение начального электродного потенциала. В результате соноставления зависимостей высоты микронеровностей и скорости коррозии стали в кислоте от скорости резания при токарной обработке с постоянным шагом витка (при различных Скоростях резания) авторы пришли к выводу о решающем влиянии наклепа поверхностного слоя на скорость коррозии особенно при малых скоростях резания и отсутствии заметного влияния шероховатости ( истинной поверхности).  [c.186]

Особенности распределения остаточных напряжений от поверхностного наклепа. Поверхностное пластическое деформирование (наклеп) широко применяют в настоящее время для увеличения сопротивления усталости деталей машин и частей сооружений из разнообразных металлических материалов. Основой благоприятного проявления поверхностного наклепа в этом случае является возникновение в поверхностных слоях обрабатываемых деталей остаточных напряжений сл<атия  [c.24]

Точение. Наклеп после точения сплава ЭИ437А изучали в зависимости от основных параметров режимов резания подачи, скорости и глубины резания и износа резца по задней поверхности. Результаты исследования наклепа и их анализ показал, что параметры режима резания оказывают существенное влияние на глубину и степень наклепа поверхностного слоя (табл. 3.4). С увеличением скорости резания от 2 до 75 м/мин глубина наклепа уменьшается от 141 до 97 мкм, а степень наклепа — от 49,8 до 35,4% (рис. 3.6).  [c.89]

Характер зависимостей глубины и степени наклепа от подачи и скорости резания при фрезеровании подобен аналогичным зависимостям при точении. С увеличением подачи (рис. 3.8) до определенной величины, зависящей от физико-механических свойств обрабатываемого металла, глубина и степень наклепа поверхностного слоя уменьшаются, а затем возрастают при дальнейшем увеличении подачи. Следовательно, существует оптимальная подача, при которой наклеп поверхностного слоя имеет наименьшее значение. Оптимальная подача для сплава ЭИ437 равна = 0,15 мм.  [c.100]

Шлифование. Наклеп поверхностного слоя исследовали после круглого наружного шлифования сплава ЭИ437А методом врезания и методом продольной подачи.  [c.103]

Аналогичные результаты получены при исследовании наклепа после полирования фетровыми кругами сплава ЭИ437А, где полированию предшествовало точение острым и изношенным режущим инструментом (см. табл. 3.4, режимы 25—26). Наклеп поверхностного слоя после полирования фетровыми кругами с припуском на полирование не более 0,05—0,1 мм на сторону определяется в основном характером предшествующей обработки.  [c.107]


Смотреть страницы где упоминается термин Наклеп поверхностный : [c.228]    [c.406]    [c.17]    [c.27]    [c.186]    [c.104]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.226 ]



ПОИСК



Горбов, канд. физ.-мат. наук Н. Н. Зацепин. Градиенты магнитных полей от поверхностных волосовин и мест локального наклепа прутковой стали в приложенном поле

Наклеп

Наклеп поверхностного слоя

Наклеп поверхностный упрочняющий

Наклеп поверхностный — Вид из сталей высокопрочны

Наклеп поверхностный — Виды

Наклеп поверхностный — Виды из сталей высокопрочных

Наклеп поверхностный — Виды сводны

Наклеп поверхностный — Влияние

Наклеп поверхностный — Влияние долговечность сварных конструкций

Наклеп поверхностный, дробью

Наклеп холодный поверхностный

Поверхностный наклеп, влияние на прочност

Повышение коррозионно-усталостной прочности стальных деталей наклепом дробью, обкаткой роликами и поверхностной электрозакалкой

Предел Влияние поверхностного наклепа

Прочие виды поверхностного наклепа

Сплавы Предел выносливости — Влияние поверхностного наклепа

Сталь Амплитуда пластической Влияние поверхностного наклеп

Твердость поверхностного слоя металла после дробеструйного наклепа

Торможение поверхностным наклепом трещин малоцикловой усталости

Увеличение сопротивления усталости деталей машин поверхностным наклепом

Упрочнение крупных деталей поверхностным наклепом

Упрочнение наклепом поверхностно-закаленных деталей

Упрочнение поверхностное (наклеп)

Упрочнение поверхностным пластическим деформированием (наклепом)

Чугун — Давление контактное допускаемое поверхностного наклепа



© 2025 Mash-xxl.info Реклама на сайте