Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы Термическая обработка — Виды

IN-738 — это сплав, в который помимо Мо и W введены Nb и Ti. На сегодняшний день пользуются термической обработкой в виде 2-Ч выдержки при 1125 °С и 24-ч выдержки при 840 °С, каждая выдержка сопровождается охлаждением на воздухе. Показано [64], что такая обработка не приводит к растворению у -фазы. Поэтому идет образование у -фазы в виде крупных частиц неправильной формы и при 840 °С "фона" ее мелкодисперсных выделений. Ввод операции старения при 1055°С приводит к созданию частиц более правильной формы с фоном из мелкодисперсных выделений. Выдержка при 1175 °С дает более полное растворение у -фазы, поэтому в структуре преобладают ее выделения, типичные для выдержки при 1085 °С. Если первичное старение проводить при 925 °С, возникают более равномерные выделения округлой формы в этом конкретном случае добились полного растворения у -фазы). И все-таки при всем этом обширном опыте наиболее приемлемые (оптимальные) свойства получаются при образовании дуплексной структуры (в отношении у -фазы) по режиму, состоящему из выдержек при 1125 и 850 °С.  [c.170]


Обычно суперсплавы подвергают термической обработке трех видов 1) обработка на твердый раствор с целью растворить выделения у -фазы, чтобы затем вызвать ее повторное выделение в виде более тонких и равномернее распределенных частиц и тем самым увеличить прочность сплава 2) термическая обработка покрытия с целью укрепить связь покрытия со сплавом-подложкой 3) отжиг — старение с целью полу-  [c.252]

Многие сплавы, предназначенные для изделий направленной кристаллизации, подвергают термической обработке второго вида, направленной на укрепление связи между покрытием и основой. Обычно эта обработка заключается в отжиге при 980—1120°С длительностью до 8 ч. Такое сочетание температуры и длительности обработки могло бы привести к росту выделений у -фазы и, следовательно, к изменению механических свойств сплава. (Это обстоятельство рассмотрено особо в разделе о механических свойствах). Однако из-за кратковременности охлаждения от этих температур существенный рост выделений у -фазы произойти не успевает, и свойства сплава оказываются нечувствительными к скорости охлаждения от наиболее низких температур этого вида обработки.  [c.256]

Развитие многокомпонентных сплавов на основе РЗМ привело к существенному видоизменению технологии производства дисперсионно-твердеющих сплавов и приблизил ее к таковой для спеченных магнитов, поскольку измельчение и спекание позволяют получить наиболее однородную и мелкозернистую структуру. Проведение после спекания термической обработки в виде серии отпусков при температурах  [c.524]

Трущиеся поверхности из титана при удельных давлениях свыше 50 кГ/см могут дать задиры. Наилучшим сплавом для пары с титаном в трущихся деталях является латунь. Коэффициент трения в этом случае не превышает 0,2. С целью улучшения фрикционных свойств титана применяется химико-термическая обработка различного вида (окисление поверхности на воздухе при высоких температурах, азотирование, электролитическое оксидирование и др.).  [c.750]

Сплавы, легированные только а-стабилизаторами, и сплавы,, содержащие а-стабилизаторы и незначительные добавки нейтральных упрочнителей, не упрочняются термической обработкой. Единственным видом их термической обработки является отжиг или гомогенизация для повышения пластичности. Ввиду того что легирующие элементы, как правило, повышают температуру рекристаллизации, для сплавов требуется более высокая температура отжига, чем для нелегированного титана. В табл. 22 приведены рекомендуемые режимы отжига и гомогенизации а-сплавов. Продолжительность отжига заготовок принимают нз расчета 2—3 мин на 1 мм наибольшего сечения. Листы толщиной 1,5— 5,0 мм отжигают 15—20 мин, а более толстые — 40—60 мин.  [c.85]


Детали из цветных металлов и сплавов изготовляют различными методами — путем отливки, обработки давлением, сварки и обработки резанием. Для изменения свойств цветные металлы и сплавы подвергают термической обработке. Основными видами термической обработки, применяемой к цветным металлам и сплавам, являются отжиг, закалка и отпуск. Для упрочнения цветных сплавов широко применяют закалку и старение (упрочняющий отпуск).  [c.228]

Отпуск (старение) является следующим (четвертым) видом термической обработки. Этот вид термообработки применим только к закаленным сплавам, имеющим нестабильную неустойчивую структуру. Отпуск (старение) заключается в постепенном распаде закаленного твердого раствора, при этом в структуре происходят сложные преобразования, заканчивающиеся появлением равновесных для данных условий фазовых составляющих. Процессы распада закаленного твердого раствора, составляющие сущность отпуска, могут начинаться сразу после закалки при комнатной температуре, но обычно для этого требуется определенный нагрев.  [c.104]

Для титана и его сплавов, а также сварных соединений применяют в основном следующие виды термической обработки отжиг, закалку и старение. В конструкциях титановые сплавы можно использовать в состояниях после прокатки, отжига или упрочняющей термической обработки. Упрочнение титановых сплавов термической обработкой достигается в отличие от сплавов на основе железа преимущественно дисперсионным твердением и старением.  [c.130]

Для снятия остаточных напряжений в деталях из сталей и сплавов с целью повышения эксплуатационных свойств (сопротивления усталости, коррозионного растрескивания под напряжением и др.) применяется объемная термическая обработка в виде отжига или высокого отпуска.  [c.257]

Диаграмма состояния показывает, каким видам термической обработки может быть подвергнут сплав и в каких температурных интервалах следует производить обработку.  [c.228]

Все сплавы, кристаллизующиеся по диаграмме состояния, изображенной на рис. 174,в, могут быть подвергнуты термической обработке по второй, третьей или четвертой группам. При нормальной температуре все сплавы состоят из а+Р-фаз. При /аит а- и р-фазы превращаются в 7-фазу. Последующее охлаждение определяет вид термической обработки — отжиг (медленное охлаждение) или закалку (быстрое охлаждение). Термическая обработка по второй и третьей группам возможна лишь при условии нагрева выше температуры фазовой перекристаллизации /опт и образования 7-твердого раствора.  [c.229]

Марка сплава Вид литья Термическая обработка "в кгс/мм= %,2- кгс/мм й, % Твер- дость, ИВ Плот- ность, г/см  [c.593]

Многие отливки из алюминиевых сплавов подвергают термической обработке. В зависимости от характера отливки и условий ее работы используют один из следующих видов термической обработки.  [c.333]

Влияние термической обработки на жаропрочность сплавов происходит в результате дисперсионного твердения. Дисперсионное твердение связано со старением пересыщенных твердых растворов, сопровождающимся выделением мелкодисперсных включений упрочняющих фаз (карбидов, нитридов). Эти упрочняющие фазы присутствуют как в виде раздробленных крупных частиц по границам зерен, так и в виде равномерно рассеянных внутри зерен мельчайших частичек (рис. 13.5), повышающих сопротивление пластической деформации при высоких температурах, т. е. повышающих жаропрочность.  [c.202]

В зависимости от назначения отливок из алюминиевых сплавов их подвергают различным видам термической обработки.  [c.332]

II от магнитных полей, что приводит к необходимости поддерживать последние постоянными во время измерений. Вследствие хаотичности распределения свинца в таких сплавах здесь нельзя предугадать характер температурной зависимости R T), которая может заметно отличаться даже у двух кусков одной проволоки наконец, изгибы, растяжения, отогрев, механическая и термическая обработка также сильно влияют на сопротивление, что постоянно приходится иметь в виду. Все же, несмотря на эти недостатки, такие термометры относятся к наиболее употребительным.  [c.330]


Марка сплава Вид литья Термическая обработка d МПа В) а , МПа . % нв  [c.37]

Термическую обработку, сопровождающуюся фазовыми превращениями без полиморфного превращения, рассмотрим на примере системы сплавов А1—Си (рис. 79, а), имея при этом в виду, что основные закономерности превращений остаются аналогичными для других многочисленных сплавов с подобной диаграммой состояния. При нагреве двухфазного сплава состава, соответствуют  [c.107]

Термическая обработка, основанная на фазовой перекристаллизации, в первом случае называется отжигом второго рода, а обработка согласно второму случаю называется закалкой. Отжиг второго рода для систем сплавов, аналогичных рассматриваемой, применяют для перекристаллизации структуры сплава (наНример, после литья, ковки), уменьшения внутренних напряжений и прочности сплавов (например, перед обработкой резанием). Фазовая перекристаллизация при несколько ускоренном охлаждении (например, на воздухе) называется нормализацией. Этот вид обработки применяют в тех же случаях, что и отжиг однако нормализация может быть и оконча-тель 10Й термической обработкой, поскольку она вызывает некоторое повышение механических свойств сплава  [c.108]

Приведенные виды термической обработки относятся и к рассматриваемой ниже термической обработке сплавов, имеющих полиморфное превращение.  [c.108]

Одним из видов термической обработки сплавов является отпуск стали и дисперсионное твердение.  [c.121]

Дисперсионное твердение. Этот вид термической обработки часто называется старением. Оно сопровождается процессом выделения дисперсных частиц из пересыщенного твердого раствора, у сплавов, ранее прошедших закалку, при их нагреве. Дисперсионное твердение наблюдается у сплавов с ограниченной растворимостью легирующих элементов в -твердом растворе (см.рис. 72) после закалки сплава с концентрацией элемента точки 4 от температуры, несколько превышающей точку 3. Для того чтобы вызвать дисперсионное твердение, закаленный сплав нагревают до температуры, не превышающей предельную температуру полной растворимости легирующего элемента в твердом растворе.  [c.124]

Дисперсионное твердение применяется для сплавов на основе железа, никеля, титана, молибдена и других металлов, с целью придания последним специальных физико-химических свойств. В частности, этот вид термической обработки нашел широкое применение при производстве постоянных магнитов, поскольку она способствует значительному увеличению коэрцитивной силы и магнитной энергии магнитов.  [c.124]

Объясните назначение и расскажите виды термической обработки отливок из чугуна, стали, цветных сплавов.  [c.87]

Мы видели, что применительно к высокоуглеродистым сплавам различные режимы термической обработки в виде гомогенизации с последующим старением не приводят к существенным переменам в соотношении прочность—пластичность из-за высокой стабильности первичных карбидных выделений типа МС. Присутствие эвтектических островков Mjs g - еще один фактор, подавляющий чувствительность этих сплавов к термической обработке. И только применение изостатическо-го прессования под высоким давлением прокладывает путь к дальнейшему исследованию возможностей их Термической обработки. В плане упрочнения такой фактор, как изменение морфологии эвтектических выделений МгаС , видимого эффекта не дает. Поэтому в последние годы при разработке новых материалов на кобальтовой основе стремятся изменить карбидный баланс в пользу более устойчивых выделений МС и свести к минимуму количество первичных и эвтектических выделений Mjs g.  [c.207]

Термическую обработку третьего вида проводят при более низкой температуре (700—900 °С), она более длительна (до 32 ч). Ее главная цель — вызвать выделение карбида по границам зерен, чтобы обеспечить некоторое сопротивление зернограничному проскальзыванию. При указанных низких температурах возможно и дополнительное выделение у -фазы, таким образом распределение ее выделений с учетом размера частиц становится бимодальным. Предел текучести ниже 760 °С проявляет сильную обратную зависимость от размера частиц у -фазы и может быть существенно увеличен с помощью низкотемпературной термической обработки. Применительно к низкоуглеродистым сплавам для монокристалличес-ких изделий, требующих главным образом достаточного высокотемпературного сопротивления ползучести, термической обработкой — старением можно пренебречь, практически не повлияв сколь-нибудь существенно на характеристики ползучести,  [c.257]

Трудности, которые создаются коркой повышенной твердости торца в плоскости реза заготовки, устраняются следующим образом. В заготовках, идущих после разрезки в термический или кузнечный цех, при их нагреве восстанавливаются свойства материала корки до исходного состояния. Заготовки, поступающие в механический цех после резки для предварительной механической обработки с последующей термической обработкой в виде нормализации или отжига, должны, если это возможно, пройти предварительно термообработку. В тех же случаях, когда заготовки подвергаются механической обработке сразу после разрезки, рекомендуется вначале обтачивать их по наружной поверхности, а затем подрезать торец. Обработка должна вестись резцом с пластинкой твердого сплава марки ВК8 или Т5КЮ с положительным углом наклона главной режущей кромки Я =12- 15°.  [c.69]

Из освоенных промьииленностью композиционных материалов ведущее место занимают металлические композиционные материалы на основе алюминия и его сплавов. Использование алюминия в качестве матричного материала обусловлено широким распространением его в технике, низкой плотностью, коррозионной стойкостью, возможностью регулировать механические свойства алюминиевых сплавов термической обработкой и подвергать их различным видам обработки давлением и литья.  [c.232]


Дюралюминий — наиболее рас1прост1раненный представитель группы алюминиевых сплавов, применяемых в деформированном виде н упрочняемый термической обработкой. Он содержит около 4% Си н 0,5% Mg, а также марганец 11 железо. Дюралюминий — сплав, по крайней мере, шести компонентов алюминия, меди, магния, марганца, кремния и железа, хотя основными добавками являются медь и магний. Поэтому указанный сплав мо >кно причислить к сплавам системы А1 — Си — Mg. Кремш1Й п железо являются постоянными примесями, попадающими и сплав вследствие применения недостаточно чистого алюминия.  [c.583]

Практическое применение диаграммы Fe—Fe., . Диаграмму Fe—F ji используют для определения видов и температурных интервалов термической обработки стали для назначения температурного интервала при обработке давлением для определения температуры плавления и заливки сплава и его литейных свойств (жидко-текучссти, усадки).  [c.12]

В некоторых случаях при очень быстром движении коррозионной среды или при сильном ударном механическом действии ее на металлическую поверхность наблюдается усиленное разрушение не только защитных пленок, но н самого металла, называемое кавитационной эрозией. Такой вид разрушения металла наблюдается у лопаток гидравлических турбин, лопаете пропеллерных мешалок, труб, втулок дизелей, быстро-ходшчх насосов, морских гребных винтов и т. п. Разрушения, вызываемые кавитационной эрозией, характеризуются появлением в металле трещин, мелких углублений, переходящих в раковины, и даже выкрашиванием частиц металла. С увеличением а1-рессивности среды кавитадиоппая устойчивость конструкционных металлов и сплавов понижается. Кавитационная устойчивость металлов и сплавов в значительной степени зависит не только от природы металла, но н от конфигурации отдельных узлов машин и аппаратов, их конструктивных особенностей, распределения скоростей потока жидкостей и др. Известно также, что повышение твердости металлов повышает их кавитационную стойкость. Этим объясняется, что для борьбы с таким видом разрушения обыч)ю применяют легированные стали специальных марок (аустенитные, аустенито-мартенситные стали и др.), твердость которых повышают путем специальной термической обработки.  [c.81]

Режим термической обработки сплавов изменяет предел их коррозиопно усталости. Под влиянием термообработки изменяются внутренние факторы сплава. Структурное состояние, опре-.деляемое видом термической обработки, как было указано выше, в сильной степени влияет на усталостную прочность стальных. деталей. В результате закалки с последующим отпуском значи-  [c.106]

По сравнению со вторым изданием учебник подвергся существенной переработке. Автор отразил в учебнике современные достижения отечественного и зарубежного металловедения, уделяя основное внимание физической сущности явлений, при сохранении инженерной направленности книги. В учебник введены новые разделы. В соответствии с основными направлениями экономического и социального развития СССР на 1981—1985 годы и на период до 1990 года в khhi дано описание новых видов термической, термомеханической, химико-термической обработки стали и цветных сплавов.  [c.6]

Под изломом понимают поверхность, образую1цуюся в результате разрушения металла. Вид излома определяется условиями нагружения, кристаллографическим строением и микроструктурой м -талла (сплава), формируемой технологией его выплавки, обработ и давлением, термической обработки, температурой и средой, в ко-торых работает конструкция.  [c.13]

После азотироБания сплавов титана при 950 "С, 30 ч толицта диф( )узионного слоя равна 50 — 150 мкм, а твердос ть HV 750—900 (7500—9000 МПа) (в завпспмости от состава сплава). Реже применяют другие виды химико-термической обработки.  [c.318]

В растворе, насыщенном H S и содержащем 5 % Na l и 0,1 % уксусной кислоты (имитация кислой среды газовых скважин), разрушение сплава зависит от температуры и скорости равномерной коррозии, которая преобладает в этих условиях и приводит к образованию водорода. При комнатной температуре разрушение вследствие водородного растрескивания (называемого иногда также сульфидным растрескиванием) протекает обычно только в том случае, если обработанные холодным способом сплавы были подвергнуты последующей термической обработке (состарены на заводе-изготовителе). Старение сплавов, увеличивающее их прочность, может приводить также к усилению равномерной коррозии в кислотах. При этом количество выделяющегося водорода становится достаточным, чтобы вызвать растрескивание. При повышенной температуре разрушения этого типа обычно уменьшаются (меньше водорода проникает в металл и больше удаляется в виде газа). Однако в области повышенных температур водородное растрескивание может смениться КРН, которое связано с присутствием хлоридов. В этом случае контакт сплавов с более активными металлами предотвращает растрескивание (протекторная защита).  [c.371]

Исследование микроструктуры. Исследование микроструктуры дает возможность более глубоко изучить структуру основного металла и характерных зон сварного соединения, чем исследование макроструктуры. По микроструктуре обследуемого объекта можно установить 1) характер изменения структуры металлов и сплавов после деформации, различных видов термической обработки и других технологических операций, а также коррозионных или эрозионных воздействий на материал рабочей среды в аппарате 2) установить форму и размер структурных составляющих, микроскопических трещин и т.п. повреждений металла 3) структуру наплавленного металла, структуру, образовавшуюся в зоне термического влияния 4) примерное содержание углерода в основном и наплавленном металле и в различных участках шва 5) приблизительный режим сварки и скорость ох.1тажде-ния металла шва и зоны термического влияния 6) количество слоев сварного шва и дефекты шва и структуры.  [c.308]

Специальные требования к отливкам оговариваются в технических условиях или непосредственно в чертеже литой детали. Обеспечение этих требований, как уже отмечалось ранее, достигается прежде всего выбором литейного сплава, в максимальной степени отвечающего функциональному назначению отливки рациональным технологическим процессом изготовления механической и термической обработкой отливки, а также специальной отделкой поверхности литых деталей, предусматривающей нанесение различных защитных, теплостойких отбеленных слоев и других видов покрытий. Например, для литых деталей коромысла f nanaHOB и распределительный вал , работающих в интенсивных режимах работы на износ, в чертеже отливок оговаривается глубина отбеленного слоя (цементита).  [c.132]

Следует иметь в виду, что примеси в малых количествах, например примеси углерода в сталях, легирующие добавки в сплавах, пластическая и термическая обработка мало влияют на упругие и термодинамические свойства металлов и сплавов, характеризуемые зависимостями для давления />(р°, Т), впут-ренпей энергии и = и(р°, Т) и модулем сдвига G, но в это же время могут существенно изменить предел текучести т .  [c.148]

Все перечисленные теории связывают склонность сплавов к МКК со структурными изменениями, т.е. с выделениями новых фаз (в основном карбидных) на границах зерен, которыэ могут происходить при термической обработке и других видах химмко-металлургическо-го и термического воздействия, например, при сварке, пайке, наплавке. В последующих случаях МКК обычно проявляется в зоне термического влияния. Развитие МКК зависит как от состава сплавов, так и от коррозионной среды и имеет, как правило, электрохимический механизм.  [c.84]


Деформируемые сплавы, упрочняемые термообработкой Найболее распространенными представителями группы алюминиевых сплавов, применяемыми в деформированном виде и упрочняемыми термической обработкой, являются дуралюмины (от французского dur- твердый). К ним от носятся сплавы системы А1 - Си - Mg-Mn. Типичными дуралюминами являются марки Д1 и Д16, Их химический состав приведен в табл. 1S..  [c.119]

Углеродистые и легированные стали раньше других сплавов и композиционных материалов начали широко применять в различных узлах трения машин. Однако для обеспечения высокой износостойкости их подвергают методам термической и химико-термической обработки. Фазовые превра1цения в сталях в твердом состоянии обусловливают возможность осуществления всех видов термической обработки (закалка, отжиг, отпуск).  [c.160]

Использование термического воздействия в процессах комплексного модифицирования целесообразно на стадии послерадиационной обработки в случаях облучения твердых сплавов сильноточными ионными и электронными пучками. Эффективным видом послерадиационной термической обработки твердосплавных материалов, применяемых при резании на высоких скоростях, является вакуумный отжиг в газовой среде, например в аргоне. Низкоэнергетическая обработка ионами аргона позволяет снизить уровень остаточных напряжений, вызванных облучением, а также "залечить" поверхностные дефекты, вызванные воздействием сильноточного пучка,  [c.231]

Необходимым оборудованием для радиационно-энергетической обработки твердо-сплавных режущих пластин и инструментов являются вакуумная термическая печь, установка для нанесения покрытий, ускоритель сильноточных ионных пучков. Выбор режимов термической, ионно-плазменной и ионно-лучевой обработки осуществляется в соответствии с известными и специально разработанными технологическими рекомендациями. Наиболее важные варьируемые параметры технологического процесса - состав и толщина наносимого покрытия, плотность тока сильноточного ионного пучка, а также режимы окончательной термической обработки износостойкого комплекса. Стабилизационный отжиг, являющийся окончательной технологической операцией, желательно проводить в условиях вакуума с контролируемой скоростью охлаждения, которая регулируется циркуляцией инертного газа. Режимы и вид предварительной термической обработки назначаются для каждой марки твердого сплава, исходя из задач его дальнейшей эксплуатации, определяемых условиями трибомеханического нагружения модифицированного инструмента в прогдессс пезаиня.  [c.267]

Рис. 160. Зависимость остаточной индукции коэрцитивной силы и магнитной энергии сплавов типа ЮНДК12 от содержания алюминия и вида термической обработки а — н после термомагнитной обработки б — магнитная энергия образца, охлажденного / — в магнитном поле 2 — без магнитного поля Рис. 160. Зависимость <a href="/info/1535">остаточной индукции</a> <a href="/info/1559">коэрцитивной силы</a> и <a href="/info/16485">магнитной энергии</a> <a href="/info/610861">сплавов типа</a> ЮНДК12 от содержания алюминия и <a href="/info/336312">вида термической обработки</a> а — н после <a href="/info/188604">термомагнитной обработки</a> б — <a href="/info/16485">магнитная энергия</a> образца, охлажденного / — в <a href="/info/20176">магнитном поле</a> 2 — без магнитного поля
Сплав 20НЮ выпускается в виде горячекатаного листа и имеет хорошие свойства в полях напряженностью 11940—19 900 а/м (150—250 э). Термическая обработка этого сплава заключается в воздушной закалке с 1150— 1200° С и отпуске при 600° С в течение нискольких часов.  [c.232]


Смотреть страницы где упоминается термин Сплавы Термическая обработка — Виды : [c.169]    [c.308]    [c.310]    [c.83]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.76 , c.78 ]



ПОИСК



Виды сплавов

Обработка сплавов

Обработка термическая сплавов термическая

Обработка — Виды

Сплавы Термическая обработка

Термическая обработка виды



© 2025 Mash-xxl.info Реклама на сайте