Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние условий обработки на точность деталей

Влияние условий обработки на точность деталей  [c.577]

Влияние условий обработки на точность деталей может быть установлено аналитически и экспериментально.  [c.577]

Стремление уменьшить влияние погрешности базирования на точность получаемых размеров ограничивается условиями выбора системы размеров при обработке каждой поверхности за отдельную операцию, при обработке же за одну установку нескольких поверхностей задание размеров от установочной базы до каждой поверхности не всегда представляет технологически наиболее оптимальный вариант. Для нахождения последнего необходимо учитывать условия одновременной обработки нескольких поверхностей деталей.  [c.637]


При обработке деталей методом пробных проходов влияние размерного износа на точность невелико. В данных условиях от размерного износа зависит только точность формы обрабатываемой поверхности (при обработке поверхностей больших размеров эта погрешность может быть частично уменьшена периодической подачей инструмента на глубину).  [c.84]

Применение в машиностроении новых труднообрабатываемых конструкционных материалов, повышение уровня автоматизации металлорежущих операций и создание самонастраивающихся систем, повышенные требования к точности и качеству обработки ставят перед наукой о резании металлов ряд проблем. Например, резание труднообрабатываемых материалов показало необходимость иного подхода к назначению режимов резания, чем традиционный. Резание пирофорных и ядовитых материалов предъявляет новые требования к выбору схемы обработки, режима резания, конструкции инструмента. Для обработки конструкционных материалов в космосе требуются новые методы, так как исключительно высокий вакуум разрушает окисные пленки и приводит к свариванию сверл, метчиков и других инструментов с деталью. При разработке самонастраивающихся систем и программного управления процессом резания на автоматических станках и линиях необходимо математическое описание влияния условий резания на основные характеристики процесса резания. Количество подобных проблем весьма велико. Важнейшей задачей теоретического плана является замена эмпирических формул для расчета сил и скоростей резання физическими формулами, использующими механические и теплофизические свойства обрабатываемого и инструментального материалов и характеристики процесса резания.  [c.5]

При обработке на настроенных станках износ инструмента приводит к рассеянию размеров обработанных поверхностей заготовок, что снижает качество сборки деталей в условиях взаимозаменяемости. Уменьшить влияние износа на точность обработки можно периодической подналадкой станка.  [c.273]

Таким образом, рассмотренная методика, основанная на применении дисперсионного анализа и теории планирования эксперимента, позволяет по минимально возможному числу замеров в производственных условиях определить доминирующие факторы, влияющие на точность обработки деталей, и классифицировать эти факторы по степени их влияния на суммарную погрешность. Получаемая в итоге математическая модель исследуемой технологической операции дает возможность оценить влияние изменения каждого из факторов на уменьшение суммарной погрешности, т. е. позволяет определить экономически эффективный вариант обеспечения заданного чертежом качества обработки детали.  [c.239]


Исследование технологического процесса во времени требуется для решения многих важных производственных задач. Так известно, что наиболее распространенные методы контроля качества продукции, основанные на проверке годности ее после изготовления, не обеспечивают условий для контроля самого хода технологического процесса и воздействия на качество деталей в процессе обработки, т. е. решения задачи регулирования процесса. Знание же закономерностей течения процесса во времени позволяет перейти к более эффективным, например, статистическим методам контроля и регулирования. Известно также, что проверка станков на точность, без учета их жесткости под нагрузкой и возникающих при этом динамических погрешностей, не дает возможности правильно оценить точность оборудования и влияния ее на точность обработки. Изучение же хода процесса во времени позволяет сделать это с наибольшей полнотой.  [c.35]

Было выявлено влияние настройки и регулировки отдельных узлов автомата на его динамические характеристики (в том числе на точность обработки) сил трения на динамические нагрузки,, равномерность движения рабочих органов и к.п.д. при различных скоростях, условиях смазки и приработки деталей автомата (с применением непосредственной записи сил трения или выделения их измерением общей нагрузки и ускорений, определяющих величину инерционной составляющей нагрузки). Были найдены причины нарушения контакта сопрягаемых поверхностей деталей автомата и повышенного износа (с помощью контактных датчиков и методом отпечатков), а также причины износа деталей автомата, влияю-  [c.10]

Комплексное проведение производственных исследований точности работы действующих автоматических линий, экспериментальных исследований и теоретического анализа должно дать ответы на следующие основные вопросы проектирования технологических процессов производства корпусных деталей на автоматических линиях а) обоснование для выбора технологических методов и числа последовательно выполняемых переходов для обработки наиболее ответственных поверхностей деталей с учетом заданных требований точности б) установление оптимальной степени концентрации переходов в одной позиции, исходя из условий нагружения и требуемой точности обработки в) выбор методов и схем установки при проектировании установочных элементов приспособлений автоматических линий для обеспечения точности обработки г) рекомендации по применению и проектированию узлов автоматических линий, обеспечивающих направление и фиксацию режущих инструментов в связи с требованиями точности обработки д) выбор методов настройки станков на требуемые размеры и выбор контрольных средств для надежного поддержания настроечного размера е) обоснование требований к точности станков и к точности сборки автоматической линии по параметрам, оказывающим непосредственное влияние на точность обработки ж) обоснование требований к точности черных заготовок в связи с точностью их установки и уточнением в ходе обработки, а также установление нормативных величин для расчета припусков на обработку з) выявление и формирование методических положений для точностных расчетов при проектировании автоматических линий.  [c.98]

Рассматриваемый метод широко используют для анализа технологического процесса. Желая установить степень влияния какого-либо фактора на точность обработки, технолог сравнивает кривые распределения, построенные в результате измерения двух партий деталей, изготовленных в условиях, при которых действие интересующего нас фактора в обоих случаях было различно, а остальные условия оставались по возможности одинаковыми. Для получения надежной кривой распределения рекомендуется провести примерно 200 измерений.  [c.137]

В тех случаях, когда статистический анализ точности технологического процесса проводят с целью изучения влияния на точность обработки одного конкретного фактора, на график наносят две реализации по результатам измерения двух партий деталей, полученных при различных значениях исследуемого фактора и максимально возможной идентичности условий обработки по другим факторам.  [c.52]


При контроле в процессе обработки деталей, обладающих небольшой жесткостью в поперечном сечении (например, тонкостенных), на точность любых методов измерения, в том числе и диаметральных, влияют силовые деформации обрабатываемых деталей. Поэтому тонкостенные детали целесообразнее контролировать не в процессе, а после обработки, используя обратные связи в форме подналадочных систем. При контроле после обработки уменьшается влияние динамических факторов. Кроме того, само измерительное устройство находится в более благоприятных условиях (с точки зрения влияния охлаждающей жидкости и возможности загрязнения).  [c.558]

Применение статистического метода оказывается полезным также при различных исследовательских работах как в заводской, так и в лабораторной обстановке. Обычно, желая установить путем опыта или наблюдения характер и степень влияния какого-либо фактора на точность обработки, сравнивают результаты обработки двух партий деталей в условиях, при которых действие интересующего нас фактора в обоих случаях различно, все же остальные обстоятельства опыта сохраняются постоянными .  [c.185]

Изучение влияния режимов резания на физико-механические свойства поверхностного слоя является одним из условий установления оптимальных режимов обработки, не только обеспечивающих достижение высокой производительности, точности и необходимого параметра шероховатости поверхности, но и способствующих улучшению эксплуатационных свойств деталей.  [c.82]

Температурные деформации, возникающие при работе металлорежущих станков, оказывают существенное влияние на точность и производительность обработки. Особенно их влияние возрастает на тех операциях технологического процесса, когда к точности обрабатываемых деталей предъявляются повышенные требования. При этом часто для обеспечения требуемого качества деталей обработку ведут с малыми сечениями стружки, что при прочих равных условиях приводит к снижению производительности [3].  [c.256]

Таким образом, процесс обработки независимо от влияния различных технологических факторов продолжается до тех пор, пока в контролируемом сечении не будет достигнут заданный размер. В этих условиях на точность обработки перестают влиять размерный износ режущего инструмента, тепловые и силовые деформации станка и режущего инструмента, а также силовые деформации обрабатываемых деталей (при диаметральном трехконтактном измерении). Данная обратная связь обладает более высокой точностью по сравнению с ранее рассмотренными.  [c.71]

Надежность новых и отремонтированных автомобилей во многом зависит от точности обработки деталей, сборки узлов и агрегатов. Кроме того, точность обработки и сборки оказывает влияние на стоимость изготовления и ремонта. По этой причине установлению точности обработки деталей и сборки сопряжений, узлов и агрегатов уделяют большое внимание. При капитальном ремонте автомобилей точностные расчеты выполняют для того, чтобы выявить резервы точности у сборочных единиц и отдельных деталей, выбрать наиболее целесообразный для данных прозводственных условий метод обеспечения точности сборки и установить более технологическую размерную схему детали. Эти исследования точности позволяют расширить возможности повторного использования деталей без ремонтных воздействий, снизить за счет этого затраты на ремонт, не снижая заданного уровня качества.  [c.91]

На точность обработки при шлифовании при нормальных условиях работы могут оказывать влияние станок, инструмент, деталь.  [c.92]

В приборостроении учет влияния погрешностей формы при исследовании точности обработки приобретает особое значение. Высокая точность обработки деталей приборов при незначительных размерах обусловливает малые абсолютные допуски на их изготовление. Это приводит к тому, что при суш,ествующих условиях, обработки погрешности формы обработанных поверхностей становятся соизмеримыми с величиной допуска а обработку детали.  [c.46]

Геометрические погрешности горизонтально-расточных станков оказывают при определенных условиях заметное влияние на точность обработки отверстий в корпусных деталях.  [c.440]

Влияние установки детали при обработке. Одним из важных условий, обеспечивающих точность обработки, является точность выполнения центров и центровых отверстий в обрабатываемых деталях. Центры станка, а также центровые отверстия в деталях должны быть круглыми. При некруглых центрах или центровых отверстиях детали не имеют достаточной опоры и, смещаясь под действием усилий шлифования, копируют неточность центровых опор. На точность установки влияют несовпадение углов конусности отверстий и центров, а также их несовмещение и непараллельность. Смещение осей вызывает неполное прилегание устано-  [c.349]

Точность обработки корпусных деталей при любых вариантах и схемах обработки определяется влиянием тех- же факторов, которые были рассмотрены в гл. II. Вместе с тем на точность влияют условия обработки, характерные для расточных операций.  [c.335]

Чтобы исключить влияние нагрева деталей станка на точность обработки, применяют выдержку в течение определенного временя после пуска станка, пока температура его узлов не примет постоянной величины. Установившаяся температура подшипников шлифовальных станков равна 50—60°. Температура шпинделя отличается от температуры подшипника, так как условия отвода тепла у шпинделя и подшипника различные.  [c.190]

Учитывая разнообразие условий обработки (схем базирования, применяемого режущего инструмента, обрабатываемых деталей, компоновок станков и др.), необходимо найти то общее в механизме возникновения механических колебаний при резании, что присуще в целом каждой технологической системе. Для этого рассмотрим более подробно технологические факторы, приводящие к возбуждению механических колебаний, и особенности их проявления в процессе обработки детали. Влияние технологических факторов на параметры механических колебаний обусловлено тремя этапами процесса обработки детали на металлорежущих станках первый (установка) — координирование и закрепление обрабатываемого объекта производства с требуемой точностью второй (статическая  [c.258]


На срок службы машины большое влияние оказывает точность и чистота механической обработки ее деталей их повышение снижает динамические нагрузки, приближает условия работы деталей к оптимальным. Повышения точности механической обработки, расширения шлифовальных операций потребовало и широкое применение термической обработки.  [c.237]

Недостатком магнитного метода является зависимость получаемых результатов от магнитных свойств основного металла детали,, которые, в свою очередь, зависят от состава и структуры его. Известное влияние на силу отрыва оказывает также чистота обработки поверхности самого покрытия. Поэтому, для обеспечения возможно большей точности определений, необходимо для расчета толщины слоя пользоваться градуировочными кривыми, построенными по эталонам, возможно более подобным испытываемым деталям как по марке основного металла, так и по условиям механической и термической обработки его.  [c.543]

Результаты эксплуатационных исследований технологических процессов, проводимых в условиях действующего производства, дают необходимый материал для разработки методики исследования машин-автоматов. Для условий массового поточного производства комплексные эксплуатационные исследования технологических процессов были поставлены Ф. С. Демьянюком [2] и под его руководством проводились в Институте машиноведения и в автомобильной промышленности в течение ряда лет [3, 4, 29]. Были проведены исследования точности обработки, производительности и надежности оборудования, различных методов базирования и зажима деталей, правильности выбора режимов резания, износа и порядка смены инструментов, возможности увеличения концентрации операций на одном автомате, заделов между станками поточных линий, способов загрузки и межоперационной транспортировки деталей и их влияния на условия выполнения технологических процессов автоматизированного производства, а также сравнение различных способов построения технологических процессов и поточных линий. Такой подход к эксплуатационным исследованиям позволил выявить основные факторы, влияющие на качество и надежность выполнения технологических процессов автоматизированного поточного производства, что побудило в дальнейшем более подробно изучить эксплуатационные характеристики высокопроизводительного оборудования.  [c.9]

При обработке деталей на настроенных станках размерный износ режущих инструментов можно своевременно контролировать проверкой изделий обычными методами или средствами статистического контроля с записью результатов на карту. В обычных условиях размерный износ обнаруживается непрерывным увеличением выполняемого размера. Производя в нужный момент подналадку или смену режущего инструмента, можно регламентировать влияние размерного износа на точность обработки в желаемых пределах. Таким обра- зом, точность обработки в определенной степени зависит от данного субъективного (волевого) ф актора.  [c.231]

Влияние температурных деформаций технологической системы при обработке методом пробных проходов может сказаться на погрешности формы обрабатываемой поверхности, если процесс обработки длителен и охватывает период предварительного разогрева станка. Влияние этого фактора на точность небольших деталей может быть исключено, так как в условиях кратковременных процессов обработки тепловое состояние станка изменяется весьма незначительно. Исключение составляют случаи обработки тонкостенных деталей с большой обрабатываемой поверхностью без применения охлал<даю-щей жидкости.  [c.361]

В то же время по мере сокращения влияния упругих перемещений на точность обработки на роль доминирующих факторов стали выдвигать температурные деформации, геометрическую, неточность станка, износ звеньев системы СПИД. Ранее посредством различных способов и средств подавлялось и уменьшалось систематическое влияние перечисленных факторов на точность обработки. Так, например, в случае износа направляющих станины станка определялась систематическая составляющая погрешности обработки от действия этого фактора. На основании измерения йтой погрешности рассчитывалась программа и вводилась в систему точностной поднастройки системы СПИД. Однако при этом не учитывалась случайная составляющая погрешности, порождаемая действием этого фактора, не учитывались и такие погрешности, как неточность вращения шпинделя и др. Аналогичную картину можно наблюдать и в сокращении влияния температурных деформаций, износа звеньев системы СПИД (не тол ьк6 р ежу щего инструмента). Если ранее эти факторы в ряде случаев не оказывали существенного влияния на точность обработки, то в условиях совместного действия систем активного контроля и управления упругими перемещениями они становятся одной из главных причин, порождающих оставшуюся часть погрешности обработки. Поэтому другой задачей дальнейшего повышения точности обработки деталей является поиск путей, позволяющих сокращать совокупное влияние указанных факторов.  [c.660]

Механизмы позиционирования с фиксацией. Увеличение концентрации обработки в переналаживаемом оборудовании, автоматизация смены инструмента и их блоков, применение спутников, создание разветвленных систем для их транспортировки и установки требуют использования механизмов позиционирования с фиксацией. Рассмотрим более подробно поворотно-фиксирую- щие механизмы, получившие особенно широкое применение в автоматическом оборудовании. Они используются в токарных автоматах для позиционирования шпиндельных блоков, многопозиционных агрегатных станках для поворота и фиксации столов и барабанных приспособлений, станках с ЧПУ для поворота револьверных головок, магазинов, делительных столов, а также в манипуляторах для смены инструмента. За последнее время и для смены многошпиндельных головок при последовательной обработке, на однопозиционных и агрегатных станках группы различных деталей также все чаще применяются столы с поворотно-фикси-рующими устройствами. К ним предъявляются те же требования, что и к механизмам позиционирования. Отличие заключается в том, что точность позиционирования здесь зависит в основном от механизма фиксации, а при прерывистом повороте надо создать благоприятные условия для фиксации и ограничить динамические нагрузки с целью увеличения долговечности деталей и уменьшения погрешности позиционирования. Быстроходность и быстродействие при этом являются наиболее важными общими характеристиками всего поворотно-фиксирующего устройства и определяются в значительной степени видом закона движения (рис. 1.2), моментом инерции поворачиваемых масс, координацией поворота и фиксации и в меньшей степени колебаниями, возникающими при фиксации. На общую длительность цикла работы поворотно-фиксирующего механизма оказывает существенное влияние работа устройств освобождения опор и зажима поворачиваемого узла, что будет рассмотрено ниже. Те же факторы существенны и для случая прерывистого поступательного движения с фиксацией конечных положений. Исследование характеристик большого числа  [c.28]

Температурные деформации деталей при обработке с применением средств активного контроля удобно определять по изменению показаний отсчетного устройства после прекращения обработки. Рассеяние температурных деформаций деталей при шлифовании зависит от стабильности условий и режимов шлифования, главным образом от постоянства режущей способности шлифовального круга. Степень влияния температурных и силовых деформаций узлов станка на точность обработки при нуль-детекторной и однодетекторной схеме измерения зависит от характера измерительной размерной цепи [1]. При двухдетекторной схеме измерения полностью исключается влияние на размеры деталей размерного износа режущего инструмента, температурных и силовых деформаций узлов станка.  [c.198]


Все это говорит о том, что одной из основных задач в обеспечении качества поверхностного слоя деталей при механической обработке является строжайший контроль за соблюдением теэшологической дисциплины. Для устранения влияния случайных отклонений условий механической обработки на качество изготовляемых деталей с успехом используют различные системы адаптивного управления технологическими процессами. Эти системы базируются на получении информадаи, характеризующей истинное состояние процесса (контроль сил резания, температуры, силы тока и мощности двигателей, давления в гидроцилиндрах, точности обрабатываемого размера и параметров шероховатости и др.), и соответствующих оперативных, как правило, автоматических изменениях режимов резания.  [c.333]

В процессе изготовления изделий, особенно методом литья под давлением, большие и неравномерные усадки при охлал<дении отформованных изделий обусловливают трудности в получении деталей с точностью размеров на уровне точности деталей из металлов. Более того, различие в усадке приводит к короблению отформованных изделий, особенно с малой жесткостью, а также к возникновению в них других типов остаточных деформаций. Поэтому условия формования и конструкция литьевой формы оказывают решающее влияние на качество изделий. Точные допуски можно получать при изготовлении изделий из полимерных материалов механической обработкой, например зубчатых колес, но даже в этом случае вследствие большого термического расширения при-мененне деталей с малыми допусками ограничивается небольшим интервалом температур. Тем не менее, широкое применение полиамидов и сополимеров формальдегида в производстве зубчатых колес, шестерен, подшипников скольжения, втулок, кулачков и т. п. показывает большие возможности использования полимеров для изготовления деталей с высокой точностью размеров.  [c.243]

Выбор геометрических параметров режущего инструмента. Исходные данные для проектирования технологического процесса (чертеж детали с техническими условиями и нормами точности, материал обрабатываемой детали и др.) позволяют наметить тип инструмента, материал его режущей части, а также установить элементы его геометрии. Так, если при обработке на проход какой-либо поверхности вала может быть принят проходной резец с практически любым углом в плане, то этогсГ нельз я сделать при гидрокопировальной обработке, когда указанный угол требует вполне определенного значения, определяемого условиями копирования. При назначении геометрических параметров режуЩей части инструмента необходимо также учитывать влияние последних на процесс стружкообразования, тепловыделение, распределение теплоты и др. В большинстве случаев задача по выбору типа инструмента и требуемой его геометрии ставится следующим образом выбрать тип инструмента и его геометрию так, чтобы при прочих равных условиях обеспечить заданное количество деталей и возможно наибольшую его стойкость. На этот счет имеется 400  [c.400]

Выделение различного количества теплй в переднем и заднем шпиндельных подшипниках, различные условия теплоотдачи от мест теплообразования в передней бабке через стенки в окружающую среду приводят к неравномерным тепловым деформациям шпиндельной коробки и других деталей. Следствием этого является изменение положения шпинделя относительно направляющих в горизонтальном и вертикальном направлениях. Ось шпинделя получает и угловое смещение. Процесс разогрева и изменение температурных деформаций длится 4—8 ч. Величины тепловых деформаций могут быть рассчитаны [55], но весьма ориентировочно в связи с неправильной конфигурацией объемов теплорас-пределения с отводом тепла сложной поверхностью. В качестве мер, применяемых для уменьшения тепловых деформаций деталей шпиндельной бабки или ослабления их влияния на точность обработки, можно указать следующие  [c.199]

Отсюда видно, что технические условия и нормы точности на детали коробок яодач, в частности на их корпусы, следует устанавливать в каждом отдельно случае исходя из влияния погрешностей изготовления этих деталей и сборки коробки на точность обработки, которую должен давать проектируемый станок.  [c.301]

Корсаков B. ., Влиянне условий закрепления деталей на их точность при механической обработке, ДНТП им. Дзержинского, 1956.  [c.97]


Смотреть страницы где упоминается термин Влияние условий обработки на точность деталей : [c.160]    [c.178]    [c.108]    [c.245]    [c.430]    [c.86]    [c.30]   
Смотреть главы в:

Справочник технолога-машиностроителя Том 1 Изд.4  -> Влияние условий обработки на точность деталей



ПОИСК



Влияние обработки

Детали Обработка — Точность

Детали Точность

Обработка Точность обработки

Условия обработки



© 2025 Mash-xxl.info Реклама на сайте