Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория упругости Уравнения в координатах цилиндрических

При составлении уравнений механики деформируемого твердого тела выбирается соответствующая система координат. В зависимости от формы тела используются декартовы, полярные, цилиндрические координаты и др. Эти уравнения можно записать также и для общего случая произвольных криволинейных координат. В данной главе используем наиболее часто применяемую в задачах декартову систему. В последующих главах для характерных задач покажем также особенности использования полярной системы. Применение других систем координат можно найти в более полных курсах теории упругости.  [c.25]


Уравнения теории упругости в цилиндрических и сферических координатах  [c.38]

Таким образом, все точки прямолинейной границы имеют постоянное перемещение, направленное в сторону начала координат. Мы можем считать такое перемещение физически возможным, если припомним, что вокруг точки приложения силы Р мы мысленно удалили часть материала, ограниченную цилиндрической поверхностью малого радиуса (рис. 53), в пределах которой уравнения теории упругости теряют силы. В действительности, конечно, произойдет пластическая деформация этого материала в силу этого можно допустить существование вдоль прямолинейной границы перемещений, определяемых формулами (70). Вертикальные перемещения на прямолинейной границе получаются из второго выражения (ж). Учитывая, что перемещение v считается положительным, если оно направлено в сторону увеличения 0, и что деформация симметрична относительно оси х, найдем вертикальные перемещения, направленные вниз, на расстоянии гот начала координат в виде  [c.118]

Уравнения пространственной задачи теории упругости в цилиндрических координатах.  [c.687]

Формулы преобразования компонентов напряжений при переходе от полярной системы координат к декартовой. Прежде всего составим уравнения пространственной задачи теории упругости в цилиндрических координатах.  [c.687]

Задача теории упругости неоднородного тела формулируется и решается аналогично задаче теории упругости однородного изотропного или анизотропного тела. Различие между ними состоит лишь в том, что в физических уравнениях (законе упругости) механические характеристики являются заданными непрерывными функциями координат. Здесь необходимо еще раз подчеркнуть, что при этом деформации тела считаются малыми и предполагается выполнение обобщенного закона Гука. Очевидно, что в случае неоднородного тела остаются справедливыми общие уравнения механики сплошной среды соотношения Коши между деформациями и перемещениями и т. д. Подробное изложение теории напряжений и деформаций приводится в многочисленных книгах [11, 100, 138 и др.], поэтому ниже они даются без вывода в прямоугольной системе координат х, у, z) в объеме, необходимом для дальнейшего изложения. Эти же уравнения в других системах координат (цилиндрической, сферической) можно найти в указанных выше и других изданиях.  [c.32]

Общие решения уравнений теории упругости в цилиндрических координатах. В таблице 3.1а представлены соответственно пронумерованные решения таблицы 3.1 в цилиндрических координатах, полученные описанным выше способом. Остальные ре-  [c.136]


В цилиндрической системе координат г, (f, Z рассмотрим упругий цилиндр О z h, г R. Поставленная контактная задача теории упругости для этого цилиндра сводится к краевой задаче для уравнений Ламе в цилиндрических координатах [266] при следующих граничных условиях S r) — функция, описывающая форму и перемещение штампа)  [c.68]

Уравнения теории упругости в цилиндрических координатах  [c.149]

Многослойная структура с полостью или упругим включением канонической формы. Рассмотрим случай, когда полость (упругое включение) целиком расположено в одном из элементов многослойной структуры и имеет границу, представляющую собой координатную поверхность в ортогональной криволинейной системе координат (цилиндрической, сферической, эллипсоидальной). В этом случае при исследовании задачи о динамическом воздействии плоского жесткого штампа на поверхность пакета слоев или многослойного полупространства с полостью или включением целесообразно использовать принцип суперпозиции. Это позволяет точным образом свести краевую задачу динамической теории упругости к системе интегро-функциональных уравнений, при решении которой можно использовать, в зависимости от расположения неоднородности, различные методы анализа.  [c.311]

Хотя декартовы координаты удобны для многих задач теории упругости, часто необходимо бывает преобразовать уравнения к другой координатной системе, так как в декартовых координатах выражения оказываются громоздкими. Например, в главе П1 при рассмотрении распространения упругих волн вдоль цилиндрических стержней были использованы цилиндрические координаты.  [c.180]

Как и в предшествующих главах, мы будем исходить из решения уравнений теории упругости в перемещениях в форме П. Ф. Папковича. В применении к вопросу о деформации симметрично нагружённого тела вращения, не сопровождающейся кручением, это решение, как было показано в главе 6, даёт выражения проекций перемещения точек упругого тела на оси цилиндрической системы координат (радиального перемещения и и осевого -о ) через три функции 5о, Бр, В , не зависящие от угловой координаты (азимута ср). Функции В , Вд, а также являются гармоническими. Решение сохранит  [c.381]

Для более строгого решения задачи мы применим общие уравнения теории упругости в цилиндрических координатах (уравнения [165], стр. 307) ).  [c.390]

Для описания встречающихся в теории упругости векторных и тензорных величин будут параллельно применяться обычная в технической механике форма записи, а также тензорная форма записи, в которой уравнения имеют компактный вид. Но при этом будем ограничиваться тензорами в декартовых координатах, а общее описание в произвольных криволинейных координатах с помощью тензорного исчисления использоваться не будет. Там, где это представляется необходимым, будут применяться цилиндрические и сферические координаты, а иногда отдельные уравнения будут формулироваться в так называемой векторной форме записи (которая во многих разделах механики сплошной среды сегодня является обычной). Физическое содержание теории всегда будет ставиться на передний план и не затемняться математическим формализмом.  [c.10]

Часто весьма целесообразно оперировать основными уравнениями теории упругости в криволинейных ортогональных системах координат. Правда, это требует применения тензорного исчисления в общей форме, от которого в этой книге сознательно отказываются. Однако необходимые для дальнейшего основные соотношения для наиболее часто встречающихся криволинейных координат — цилиндрических и сферических приведены без вывода К  [c.71]

В этой же главе приводится сводка основных уравнений теории упругости в прямоугольных и цилиндрических координатах для однородного и изотропного тела.  [c.9]

Приведем основные формулы и уравнения теории упругости для однородной и изотропной среды в прямоугольной и цилиндрической системах координат.  [c.10]


Механическая и математическая постановка задачи о кручении тела вращения. При рассмотрении задачи об осесимметричной деформации тела вращения в цилиндрической системе координат г, ф, г основные уравнения линейной теории упругости распадаются на две независимые системы. Первая система служит для определения перемещений и и т и напряжений о,, Ог, и Гп в случае, когда тело вращения, деформируясь, не скручивается. Вторая система служит для определения перемещения V и касательных напряжений Тг и Гщ в случае чистого кручения тел вращения.  [c.246]

Мы рассмотрим чистое кручение непрерывно-неоднородного стержня, у которого в каждой точке имеется плоскость упругой симметрии, нормальная к образующей, а коэффициенты по длине не меняются. Уравнения теории кручения мы выведем не пользуясь материалом главы 3, а непосредственно. Предположим, что только две составляющие напряжения не равны нулю и не зависят от продольной координаты 2, а остальные четыре равны нулю. Приняв какую-нибудь точку на торце за начало координат и направив ось 2 параллельно образующей цилиндра, запишем основную систему уравнений в цилиндрических координатах следующим образом  [c.299]

Формулы (22.4), (22.6) и (22.7) образуют систему дифференциальных уравнений линейной теории упругости в цилиндрических координатах.  [c.233]

В теории упругости обычно предполагается, что тело находится в состоянии медленного движения, в связи с чем в правую часть уравнений теории упругости входит ускорение, зависящее только от времени (локальная производная). В правую часть уравнений движения жидкости входит полное ускорение, например, в цилиндрических координатах,  [c.45]

Рассмотрим бесконечную горизонтальную пластинку из вязко-упругого материала постоянной толщины Н. Примем за плоскость X, у срединную плоскость пластинки, а положительную координату 2 и смещение т будем отсчитывать вниз. Пластинка слегка изогнута по цилиндрической поверхности, ордината которой хю, представляющая прогиб пластинки, зависит от координаты X и времени I, а также от внешних сил, состоящих из распределенной нагрузки р = Цх, 1 и контактного давления д = —кш, создаваемого основанием. К этому случаю одномерного изгиба пластинки можно применить развитую в гл. 9 теорию изгиба гибкой вязко-упругой балки, предполагая, что последняя изгибается под действием суммы некоторой распределенной нагрузки р и контактного давления д = —кт со стороны основания. Принимая во внимание уравнение (9.9), получаем дифференциальное уравнение для прогибов т такой балки  [c.347]

Подобным же образом преобразовав вто рое из уравнений (3.8), умножив первое из этих -уравнений на os 0, второе — на sin 0 и сложив их, а затем умножив первое из уравнений на sin0, а второе — на os 0 и вычтя из первого уравнения второе, ползучим два уравнения, которые, вместе с третьим из уравнений (3.8) образуют три основных уравнения теории упругОст в цилиндрических координатах  [c.135]

Цилиндричвснив ноординты для ( олочни введены впервые на ис. 3.5 и использовались при выводе основных уравнений теории упругости (3.9ж) в этих координатах на этом же рисунке показана система координат для оболочки, которая уже использовалась ранее и будет использоваться в данном случае в случае цилиндрической оболочки эта система координат представляет собой осевую, окружную и радиальную (направленную внутрь оболочки) координаты X, у и Z. Очевидно, для того чтобы перейти от ста роа системы координат к последней, надо вместо Z, 0, г, Пг, Ue и Ur взять соответственно х, y/R, R — z, Ux, щ ж — Uz, где R — постоянный радиус срединной поверхности толщина, как это видно из рисунка, равна fe = 2с.,  [c.548]

На основе точных решений интегральных уравнений первого рода, содержаш,их в качестве ядер эллиптические функции Якоби (см. 1.4), получено точное решение контактных задач теории упругости о чистом сдвиге штампом (в общем случае деформируемым) цилиндрического тела, представляюшего собой в сечении область, ограниченную координатными линиями ортогональной линейной системы координат на плоскости, коэффициенты Ламе которой удовлетворяют некоторым условиям [168]. Сюда относятся декартовы, полярные, биполярные, параболические, гиперболические и другие координаты. Аналогичные задачи в случае полосы изучались в работе [44], здесь же предложена схема построения точного решения рассматриваемых задач путем конформного отображения полосы на конечную область.  [c.153]

Остановимся подробнее на получении системы интегро-функциональ-ных уравнений контактной задачи. Использование принципа суперпозиции предполагает возможность получения аналитического решения краевой задачи динамической теории упругости с однородными граничными условиями в напряжениях для составляющих многослойную область с каноническим включением элементов. Таковыми являются однородный упругий слой, однородное упругое полупространство, полость в безграничном пространстве и упругое включение, граница которого тождественна границе полости. Решение задач для однородного слоя (полупространства) строится методом интегральных преобразований с использованием принципа предельного поглощения и может быть получено в виде контурного несобственного интеграла [2,4,14]. В зависимости от постановки задачи (пространственная, плоская, осесимметричная) получаем контурные интегралы типа обращения преобразования Фурье или Ханкеля [16]. Решение задачи для пространства с полостью, описываемой координатной поверхностью в ортогональной криволинейной системе координат, получаем в виде рядов по специальным функциям (сферическим, цилиндрическим (Ханкеля), эллиптическим (Матье)) [17]. При этом важно корректно удовлетворить условиям излучения, для чего можно использовать принцип излучения. Исключение составляет случай горизонтальной цилиндрической полости при исследовании пространственной задачи. Здесь необходимо использовать метод интегральных преобразований Фурье [16] вдоль образующей цилиндра и принцип предельного поглощения [3] для корректного удовлетворения условиям излучения энергии вдоль образующей.  [c.312]


В 6 изложен, как нам представляется, наиболее простой приём составления основных дифференциальных операций в криволинейных координатах. Мы ограничились случаем ортогональных координат, как наиболее важным для приложений. В 7 этот приём применён для записи в ортогональных криволинейных координатах основных соотношений механики сплошной среды, в том числе для составления условий сплошности. Другой вывод условий сплошности (в любых криволинейных координатах) дан в статьях Т, Н. Блинчикова Дифференциальные уравнения равновесия теории упругости в криволинейной координатной системе (Прикл. матем. и мех., 2, 1938, стр. 407) и В. 3. Власова Уравнения неразрывности деформаций в криволинейных координатах (там же, 8, 1944, стр. 301). Запись уравнений сплошности в сферических и цилиндрических координатах приведена в книге В. 3. Власова Общая теория оболочек (Гостехиздат, 1949).  [c.69]

Для бесконечного кругового цилиндра решение на основе уравнений теории упругости было дано L. Po hhammer oM [1.281] (1876) и С. hree [1.133] (1889). Они исходили из уравнений в цилиндрических координатах г, 0, 2  [c.32]

В 1960 г. И. Т. Селезов получил уточненные уравнения осесимметричных колебаний цилиндрической оболочки в перемещениях методом степенных рядов (3.671. Компоненты вектора перемещений были представлены в виде рядов по степеням радиальной координаты, из граничных условий на внешней и внутренней поверхностях получены дифференциальные уравнения, а из уравнений теории упругости — рекуррентные символические соотношения, позволяющие выразить все искомые функции в разложениях через какие-либо две. С точностью до членов порядка — относительная  [c.188]

Пластиной называется тело, ограниченное двумя плоскостями Z = h и цилиндрической поверхностью, образующие которой параллельны оси z. В плоскости z = О, называемой срединной плоскостью, выбираются произвольным образом координаты Ха (а = 1,2). Предполагается, что размеры пластины в плане значительно больше, чем толщина 2h (рис. 12.4.1). Так же, как в 2.1, где речь шла о стержнях, будем принимать за 1[аимень-ший поперечный размер наименьшее расстояние между касательными к контуру пластины. Под контуром пластины понимается контур сечения цилиндрической поверхностью плоскости Z = 0. Так же, как теория изгиба балок, теория пластин может быть построена при помощи любого из вариационных принципов. Если при выводе уравнения изгиба мы отправлялись от вариационного принципа Лагранжа, то здесь мы примем за основу вариационный принцип Рейснера (не в силу каких-то его преимуществ, а для иллюстрации метода). Дело в том, что в физически нелинейной теории пластин, изготов- Рис. 12.4.1 ленных из нелинейно-упругого или пластического материала, реализация вычислений на основе принципа Лагранжа приводит к очень большим трудностям, тогда как принцип Рейснера позволяет получить приближенное решение задачи относительно просто.  [c.395]

Волновые процессы в упругих стержнях постоянного сечения при вертикальном ударе. Цилиндрический стержень (рис. 6.7.10) массой т и длиной /, имеющий на верхнем торце жесткое тело массой ГП2, а на нижнем - жесткое тело вращения массой т , летит со скоростью Уд и ударяется о деформируемое основание (полупространство). Введем две системы координат подвижную лгу, жестко связанную с телом Шх, и неподвижную Х1У1, связанную с преградой. Тогда уравнение продольных колебаний стержня (в рамках технической теории) будет иметь вид  [c.412]

Дифференциальные уравнения изгиба пластин. Рассмотрим упругое равновесие тонкой пластины, представляющей собой тело цилиндрической формы, высота (толщина пластины) которого мала по сравнению с размерами оснований. Отнесем пластину к декартовой системе координат Oxyz, разместив оси Охи Оу ъ ее срединной плоскости (рис. 67). В классической теории изгиба тонких пластин усилия и моменты выражаются через прогиб срединной поверхности W (л , у)  [c.247]


Смотреть страницы где упоминается термин Теория упругости Уравнения в координатах цилиндрических : [c.194]    [c.56]    [c.216]    [c.87]   
Прочность, устойчивость, колебания Том 1 (1966) -- [ c.42 , c.43 ]



ПОИСК



154 — Уравнения упругости цилиндрические —

Координаты цилиндрические

Теории Уравнения

Теория упругости

Упругость Теория — см Теория упругости

Уравнение в цилиндрических координата

Уравнения Уравнения упругости

Уравнения в координатах

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте