Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкость структурная

Абсолютная вязкость (структурная) 1) в сантипуазах 5.3 8,5 14,2 3,8 5,5 5,9  [c.44]

Для характеристики подвижности твердожидких систем в температурном интервале кристаллизации следует ввести понятие о кристаллизационной вязкости, которая обусловлена другой первопричиной нежели структурная вязкость. Структурная вязкость вызвана образованием коагуляционной структуры в виде пространственного каркаса из твердых частиц, возможно даже при неизменной концентрации последних и постоянной температуре. Кристаллизационная вязкость вызывается лавинным нарастанием количества твердых частиц в системе при охлаждении.  [c.18]


Исследование ано.ма.лии вязкости (структурно-.механи-ческих свойств) смазок при низких температурах. — В кн. Совещание по вязкости жидкостей и коллоидных растворов.  [c.70]

Эффективный коэффициент концентрации напряжений является структурно-чувствительной характеристикой, т. е. зависит от химического состава материала, его структуры и вида термообработки. Величина его обратно пропорциональна циклической вязкости материала.  [c.299]

Прочность и вязкость материала сварного шва снижаются в результате попадания шлаков, образования пор и газовых пузырьков, а также от химических и структурных изменений в материале шва (выгорание легирующих элементов, образование карбидов, оксидов и нитридов). Насыщение материала шва азотом воздуха даже в небольших количествах вызывает резкое снижение пластичности (рис. 178) и охрупчивание шва.  [c.159]

Появление адсорбированного слоя в зависимости от свойств жидкости может иметь различную физическую природу молекулярное или электрическое поле твердого материала, электрически заряженный двойной слой. Независимо от причины их образования в поверхностных слоях наблюдается изменение структуры жидкости (упорядочение слоев молекул) и, следовательно, изменение структурно чувствительных физических свойств (в частности, вязкости и теплопроводности). Отсюда следует, что первая из упомянутых ранее причин облитерации есть следствие образования адсорбированных слоев.  [c.25]

Реология - совокупность методов исследования течения и деформации реальных сред, например, жидкостей, обладающих структурной вязкостью, дисперсных систем, обладающих пластичностью. В реологии рассматриваются процессы, связанные с необратимыми остаточными деформациями тел (последействие, ползучесть и др.), развивающимися во времени.  [c.153]

При дальнейшем увеличении скорости течения структурных жидкостей устанавливается турбулентный режим движения. Результаты отечественных и зарубежных исследований достаточно подробно приводятся в книгах [ 14, 35, 47]. Коэффициент теплоотдачи при движении и теплообмене вязкопластичных жидкостей можно определять из уравнений подобия, применяемых для характеристики теплообмена ньютоновских жидкостей. Только в этом случае при вычислении чисел подобия вместо динамической вязкости ц следует вводить эффективную вязкость т]. Тогда выражения чисел подобия примут следующий вид  [c.305]

Коэффициент к (как при структурном и ламинарном, так и при турбулентном режимах) можно определять также и по обычным формулам гидравлики ньютоновских жидкостей (4.47) и (4.54), вводя в них вместо Re так называемое эффективное число Рейнольдса Re p, определяемое по эффективной (кажущейся) вязкости (см. 40).  [c.296]


Вязкость аномальных жидкостей (так называемая структурная вязкость) при заданных температуре и давлении непостоянна и изменяется в зависимости от градиента скорости йи 6у по мере разрушения структуры жидкости, а следовательно, не является физической константой, как вязкость нормальных жидкостей.  [c.22]

Вязкость разрушения существенно зависит от температуры, так как с ней связаны свойства пластичности металлов, отражающие особенности структурного и суб-структурного механизма элементарных процессов пластической деформации. Понижение температуры способствует образованию хрупкого состояния и наиболее ярко выражено для конструкционных металлов на основе железа.  [c.40]

Рис. М-2. Последовательные фазы разрыва пузыря на поверхности жидкости, имеющей в тонких пленках повышенную или структурную вязкость. Рис. М-2. Последовательные фазы разрыва пузыря на <a href="/info/365711">поверхности жидкости</a>, имеющей в <a href="/info/18384">тонких пленках</a> повышенную или структурную вязкость.
В терминах современной, дислокационной теории пластической деформации и разрушения (структурной теории прочности) предел текучести и вязкость разрушения являются функциями следующих параметров [2, 3]  [c.8]

Анализируя представленную диаграмму конструктивной прочности, можно отметить, что с точки зрения получения высоких характеристик стали со структурой перлита не имеет смысла увеличение предела текучести более чем до 700 МПа. Объяснение полученной зависимости связано со структурными особенностями перлита. Чем больше межпластинчатое расстояние в перлите, тем меньше препятствий для движения дислокаций, больше возможностей для релаксации локальных напряжений в стали, меньше предел текучести и больше значение вязкости разрушения. Очевидно, это явление имеет место на диаграмме конструктивной прочности при изменении предела текучести от 850 до 700 МПа. Однако в дальнейшем при увеличении межпластинчатого расстояния увеличивается и толщина цементитных пластин. Цементитные пластины теряют способность к пластической деформации, что приводит к облегчению процесса продвижения трещины. В связи с этим одновременно со снижением предела текучести снижается вязкость разрушения стали.  [c.149]

При выборе оптимальных режимов термической обработки полуфабрикатов из титановых сплавов были установлены некоторые общие закономерности влияния структурных факторов на характеристики вязкости разрушения и скорости роста трещин при малоцикловом нагружении [ 83].  [c.124]

Формальная запись уравнения (1.18) без учета локального влияния структурного состояния материала на развитие малых трещин, когда имеет место немонотонное развитие процесса разрушения [100], свидетельствует о существенном влиянии трех параметров на длительность роста усталостных трещин вязкости разрушения материала К , действующего напряжения и размера начального дефекта. Небольшие по размеру дефекты на поверхности материала оказывают влияние на изменение доли периода роста трещины в долговечности.  [c.58]

Структурное моделирование вязкости разрушения через изменение предела текучести материала приводит к соотношению [93]  [c.115]

Испытания на КСТ проводят путем предварительного выращивания за короткий промежуток времени усталостной трещины при высоком уровне размаха напряжения. Высокий уровень напряжения интегрально воздействует на все объемы материала. Определение величины КСТ осуществляют на маятниковом копре путем долома образца с трещиной при высокой скорости деформации. Все этапы нагружения образца направлены на включение в процесс деформации и разрушения материала не отдельных его структурных элементов, а конгломерата зерен. Низкая величина КСТ служит браковочной характеристикой вязкости разрушения материала, но такая оценка способности материала сопротивляться  [c.382]


ВОСПРИИМЧИВОСТЬ — характеристика (диэлектрика, показывающая его способность поляризоваться в электрическом поле магнетика, показывающая его способность намагничиваться в магнитном поле) ВЯЗКОСТЬ [—свойство жидкостей и газов оказывать сопротивление перемещению одной их части относительно другой динамическая — количественная характеристика сопротивления жидкости или газа смещению одного слоя относительно другого кинематическая— отнощение динамической вязкости к плотности жидкости или газа магнитная — отставание во времени изменения магнитных характеристик ферром нетика от изменения напряженности внешнего магнитного поля объемная — величина, характеризующая процесс перехода внутренней энергии в тепловую при объемных деформациях среды (вторая вязкость) структурная — вязкость, связанная с возникновением структуры в дисперсных системах ударная — поглощение механической энергии твердыми телами в процессе деформации и разрущения под действием ударной нагрузки]  [c.228]

Но только этой теорией нельзя объяснить полученные экспериментальные зависимости, так как зона взаимодействия силового поля поверхности распространяется всего на несколько десятков тысяч молекулярных слоев, а как показали эксперименты в ряде случаев, даже при высоте неплотности 7—10 мк утечка непрерывно уменьшается с течением времени, а иногда через 10—20 мин практически становится равной нулю. Это объясняется влиянием на величину утечки таких факторов, как загрязненность, нестацио-нарность, вязкость, структурные изменения в жидкости.  [c.169]

Появление силы f, противодействующей растеканию и оттеканию, вызвано несколькими причинами высокой ньютоновской вязкостью, структурной вязкостью, межфазовым трением на границе ТЖ, образованием на поверхности расплава квазитвердой пленки вследствие эффекта ориентации или испарения летучих составляющих. Вязкие расплавы и гетерогенные расплавы (полурасплавы) отличаются высокими 0р и малыми 0о (вязкостно-механический гистерезис). Вместе с тем существуют причины и чисто химического характера (химический гистерезис .  [c.21]

Однако достичь структурного равновесия в металле значительно проще, чем в стекле. Все, что можно сделатъ со стеклом,— это найти эмпирически процедуру отжига и получить метастабильное равновесие при температуре отжига, когда стекло имеет вязкость 10 Па с. Вязкость стекла в точке отжига должна быть существенно высокой, чтобы последующие продолжительные нагревы при более низких температурах прн-  [c.406]

Тепловыделение в микрообъемах тем больше, чем больше амплитуда напряжений и меньше коэффициент асимметрии цикла. С другой стороны величина местного повышения температуры зависит от свойств материала и его структурных составляющих. Повышение температуры в микрообъемах тем больше, чем меньше теплопроводность и теплоемкость материала и выше его циклическая вязкость, определяюндая (на стадии упругих деформаций) долю необратимого превращения энергии колебаний в тепловую энергию.  [c.288]

Углеводородный и структурно-групповой состав фракций, bi>ikh-пающнх выше 350°С, характеризует нефти Ферганской долины как благоприятное сырье для получения масел. Содержание углерода, прихоляшегося на парафиновые углеводороды и цепи (Си) в масляных фракциях основных нефтей Ферганской долины, довольно высокое (от 63 до 74%). Среднее число колеи в молекуле (Ко), наоборот, невысокое и колеблется от 0,55 до 2,30. Вследствие этого индустриальные масла и их компоненты, полученные из дистиллятных фракций, имеют высокие индексы вязкости (81—98).  [c.390]

Стекло представляет собой типичный пример так называемого аморфного состояния вещества, которое в отличие от кристаллического характеризуется двумя признаками — изотропностью свойств и отсутствием точки плавления. Аморфные тела встречаются обычно в виде двух форм — компактной и дисперсной. Представителем компактной формы является стеклообразное состояние, дисперсной — сажа, аморфные-бор и кремний. Для аморфного состояния характерен только ближний порядок расположения структурных единиц. Дальний порядок, свойственный кристаллам, отсутствует. Компактное аморфное состояние представляет собой сильно перео.хлажденную жидкость и отличается от последней только отсутствием подвижного обмена местами между отдельными структурными ассоциатами, что обусловлено высокой вязкостью. В дисперсном аморфном состоянии (тонкий порошок, состоящий из агрегатов, не имеющих упорядоченного строения) химическое взаимодействие отсутствует. Обе формы аморфного состояния вещества в термодинамическом отношении метастабильны и при благоприятных условиях способны кристаллизоваться с выделением тепла.  [c.13]

Селевые потоки подразделяются на несвязные и связные в зависимости от преобладающих в их составе массы грунтов и соотношения сил сцепления между взвешенными частицами. По составу различают селевые потоки воднопесчаные, водно-каменные, грязе-каменные, камне-грязевые и др. При движении селей наблюдают ламинарный, турбулентный и структурный режимы движения. Последний характерен для неньютоновских жидкостей с определенными значениями консистенции твердых составляющих, плотности, вязкости и начального касательного сопротивления селевой массы.  [c.308]

Для непрерывного измерения вязкости могут применяться варианты ротационных вискозиметров с электрической системой отсчета, а также ультразвуковые (вибрационные) вискозиметры, которые позволяют определять вязкость при весьма малом объеме испытуемой жидкости (около 5 см ). Структурная схема прибора показана на рис. 10-4, б. Импульсы тока длительностью около 50мкс, проходя через возбуждающую обмотку зонда, погруженного в испытуемую жидкость (рис. 10-4, а), вызывают продольные маг-нитострикционные ультразвуковые колебания полоски (частота колебаний около 28 кГц). Повышение чувствительности зонда достигается дополнительной подачей в его обмотку постоянного тока подмагничивания. Вследствие поглощения энергии колебаний вязкой средой амплитуда колебаний полоски и наводимая в обмотке э. д. с. убывают с течением времени по экспоненциальному закону. При уменьшении напряжения в обмотке до определенного значения срабатывает пусковое устройство, после чего в обмотку зонда дается следующий импульс тока и т. д. Измеряемая счетчиком частота повторения импульсов при прочих равных условиях, очевидно, будет тем выше, чем больше вязкость испытуемой  [c.191]


Издание подготовлено совместно советским и индийским специалистами. Изложены современные представления о строении шлаковых фторсодержащих систем и их теоретические модели. Рассмотрены важные технологические свойства шлаков вязкость,, электропроводность, плотность, поверхностное натяжение, серопоглотительная способность и растворимость серы. Описаны диаграммы состояния с расшифровкой фазовых равновесий. Даны основные принципы подбора оптимальных составов шлаков н методика их расчета при электрошлаковом переплаве в ковшевой,обработке. Приведены данные о структурных свойствах тройных расплавов шлаков и об аномалии ряда свойств систем.  [c.37]

Если поверхностно-активные вещества обладают структурной вязкостью, то время разрушения пленок в условиях отсутствия внешних воздействий может быть весьма значительным. В таких случаях при медленном барботаже на поверхности динамического двухфазного слоя накапливается слой пены. Пена представляет со-,бой ячеисто-пленочную систему, отдельные пузырьки которой связаны друг с другом разделяющими их пленками в общий каркас. Толщина слоя пены определяется соотношением средн.его срока жизни отдельных пузырец  [c.72]

Таким образом, все составы за исключением № 4 хорошо смачивают А12О3 и MgO и характеризуются достаточно высокой структурной вязкостью, чтобы быть использованными для глазурования пористой керамики с различными КТР.  [c.142]

Два главных показателя конструктивной прочности — предел текучести, или сопротивление пластическому деформированию,, и вязкость разрушения, или трещиностойкость,— неоднозначно изменяются при различных упрочняющих обработках (механических,, термических, термомеханических) или варьировании химического состава сплава. Создание различных структурных препятствий движущимся дислокациям или увеличение легированности сплава повышают предел текучести, но одновременно снижают трещиностойкость. Иными словами, увеличение прочности, твердости и износостойкости металла сопровождается повышением вероятности хрупкого разрушения. Частичное преодоление этого противоречия возможно при конструировании композиционного материала (детали), сочетающего прочную, износостойкую, твердую поверхность нанесенного покрытия с пластичной, вязкой, трещиностойкой основой.  [c.3]

Рис. 1.2. Вклад отдельных дислокационных механизмов упрочнения сплавов в уровень конструктивной прочности (соотношения предела текучести а (ад,а), (вязкости разрушения KJ и температуры вязкохрупкого перехода Оп—напряжение Пайерлса — Наббарро Од—упрочнение взаимодействием диелокаций Од(д)— упрочнение переплетением дислокаций по типу леса Пд д. я.)—упрочнение созданием полигональных ячеистых субструктур Ор— твердорастворное упрочнение, оф—упрочнение дисперсными фазами, <гз— упрочнение структурными барьерами (зернограничное у№ Рис. 1.2. Вклад отдельных дислокационных механизмов упрочнения сплавов в уровень <a href="/info/1691">конструктивной прочности</a> (соотношения <a href="/info/1680">предела текучести</a> а (ад,а), (<a href="/info/23892">вязкости разрушения</a> KJ и температуры вязкохрупкого перехода Оп—<a href="/info/194164">напряжение Пайерлса</a> — Наббарро Од—упрочнение взаимодействием диелокаций Од(д)— упрочнение переплетением дислокаций по типу леса Пд д. я.)—упрочнение созданием полигональных ячеистых субструктур Ор— <a href="/info/495615">твердорастворное упрочнение</a>, оф—<a href="/info/34001">упрочнение дисперсными фазами</a>, <гз— <a href="/info/290068">упрочнение структурными</a> барьерами (зернограничное у№
Экстремум на диаграмме конструктивной прочности был обнаружен также и при изотермическом превращении аустенита в интервале температур 250—450°С (рис. 8.17). Наибольшие значец]в .цяз-кости разрушения стали со структурой бейнита соответствуют температуре распада переохлажденного аустенита, равной 350°С. Снижение температуры распада до 250°С ведет к росту предела текучести и уменьшению значений вязкости разрушения. Это связано главным образом с увеличением содержания углерода в а-фазе и увеличением степени блокировки дислокаций внедренными атомами углерода. Уменьшение пластичности ферритной матрицы затрудняет протекание релаксационных процессов в вершине трещины и увеличивает скорость ее распространения, снижая тем самым сопротивление стали хрупкому разрушению. Сложный характер диаграммы конструктивной прочности объясняется не только влиянием структурных изменений в бейните при варьировании температурой распада аустенита, но и сменой морфологии бейнита, т. е. переходом от нижнего бейнита к верхнему. При температурах образова-  [c.149]

Изучение зависи Ясти вязкости от структурных параметров материала и скорости пластической деформации необходимо как для понимания закономерностей высокоскоростного деформирования, так и для решения практических задач по использованию импульсных нагрузок в современной технике.  [c.16]

Износостойкость белого чугуна при абразивном воздействии зависит от его механических свойств и свойств отдельных структурных составляющих (микротвердости, прочности, вязкости, формы, взаимного расположения и связи, количественного соотношения). Основные структурные составляющие белого чугуна распола гаются по возрастанию микротвердости в следующем порядке эвтектоид (перлит, сорбит, троостит), аустенит, мартенсит, цементит, легированный цементит, карбиды хрома, воль ама, ванадия и других элементов, бориды.  [c.51]


Смотреть страницы где упоминается термин Вязкость структурная : [c.407]    [c.188]    [c.193]    [c.44]    [c.80]    [c.164]    [c.505]    [c.140]    [c.6]    [c.7]    [c.8]    [c.17]    [c.143]    [c.53]    [c.211]   
Гидравлика и аэродинамика (1975) -- [ c.22 ]

Деформация и течение Введение в реологию (1963) -- [ c.248 , c.249 ]

Температуроустойчивые неорганические покрытия (1976) -- [ c.12 , c.13 , c.18 ]

Технический справочник железнодорожника Том 1 (1951) -- [ c.354 ]

Ультразвук и его применение в науке и технике Изд.2 (1957) -- [ c.479 ]



ПОИСК



37, 65 — Вязкость ударная 38 Диаграммы структурные 37, 39 Коррозионная стойкость 38, 39 Магнитные свойства 36, 40 — Механические свойства

Вязкость пластическая (структурная)

Коэффициент вязкости (г)) структурной устойчивости

Механизмы структурной вязкости

Морриса метод расчета вязкости жидкостей при низких температура структурные составляющие

Связь между текучестью и касательными напряжениями в потоке жидкости со структурной вязкостью

Структурная вязкость Исторический обзор

Структурная фрактальная теория коэффициента вязкости типографских красок

Упруго-вязкость жидкостей и твердых тел Реологические модели, структурные формулы и реологические уравнения



© 2025 Mash-xxl.info Реклама на сайте