Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Использование модели рабочего процесса

Несмотря на значительное число работ, посвященных решению указанных задач, полной ясности в этих вопросах еще нет. В предлагаемой работе, опираясь на опыт тепловых расчетов поршневых машин и исследований, выполненных как в СССР, так и за рубежом, авторы создали математическую модель рабочего процесса д. в. с. и компрессора. Это стало возможным только при использовании быстродействующих вычислительных машин (ЭЦВМ).  [c.3]


В машинах и аппаратах тесно переплетаются процессы различной природы. Поэтому их основные параметры, полученные на основе испытания натурных образцов, обычно не соответствуют значениям этих параметров, заложенным в расчет конструкции в процессе ее проектирования. В связи с этим возникает необходимость доводочных испытаний опытных образцов машины или аппарата. Большую помощь в доводочных испытаниях оказывает математическая модель машины или аппарата, представляющая собой совокупность уравнений, формул, констант и логических условий, которые определяют взаимосвязь параметров рабочего процесса. Дифференциальные уравнения, входящие в математическую модель, при ее использовании решаются численным методом.  [c.23]

Наиболее радикальным подходом является использование (в качестве инструмента управления полномочиями сотрудников) моделей бизнес-процессов, выполняемых в организации. Функциональная модель бизнес-процессов является обозримым, программно-поддерживаемым описанием, содержащим, в частности, сведения обо всех информационных объектах к которым сотрудник должен иметь доступ в процессе работы. Отбирая пол енные данные в подмножества, связанные с должностными обязанностями конкретных лиц или рабочими местами, можно автоматически подготовить конфигурационные файлы для настройки средств защиты от НСД, установленных на рабочих местах. В этом смысле модель является основой для автоматизации настройки средств безопасности. Происходящие в организации изменения вводятся в модель и, соответственно, отображаются в настройке средств безопасности. Например, для того, чтобы на время отпуска заменить одного сотрудника другим, необходимо в описании операции поменять идентификатор сотрудника, при этом полномочия отсутствующего сотрудника будут автоматически переданы работающему.  [c.51]

Однако даже в тех случаях когда уравнения математической модели управляемого процесса точно известны и функционал в достаточной степени соответствует цели управления, решить сформулированную задачу управления, как правило, не представляется возможным. Затруднения математического характера, связанные с решением нелинейной задачи оптимизации, вызвали необходимость использования в качестве рабочих математических моделей соответствующих линейных дифференциальных уравнений, записанных для возмущенного движения.  [c.141]

Дизельные двигатели в силу особенностей рабочего процесса на 25—30 % экономичнее бензиновых карбюраторных двигателей, что и предопределило их широкое применение в различных отраслях народного хозяйства. В настоящее время в СССР наиболее массовые модели грузовых автомобилей переводятся на использование дизельного топлива.  [c.21]


В условиях научно-технической революции ускорился процесс морального старения машин. Они перестают удовлетворять возрастающим требованиям к грузоподъемности, скорости, производительности и другим техническим параметрам. В связи с интенсификацией рабочих процессов снижаются важнейшие показатели их надежности — безотказность и долговечность. При снятии с производства устаревших моделей машин прекращают поставку запасных деталей следовательно, показатели ремонтопригодности ухудшаются. Все эти процессы особенно заметно проявляются при использовании ПТМ, характеризующихся длительными сроками службы (краны, лифты и др.). Кроме того, предприятия не всегда располагают возможностью для приобретения новых машин, и часто более выгодной оказывается модернизация имеющихся.  [c.283]

В связи с тем, что некоторые процессы в лопаточных машинах не поддаются теоретическому расчету, важное значение приобретает экспериментальное исследование лопаточных машин. Часто испытания лопаточных машин проводятся на модельных рабочих телах, на модельных режимах, а иногда испытываются модели лопаточной машины, в основном это вызвано невозможностью использования натурного рабочего тела вследствие его агрессивности и токсичности и нежелательностью использования сложного и дорогостоящего оборудования при испытании натурных образцов большой мощности на натурных режимах. Обработка экспериментального материала, выбор модельного рабочего тела, модельного режима и размеров модели проводятся в соответствии с теорией подобных явлений.  [c.93]

Однако существующее состояние фундаментальных исследований в области теории лопастных машин и состояние моделирования режимов работы ЦН, в частности, далеко не удовлетворительное. Речь идет о математическом моделировании режимов с помощью ЭВМ. До сих пор не созданная такая математическая модель ЦН, которая бы давала возможность на основе каталожных конструктивных данных машины анализировать ее режимные и экономические параметры в всем эксплуатационном диапазоне с учетом основных свойств рабочей жидкости, в частности его вязкости. Особенности указанной проблемы состоят в том, что по магистральным нефтепроводам перекачивают жидкости, которые существенным образом отличаются от холодной воды — основного вида рабочей среды при отработке конструкций насосного оборудования. Это в значительной мере усложняет решение задач повышения эффективности функционирование ЦН. Не решен в полной мере и вопрос синтеза оптимальных конструкций ЦН за заданными технологическими требованиями. Гидромеханика лопастных машин основана на эмпирических стохастических формулах, которые не допускают эффективного использования ЭВМ, так как не разрешают установить все закономерности взаимосвязанных физических процессов, которые имеют место в гидромашинах. В особенности ощутимое отставание теории гидромеханики лопастных гидромашин на фоне развития теории электрических машин, где формализация задач выполненная на значительно высшем уровне.  [c.1]

Первый и второй уровни в значительной мере схожи между собой. Их общее название — трехмерные системы. Проектирование происходит на уровне твердотельных моделей с привлечением мощных конструкторско-технологических библиотек, с использованием современного математического аппарата для проведения необходимых расчетов. Кроме того, эти системы позволяют с помощью средств анимации имитировать перемещение в пространстве рабочих органов изделия (например, манипуляторов робота). Они отслеживают траекторию движения инструмента при разработке и контроле технологического процесса изготовления спроектированного изделия. Все это делает трехмерное моделирование неотъемлемой частью совместной работы САПР/АСТПП (Системы Автоматизированного ПРоектирования/Автоматизированные Системы Технологической Подготовки Производства).  [c.10]

Остальные режимы работы компрессора являются переменными нерасчетными) из-за изменения параметров наружного воздуха и нагрузки установки. Для определения влияния режима работы компрессора на основные параметры рабочего тела используют зависимости степени повышения давления и КПД от расхода воздуха (рис. 2.9). Применяемые аналитические зависимости неточны из-за большого числа факторов, влияющих на процесс. Поэтому характеристики компрессоров строят на основании испытаний, математических моделей с использованием современных трехмерных расчетных алгоритмов и анализа существующих аналогов. Удачно разработанную конструкцию компрессора фирмы многократно совершенствуют, увеличивают масштаб габаритных размеров ступеней, добавляют нулевые и дополнительные ступени и т.д.  [c.48]


Анализ возможностей, связанных с использованием структурной модели среды для описания процессов деформирования материалов, начнем с наиболее простого случая — пропорционального нагружения, реализуемого, в частности, при растяжении-сжатии бруса. При таком виде нагружения структурная модель, схематично отражающая микронеоднородность реальных материалов, имеет достаточно простую механическую интерпретацию. Рассмотрим образец материала, подвергающийся испытаниям на растяжение-сжатие и находящийся (имеется в виду его рабочая часть) в макроскопически однородном напряженно-деформированном состоянии. Предполагая существование микронеоднородности по поперечному сечению, представим образец в виде системы стержней, деформирующихся одинаково (рис. 1.1). Примем, что стержни обладают свойствами идеального упругопластического материала, а неоднородность характеризуется лишь различием значений их пределов текучести. Модули упругости стержней будем полагать равными, это упростит анализ, не влияя на его конечные результаты.  [c.11]

При малых вариациях параметров объекта синтез регуляторов можно проводить с использованием методов теории чувствительности ([10.1] — [10.7]). Если известна чувствительность системы по отношению к изменению параметров объекта, то при синтезе можно обеспечить требования хорошего качества процессов регулирования и малой чувствительности замкнутой системы к изменениям параметров объекта управления. Такой подход будет рассмотрен в разд. 10.1. Однако при больших изменениях параметров указанные методы теории чувствительности для синтеза непригодны. В этих случаях проектируют регуляторы с постоянными параметрами, оптимальные относительно усредненных моделей объектов с различными векторами параметров. Такой подход является более общим по сравнению с методами, основанными на оценке чувствительности. Б связи с тем что при этом подразумеваются большие изменения параметров, один и тот же регулятор рассчитывается для управления объектом в его двух или более рабочих точках, а не только для одной рабочей точки, как в случае синтеза с применением методов теории чувствительности, обеспечивающего малую чувствительность системы к (малым) изменениям параметров объекта. Однако этот вопрос будет рассмотрен в разд. 10.2 очень кратко. Такая задача была впервые поставлена в работе [8.8] для непрерывных регуляторов.  [c.198]

Более точным является вычисление величины рк, о не как средней по сечению входного канала, а при использовании условия сохранения энергии потока. Так как мощность элементарной струи пропорциональна величине скоростного напора в более высокой степени чем первая, при таком расчете величины Рк, о учитывается относительно большее влияние на давление, создающееся в камере за приемным каналом, скоростного напора частиц, движущихся с большей скоростью. Однако и при этом может оказаться необходимым введение поправочного коэффициента в связи с тем, что, как указывалось, рассмотренной моделью течения рабочей среды в канале лишь приближенно отражается истинный процесс. Для дальнейшего уточнения предложенной методики расчета необходимо получение дополнительных опытных данных должны быть проведены опыты с приемными каналами, имеющими различное отношение длины к диаметру сечения, при различных расстояниях входного отверстия канала от выходной кромки сопла.  [c.92]

Литье в облицованные кокили — прогрессивный технологический процесс, позволяющий получать крупные и точные отливки из черных сплавов с малыми припусками на механическую обработку. Металлическая форма имеет тонкое термоизоляционное покрытие, которое предотвращает отбеливание чугуна и разгар кокиля. Жесткая конструкция самого кокиля обеспечивает стабильность размеров и точность литых заготовок. Обычно кокиль облицовывают путем надува песчано-смоляной смеси на рабочую поверхность кокиля с использованием контурной плиты, выполняющей роль модели и воспроизводящей точные очертания будущей отливки.  [c.174]

Решение навигационной задачи по выборке нарастающего объема по разновременным измерениям, как правило, основано иа рекуррентных алгоритмах. По точности сии аналогичны итерационным методам, однако для их реализации необходимо построить динамическую модель движения определяющегося объекта, элементов рабочего созвездия СНС и задающего генератора времени (частоты). В данном случае под динамической моделью понимают математическую модель, которая описывает с той или иной степенью точности все процессы, происходящие в системе потребитель—СНС—внешняя среда. Сюда же входит и модель случайных возмущений определяемых параметров. Разработка динамических моделей является сложным и многоступенчатым процессом. Так, иапример, модель динамики объекта должна отражать закон изменения во времени его вектора состояния x(i), конкретный вид которого зависит от выбора опорной системы координат, от типа объекта (корабль, самолет, КА и т. д.) и от статистических характеристик действующих на него случайных возмущений. На практике исходят из предположения, что динамическая модель должна быть достаточно простой, чтобы сохранить время на вычисления и обработку результатов, и в то же время достаточно полной, чтобы учитывать маневренные характеристики объекта. Для многих задач оказывается приемлемым с точки зрения требуемой точности навигационных определений использование линейных динамических моделей, которые могут быть получены путем линеаризации исходных нелинейных систем дифференциальных уравнений около опорной траектории иа заданном временном участке, соответствующем, иапример, времени определения. В матричном виде линейная модель, описывающая динамику объекта с учетом случайных возмущений, имеет вид  [c.247]


Процесс конвертирования язык — язык с использованием машинной модели предметной области базы и машинной модели входного задания в рабочей области базы реализуется так  [c.115]

Техническое состояние оборудования и технологических схем при диагностировании тепловой экономичности в этом классе показателей анализируется по отклонениям фактических технико-экономических характеристик от нормативных, с расширением и углублением существующих штатных функпий автоматической сгстемы управления паровых турбин энергоблоков. Методики разрабатьшаются, в основном, на известных моделях рабочего процесса с использованием балансных методов и штатных первичных приборов (с некоторым расширением существующего объема). Реализуются они на штатном информационно-вычислительном комплексе (ИВК) энергоблока без существенного расширения его. Оценка ведется непрерывно (с заданной периодичностью) на работающем оборудовании без специальных диагностических режимов (функциональное диагностирование). Результаты выдаются автоматически при наличии отключений или по вызову оператора, интегрируются за отчетные интервалы (смена, сутки, месяц) и документируются. В практике эксплуатации широкое применение находит типовой алгоритм АСУ ТП [105].  [c.109]

В НИПИАСУтрансгазе разработан метод определения фактических характеристик ЦБН на основе диагностики износа деталей газового тракта [1]. В основе метода лежит использование имитационной модели рабочего процесса ЦБН. Разработанная имитационная модель и реализующая ее программа позволяют по данным нормальной эксплуатации агрегата определять фактические расходно-напорную, КПД и мощностную характеристики.  [c.68]

Тем не менее и заводы и проектные бюро гидростанций с большой точностью предвидят параметры будущей работы еще непостроенной турбины и притом в ее разнообразных режимах. Это объясняется широким использованием в современном гидротурбиностроении лабора-торгсых испытаний модельных турбин и их пересчета, основанного на законах подобия ре-жг Мов подобных турбин разных диаметров при разных напорах (гл. 4). Модельная реактивная турбина обычно имеет диаметр 180 460 мм и испытывается при напоре 2,5 --н 4 м она имеет мощность 10-ч- 20 кет. По ней путем пересчета судят, однако, о работе турбины с диаметром, большим в 10 20 раз, с мощностью, большей в тысячи раз, И тем не менее в таком суждении ошибаются часто лишь на тысячные доли определяемого параметра. Для дальнейшего уточнения способов пересчета, а также для углубления понимания рабочего процесса теперь переходят к испытанию более крупных моделей (диаметром, например, 1 м) и при более высоких напорах (например, 30 м).  [c.128]

Подход, используемый в вычислительной программе SPP, заключается в расчете параметров рабочего процесса РДТТ на основе отклонений от идеальных характеристик с применением для этих целей ряда независимых моделей. В программе предусматривается расчет следующих потерь потерь в двумерном (расходящемся) двухфазном потоке, потерь, связанных с неполнотой сгорания, с использованием утопленного сопла, химико-кинетических потерь и потерь в пограничном слое. С учетом последних модификаций она включает а) подпрограмму полностью замкнутого расчета двумерных двухфазных до- и трансзвуковых течений, б) новую модель расчета размеров частиц AI2O3, в) более реалистичную модель полноты сгорания, основанную на расчетах траекторий агломератов алюминиевых частиц, г) модель эрозии горловины сопла, основанную на точных методах расчета нестационарного нагрева материала с использованием кинетики его обугливания и кинетики эрозии графитовых вставок. Кроме того, модифицировано описание сопротивления и теплообмена газа с частицами и учтены потери, вызванные соударениями частиц со стенками сопла.  [c.111]

Метод Шмидта можно обобщить, если применить адиабатную модель процесса на основе анализа псевдоцикла. При использовании этой модели рабочий объем делится не на три, а на пять частей. Считается, что процессы, происходящие в рабочих полостях переменного объема, являются адиабатными, а в теплообменниках — по-прежнему изотермическими, хотя предполагается, что стенки регенератора являются теплоизолированными, чтобы обеспечить идеальную регенерацию. Все предположения, использованные при анализе изотермических процессов, сохраняются, за исключением, разумеется, исходной модели процесса расширения и сжатия. Этот анализ известен под названием полуадиабатный, и он имеет такое же отношение к псевдоциклу, как изотермический метод Шмидта к идеальному циклу Стирлинга.  [c.319]

В разделе Динамика машин и механизмов изучается движение функциональных частей машины с учетом действуюпщх сил и инертности механической системы. Силы оценивают механическое воздействие между элементами звеньев при их движении, связанным с выполнением рабочего процесса и преобразованием энергии. Характеристиками инертности являются масса, моменты инерции и центры масс звеньев. Решение задач динамики на стадии проектирования машины, обеспечения динамических характеристик в заданных границах при изготовлении и эксплуатации машин основано на определенных расчетных процедурах. Расчетные динамические модели могут отражать связи между функциональными частями машины с разной степенью идеализации. Обоснованный выбор динамической модели и ее параметров предполагает использование моделей разной сложности в зависимости от заданных требований к динамическим характеристикам машины и ее функциональных частей. Например, наиболее простые динамические модели используются при допущениях отсутствия податливости звеньев (жесткие звенья), линейности передаточных кинематических функций механизмов, отсутствия динамических эффектов в системе управления движением машины при работе на разных режи-  [c.102]

Основываясь на результатах работы [223], можно предположить, что использование устройств, раскручивающих охлажденный и подогретый составляющие потоки, покидающие вихревые трубы, может повысить эффееты энергоразделения вследствие увеличения степени расширения в вихре. Это предположение получило экспериментальное подтверждение в работах А.П. Меркулова и его учеников, а также в работах В. И. Метенина и других исследователей из различных научных центров как в нащей стране, так и за рубежом [40, 112, 116, 137, 222, 226, 243, 245, 260, 262, 263, 270]. Экспериментально и теоретически подтверждено влияние на качество процесса теплофизических характеристик рабочего тела, в том числе и показателя адиабаты [35—40, 112, 116, 152, 153]. Частично получил опытное подтверждение вывод о пропорциональности абсолютных эффектов охлаждения от температуры газа на входе в сопло-завихритель [112,137]. Однако существенные расхождения теоретических предпосылок с результатами экспериментальных исследований не позволяют сделать вывод о достоверности рассматриваемой физико-математической модели процесса энергоразделения. Прежде всего расхождение заключается в характере распределения термодинамической температуры по поперечным сечениям камеры энергоразделения вихревых труб. В гипотезе рассмотрен плоский вихрь, поэтому объективности ради следует сравнить эпюры температуры для соплового сечения. Согласно [223], распределение полной температуры линейно по сечению, причем значение максимально на поверхности трубы. Эксперименты свидетельствуют о существенном удалении максимума полной температуры от поверхности, причем это отклонение не может быть объяснено лищь неадиабатностью камеры энергоразделения [17, 40, 112, 116, 207, 220, 222, 226, 227-231, 245, 251, 260, 262, 263, 267, 270]. Опыты показывают, что эффективность энергоразделения существенно зависит от геометрии трубы и длины ка-  [c.154]


Важным методическим моментом является закладка базовых элементов по изотермическим поверхностям внутри продукта, а также проверка равномерности тепловой нагрузки на элемент в рабочих условиях. Для одиночных датчиков теплового потока получена зависимость сигнала датчика от характера распределения нагрузки по его приемной поверхности [7]. однако ее использование для решетчатых базовых элементов затруднено из-за несоответствия моделей одиночных и гипертермопарных датчиков, а при исследовании технологических процессов — еще и из-за невозможности получить аналитическое описание изменения нагрузки в пределах приемной поверхности элемента.  [c.88]

Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]

Расчетный анализ резонансных явлений в проточных частях основывался на одномерной модели. В такой постановке решение задачи о распространении волн, вызванных взаимодействием решеток и другими причинами, дает лишь первое приближение, так как поля скоростей и углов потока за сопловой и рабочей решетками являются существенно неравномерными (см. гл. 3). Использование двухмерной модели без учета пограничного слоя позволяет ввести некоторые уточнения, однако не решает задачи о нестацио-нарности третьего типа, вызываемой процессами в пограничных слоях (прямым и обратным переходами).  [c.194]

Температурные погрешности фотоэлектрических сортировочных преобразователей. В серийно выпускаемых фотоэлектряче-ских сортировочных преобразователях типа ДФМ-ПФС (ГОСТ 15900—70Е) с интервалом сортировки, равным 0,5 I 2 и 5 мкм, а также в недавно освоенных фотоэлектрических преобразователях моделей 76I0I—76401 смещение настройки после включения лампы осветителя достигает (2. .. 4) за 8 ч работы или (6. .. 20) Аосн. Причем при постоянно включенной лампе осветителя смещение в преобразователях серии 76 больше, чем в преобразователях серии ПФС, что, по-видимому, связано с большей мощностью лампы и конструктивным оформлением новых преобразователей. Уменьшения температурной погрешности можно добиться предварительным прогревом осветителя в течение 1 ч или импульсной подачей напряжения на осветитель с периодичностью 5. . . 10 мин. Недостаточная эффективность этих решений очевидна. Во-первых, время прогрева выпадает из рабочего времени преобразователя, а во-вторых, напрасно расходуется ресурс осветительной лампы. При импульсном питании осветителя более вероятны отказ системы включения, возникновение переходных процессов и соответствующее снижение надежности, точности и долговечности системы. Вместе с тем наиболее правильным решением для фотоэлектрических сортировочных преобразователей является использование осветителей с волоконными световодами [75, 79]-, чем обеспечивается возможность дистанционного расположения источника света и минимизация его теплового влияния на рабочее  [c.201]

В процессе производственной эксплуатации вследствие деформирования, поломок и износа элементов машины, обрывов и коротких замыканий в электрических цепях, нарушения регулировок, залипания и забивания рабочих органов обрабатываемой средой, засорения гидравлических систем, образования течей в местах соединения шлангов, зафязнения или ослабления контактов электропроводки, ослабления креплений вследствие вибрации, встречи рабочего органа с непреодолимым препятствием и т. п. машина частично или полностью теряет свою работоспособность и не может выполнять заданные функции с изначально установленными параметрами. Невозможность дальнейшей эксплуатации машины из-за неустранимого нарушения требований безопасности или неустранимого выхода заданных параметров за установленные пределы, неустранимого снижения эффективности эксплуатации ниже допустимой определяет предельное состояние машины. Календарную продолжительность эксплуатации машины от ее начала или возобновления после ремонта до наступления предельного состояния называют сроком службы. Подобный показатель, но измеренный либо в часах чистой работы машины, либо в единицах ее продукции до наступления предельного состояния, называют техническим ресурсом. Срок службы и технический ресурс - обязательные характеристики, которые должны указываться в технической документации на конкретные виды и модели машин. Если техническим ресурсом определяется временной или наработочный (по суммарному объему выработанной с начала эксплуатации машины или ее возобновления после ремонта продукции) интервал работоспособности машины, то срок службы в большей мере является оценочным критерием эффективности использования машины в зависимости от времени, истекшего от начала выпуска машин данной модели, поскольку, кроме прочих факторов, он учитывает так называемый моральный износ машины, характеризуемый соответствием конструктивного решения машины современному уровню развития техники, так как со временем прежде новые модели машин устаревают и уступают по своим выходным параметрам (производительности, стоимости вырабатываемой продукции, безопасности, комфортным условиям для обслуживающего персонала, экологическим показателям и т. п.) пришедшим на смену им новым моделям.  [c.10]

Литье по выплавляемым моделям (ЛВМ) — это процесс получения отливок в неразъемных разовых огнеупорных формах, изготавливаемых с помощью моделей из легкоплавящихся, выжигаемых или растворяемых составов. Используют как оболочковые (керамические), так и монолитные (гипсовые) формы. Таким образом, рабочая полость формы образуется выплавлением, растворением или выжиганием модели. Отливки, полученные методом ЛВМ, мало отличаются (по размерам и форме) от готовой детали. Этим способом можно получать сложные тонкостенные детали (например, охлаждаемые лопатки ГТД, художественные и ювелирные изделия). Литье по выплавляемым моделям осуществляют различными способами заливки свободной, центробежной, под низким давлением, с использованием направленной кристаллизации.  [c.327]

Как уже отмечалось, рабочей средой в аттриторах служат порошки, которые размалываются шарами. Процесс этот сугубо динамический, поэтому модели, построенные на рассмотрении сплошной среды со взвешенными частицами с использованием обыкновенных дифференциальных уравнений, не могут адекватно описать динамику напряженно-деформированного состояния порошков. В работе [510] проведено моделирование воздействий при пластической деформации малых частиц в случае их обработки в аттриторах. Построено плоское силовое поле, основанное на принципе динамического равновесия. При этом движение совокупности размольных шаров предполагается установленным, а градиент скорости обеспечивается лишь по направлению от оси аттри-тора к его стенкам. Это позволило оценить величину импульса, действующего на частицу порошка, которую считают броуновской, т.е. траектория задается случайным образом. Недостаток указанной модели заключается в том, что в ней не учитываются особенности напряженно-деформированного состояния порошков.  [c.312]


В настоящей книге поставлена задача изложения вопросов трения, смазки и износа как единой научной проблемы, построенной на классических представлениях естественных наук и широком использовании положительного опыта практики. Теоретические представления развиты на основе фундаментальных законов термодинамики, минимальных принципов, физики твердого тела, физико-химии поверхностных явлений. Физические модели процессов построены с учетом реального строения материалов и физико-химических свойств рабочих сред. Впервые для анализа и объяснения трения, смазочного действия и износа металлов привлечена теория дислокаций. Основой разрабатываемой теории являются представления о нормальном, теоретически неизбежном и практически допустимом ме-хано-химическом процессе трения и износа. Смазочное действие ассматривается как основное средство управления этим процессом. Рассмотрены условия возникновения недопустимых явлений повреждаемости, достаточно распространенных в практике. На основе разработанных положений и закономерностей рассмотрены конструкционные, технологические и эксплуатационные средства повышения надежности, долговечности, фрикционности и антифрикционности машин.  [c.6]

В исследованиях, осуществленных в последние годы [12, 17, 18] и посвященных теоретическому обоснованию ориентационного деформирования аморфных полимеров, в качестве рабочей модели была использована модель перестраивающейся сетки, состоящей из сво-бодносочлененных статистических сегментов. Использование этой модели дает возможность учесть два типа релаксационных процессов. Первый тип релаксационных процессов связан с перестройкой молекулярной сетки при деформировании полимера, внешним проявлением которой является релаксация напряжений. Второй тип релаксационных процессов обусловлен тормозящим влиянием ван-  [c.116]

Новым подходом к решению задачи повышения точности и производительности обработки является использование микропроцессоров. Учет факторов, определяющих геометрические погрешности обработки, сводится к созданию либо эмпирическим, либо аналитическим путем математической модели станка, которая затем закладывается в вычислительное устройство, ведущее управление ходом процесса обработки. В этом случае станок оснащают системой первичных преобразователей (датчиков), дающих информацию о режиме, силе резания, температурном режиме обработки, координатах положения режущего инструмента, реализуемых в соответствии с УП. Получаемые данные о состоянии технологической системы вводят в вычислительное устройство, которое расчетным путем определяет вид и уровни сигналов коррекции, поступающих в УЧПУ, или непосредственно на рабочие органы станка. Использование вычислительных устройств позволяет управлять процессом обработки по свободному параметру путем всесторонней оценки состояния технологической системы.  [c.268]

К исходным данным, необходимым для решения технологической задачи (рис. 6.6), относятся сведения о конструктивной форме и размерах детали, ее материале, термической обработке, масштабе выпуска, оборудовании и др. Перед вводом в запоминающее устройство ЭВМ исходную информацию кодируют. Перед проектированием технологического процесса с использованием ЭВМ составляют четкую методику проектирования с разработкой математической модели, которая представляет собой совокупность математических зависимостей, отображающих ход процесса. Наиболее сложным является разработка алгоритмов и программ работы ЭВМ. В качестве примера на рис. 16.7 приведен алгоритм расчета основного времени 7 = ( р/)/п5о), где Ц, — расчетная длина обработки г — число рабочих ходов п — частота вращения инструмента (заготовки) 5о — оборотная подача. После разработки алгоритма выполняют программирование. Разработанную программу записывают на перфоленту или другой программоноситель и вводят в ЭВМ. Выходные данные из ЭВМ, записанные также на программоносителе, декодируются и используются технологом. Если операция технологического процесса проектируется для станка с ЧПУ, то данные ЭВМ записываются непосредственно на программоноситель станка. Применение ЭВМ повышает производительность технологических расчетов в 10—15 раз снижает стоимость проектирования, повышает производительность операций на 20—30 % снижает себестоимость обработки деталей иа 15—20 %.  [c.324]

При расчетно-аналитическом методе состав выбросов определяется по результатам физико-химических, балансовых или термодинамических расчетов энергетических процессов. Количество выбросов определяется также по расчетным моделям процессов с использованием законов сохранения энергии и массы. При этом должны бьггь учтены особенности используемого топлива, рабочего тела, конструктивные и технологические особенности рассматриваемого изделия.  [c.243]

Нанесение на рабочую поверхность эрозионно-стойкого материала возможно элек-тродуговым, плазменным, газоплазменным напылением. В этом случае вместо корпуса часто применяют модели многократного использования из керамики, графита, сталей, алюминия, чугуна. Модели могут бьпъ сборными, что упрощает их изготовление. Напыление проводят в две стадии сначала наносят основу из коррозионно-стойкой стали, затем слой эрозионно-стойкого материала толщиной 1,5. .. 2 мм. Полученную оболочку снимают, крепят к электрододержателю и устанавливают на станок. При гальваническом методе формообразования рабочей части можно применять модели из металлов, пластмасс, гипса, легко подцающихся обработке. На нетокопроводящие модели сначала осаждают химическим путем токопроводящий слой, далее его наращивают до требуемой толщины эрозионно-стойким материалом. Предельная толщина слоя 2. .. 5 мм. Модели могут быть одно- и многоразового использования. После гальванического осаждения металла рабочая поверхность имеет высокую точность размеров, малые параметры шероховатости и не нуждается в дальнейшей обработке. Площадь рабочей части может достигать сотен квадратных сантиметров. Недостатками методов являются зависимости толщины слоя от формы модели и большая длительность процесса (до 100 ч на 1 мм толщины).  [c.276]

Данные, получаемые в результате анализа схемы в режиме малого сигнала, представляют собой частотные характеристики схемы, рассчитанные с использованием малосигнальных моделей элементов (рис. 4.6). Процесс моделирования начинается с расчета рабочих точек для определения режима по постоянному току, затем производится замена источников сигналов генераторами синусоидального сигнала с фиксированной амплитудой и, наконец, производится анализ в заданном частотном диапазоне. Искомые результаты обычно представляются в виде передаточной функции (например, коэффициент усиления по напряжению).  [c.190]

Имеет смысл подчеркнуть несколько обстоятельств, связанных с проблемой математического моделирования. Элементы СБИС и УБИС обладают микронными и субмикронными характерными размерами, а толщины обра-чующих их слоев составляют сотни и даже десятки ангстрем. Поэтому достаточно полное описание множества процессов, применяемых при их производстве, и процессов, происходящих в приборах, оказывается чрезвычайно сложным и требует построения физических моделей высокого уровня, дня проверки которых необходима постановка тончайших экспериментов. Ьолее того, для превращения теории в рабочий инструмент математического моделирования необходимо знать численные значения входящих в нее параметров. И для этого необходимы эксперименты, выполняемые с использованием технологии изготовления микроэлектронных приборов и методов высокоточных аналитических исследований. Таким образом, не следует думать, что математическое моделирование может полностью избавить пас от проведения натурных экспериментов.  [c.5]

По результатам исследования износостойкости материалов в технической литературе имеется много публикаций. В большинстве из них содержатся сведения о конкретных материалах, изучаемых в конкретных условиях эксплуатации. Поэтому публикуемые данные, справедливые только для ограниченных обстоятельств, оказываются часто противоречивы. Одпи и те же сплавы, проявляющие высокую износостойкость в одних условиях, оказывают слабую сопротивляемость изнашиванию в других. Многочисленные публикации производственно-технического порядка по износостойкости отдельных конкретных изделий ещё требуют дальнейшего анализа и обобщений. Комплексное использование производственных и лабораторных методов изучения изнашивания, а также исследование изменений тонкой структуры металла в рабочем слое и аналитический расчет величины энергии, затрачиваемой на осуществление каждого из элементарных процессов в металле, составляющих акт изнашивания, помогут выявить те свойства сплава, которые в наибольшей мере контролирует его способность к сопротивлению разрушительной работы абразивов. Разработка модели изнашивания и количественная оценка каждого из явлений, предшествующих и сопровождающих разрушение поверхностного слоя металла, обусловливает более глубокое раскрытие природы сопротивления сплавов изнашиванию, позволит повысить эффективность упрочнения материалов для быстроизнашиваемых деталей и даст возможность полнее реализовать защитные силы металла и управлять его износостойкостью в заданных условиях эксплуатации.  [c.4]


Смотреть страницы где упоминается термин Использование модели рабочего процесса : [c.209]    [c.69]    [c.241]    [c.219]    [c.109]    [c.228]    [c.169]    [c.453]    [c.56]    [c.8]   
Смотреть главы в:

Локомотивные двигатели внутреннего сгорания Издание 2  -> Использование модели рабочего процесса



ПОИСК



Использование модели

Модели процессов

Процесс рабочий



© 2025 Mash-xxl.info Реклама на сайте