Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фундаментальные законы термодинамики

В отличие от других разделов теоретической физики термодинамика является единственной общей физической теорией, которая, по убеждению А. Эйнштейна, в рамках применимости своих основных положений никогда не будет опровергнута . Это обусловливается фундаментальностью законов термодинамики и выделяет ее среди остальных курсов теоретической физики.  [c.288]

Рассмотрение фундаментальных законов термодинамики и свойств ее обобщенных сил и обобщенных координат [Л. 16, 7] позволяет заключить, что с превращением однородной среды в среду двухфазную уравнение состояния гомогенных тел F р, у, Т) = О переходит в зависимость вида / [р, Т) = 0.  [c.9]


Книга начинается введением, в котором поясняются принципы работы тепловой трубы, описываются типы труб и области их применения. Затем следует подробное изложение теории тепловой трубы, конструкции и изготовления. Построение изложения теории тепловой трубы позволяет в процессе анализа тепловой трубы параллельно осветить фундаментальные законы термодинамики, теплопередачи, механики жидкости и материаловедения. Для удобства решения задач инженерами-практиками разработана методика расчета, в которой обобщена вся необходимая теоретическая информация. Кроме того, достаточно подробно обобщена обширная исследовательская информация. Наконец, описаны применяющиеся в настоящее время способы и технология изготовления тепловых труб. В последней главе описаны существующие и перспективные области применения тепловых труб в энергети-..ческих системах. Этот материал будет полезен инженерам, архитекторам и строителям, занимающимся вопросами экономии энер-  [c.7]

В качестве основного замыкающего условия принимается, что движущаяся жидкая частица (элемент континуума) ведет себя как термодинамическая система, т. е. для нее справедливы выводы термодинамики, полученные для равновесных систем. Это предположение иногда называют гипотезой о локальном термодинамическом равновесии (ЛТР). Движущаяся жидкая частица считается системой, допускающей последовательное термодинамическое описание, т. е. использование фундаментальных законов термодинамики (применительно ко всей системе или ее макроскопическим подсистемам) и правил аддитивности (а также, например, закона Дальтона). При таком обобщении рассмотрение жидкой частицы как термодинамической полностью равновесной системы является частным случаем.  [c.22]

ФУНДАМЕНТАЛЬНЫЕ ЗАКОНЫ ТЕРМОДИНАМИКИ  [c.48]

На феноменологическом уровне ( 2.8) два фундаментальных закона термодинамики в интегральной форме записываются следующим образом.  [c.439]

Несмотря на эквивалентность теплоты и работы, процессы их взаимного превращения неравнозначны. Опыт показывает, что механическая энергия может быть полностью превращена в теплоту, например, путем трения, однако теплоту полностью превратить в механическую энергию в периодически повторяющемся процессе нельзя. Многолетние попытки осуществить такой процесс не увенчались успехом. Это связано с существованием фундаментального закона природы, называемого вторым законом термодинамики. Чтобы выяснить его сущность, обратимся к принципиальной схеме теплового двигателя (рис. 3.2).  [c.21]


С понятием температуры тесно переплетается (и часто путается) понятие теплоты. Из повседневного опыта известно, что для нагревания одних веществ требуется больше тепла, чем для других, однако непосредственно не очевидно, почему это так. Тем не менее при достаточной проницательности на основании повседневного опыта можно сделать ряд весьма фундаментальных выводов относительно теплового поведения вещества эти выводы включают законы термодинамики. Нулевой закон, названный так потому, что он был сформулирован после первого и второго законов, касается состояния тел, приведенных в тепловой контакт друг с другом. Чтобы ясно понять, что это значит, прежде всего необходимо уточнить ряд понятий. Приведенные ниже определения хотя и не являются строгими, позволяют нам сделать несколько общих замечаний о смысле температуры и теплового поведения веществ, которые полезны при введении в термометрию. Более подробное обсуждение основ теплофизики читатель может найти в монографиях по термодинамике и статистической механике, указанных в списке литературы к данной главе.  [c.12]

Этот результат не является выражением особенностей рассмотренной системы (идеального газа), он следует из законов термодинамики. Для расчета всех овойств системы, как было показано, достаточно знать одно (фундаментальное) соотношение между ними, поэтому уравнения состояния не могут быть независимыми. Связь между ними выводится наиболее естественно- при помощи уравнений Гиббса—Гельмгольца, так называют соотношения между двумя любыми термодинамическими потенциалами, которые различаются друг от друга только одной независимой переменной, т. е. получаются один из другого при однократном преобразовании Лежандра  [c.93]

Построение термодинамики носит аксиоматический характер. Основу термодинамики составляют фундаментальные законы природы, принимаемые за аксиомы из них логическим путем выводятся все главнейшие следствия, касающиеся различных термодинамических систем. Сами эти законы представляют собой обобщение опыта.  [c.26]

История открытия второго начала термодинамики представляет собой, возможно, одну из самых впечатляющих, полную драматизма, глав общей истории науки, последние страницы которой еще далеко не дописаны. Потребовались усилия гениев многих наций, чтобы приоткрыть завесу над сокровенной тайной природы, которую представляло собой второе начало термодинамики. Имена знаменитого французского ученого и инженера Карно, выдающегося немецкого ученого Клаузиуса, великих ученых англичан Томсона (лорда Кельвина) и Максвелла, австрийца Больцмана и немца Планка, замечательного русского ученого Шиллера и других неразрывно связаны с открытием и развитием этого фундаментального закона.  [c.153]

Термодинамический анализ обратимых и необратимых процессов. Термодинамический анализ основывается на первом и втором началах термодинамики, из которых математическим путем выводятся относящиеся к рассматриваемому явлению закономерности. Эти частные закономерности столь же достоверны, как и сами фундаментальные законы, положенные в основу термодинамики. Если учесть, что термодинамический метод может применяться к самым разнообразным явлениям, то станет вполне очевидна общность этого метода.  [c.158]

Термодинамика — это наука о закономерностях превращения энергии в различных физических, химических и других процессах, рассматриваемых на макроуровне. Термодинамика основывается на двух фундаментальных законах природы первом и втором началах термодинамики. Эти законы были сформулированы в XIX в. и явились развитием основ механической теории теплоты и закона сохранения и превращения энергии, сформулированных великим русским ученым М. В. Ломоносовым (1711—1765).  [c.5]

Термодинамика построена по аксиоматическому принципу. Ее основу составляют фундаментальные законы природы, принимаемые за аксиомы из этих аксиом логическим путем выводятся все главнейшие следствия, касающиеся различных термодинамических систем. Фундаментальные законы, совокупность которых составляет аксиомы термодинамики, представляют собой обобщение опыта и называются началами термодинамики. Не все эти законы одинаковы по своему физическому значению и общности, однако каждый из них является независимой аксиомой, которую нельзя исключить при построении термодинамики как науки.  [c.5]

Первый закон термодинамики является частным случаем закона сохранения и превращения энергии. Он представляет собой приложение этого фундаментального закона к термодинамическим системам.  [c.11]


Основу термодинамики составляют два фундаментальных закона, которые обобщают закономерности существующих в природе явлений. Первый закон термодинамики устанавливает количественное соотношение в процессах взаимного преобразования энергии и представляет собой приложение всеобщего закона сохранения и превращения энергии к тепловым процессам. Второй закон термодинамики характеризует направление естественных (необратимых) процессов и определяет качественное отличие теплоты от других форм передачи энергии. Этот закон связан с принципом существования энтропии.  [c.7]

Термодинамическое исследование основывается на первом и втором началах термодинамики, из которых математическим путем выводятся относящиеся к рассматриваемому явлению закономерности. Эти частные закономерности столь же достоверны, как и сами фундаментальные законы, положенные в основу термодинамики. Если учесть, что термодинамический метод может применяться к самым разнообразным  [c.151]

Термодинамика опирается на фундаментальные законы (начала), которые являются обобщением наблюдений над процессами, протекающими в природе независимо от конкретных свойств тел. Этим объясняется универсальность закономерностей и соотнощений между физическими величинами, получаемых при термодинамических исследованиях.  [c.6]

Закон Кирхгофа базируется на втором законе термодинамики и является одним из основных фундаментальных законов теории теплового излучения.  [c.45]

На начальном этапе истории ppm дискуссии вокруг него способствовали в определенной степени прогрессу физики, а на последнем этапе—и развитию термодинамики, и прогрессу энергетики. Более того, оба закона термодинамики родились из положения о невозможности осуществления вечного двигателя. В целом эти этапы истории ppm можно характеризовать как движение от утопии к науке. В конечном счете сам вечный двигатель породил, если так можно выразиться, те фундаментальные научные положения, которые вырвали из-под него почву и обусловили конец его многовековой истории.  [c.12]

Энтропия — основная величина, определяющая возможность (или невозможность) протекания процессов в любых системах преобразования вещества и энергии с позиций второго закона термодинамики. Суммарная энтропия неизменна или растет—процесс возможен уменьшается — невозможен. В рассмотренных выше случаях мы успешно пользовались именно этим фундаментальным свойством энтропии для того, чтобы определить, что может быть в энергетических превращениях и чего быть не может.  [c.154]

Рассмотрены основные понятия, фундаментальные определения и законы термодинамики термодинамическая классификация растворов и основные законы идеальных и предельно разбавленных растворов. Подробно описана термодинамика химических реакций. Для студентов высших учебных заведений.  [c.191]

Несмотря на то, что свойства газов наиболее полно раскрываются лишь с учетом их молекулярного строения, при изучении движения газовых потоков можно считать, что эти свойства не зависят от малости рассматриваемого объема, т.е. считать допустимым использование дифференциального исчисления. Такое допущение позволяет ввести понятие сплошной среды и применять ее законы для изучения движения газов. Таким образом, газовая динамика является одним из разделов механики сплошной среды и в своей теоретической части базируется на общих законах и уравнениях термодинамики и гидромеханики, на представлениях кинетической теории газов, на общих фундаментальных законах физики и теоретической механики. Отсюда вытекает тесная связь газовой динамики со смежными дисциплинами, которые изучаются студентами в институте.  [c.3]

В разд. 2 даны основные законы термодинамики и указаны важнейшие сферы их применения, рассмотрены фундаментальные определения, обеспечивающие понимание общности методов термодинамики для анализа различных явлений, включая реальные процессы теплоэнергетики. Описаны основные термодинамические свойства твердых тел, жидкостей и газов, представлены дифференциальные уравнения термодинамики, устанавливающие взаимосвязи между этими свойствами. Рассматриваются общие условия равновесия различных видов термодинамических систем, включая фазовое равновесие. Приводятся уравнения для расчета термодинамических свойств газовых смесей, в том числе для влажного воздуха.  [c.7]

Первый закон термодинамики—закон сохранения и превращения энергии — является фундаментальным законом природы, имеющим всеобщий характер. Этот закон гласит энергия не исчезает и не возникает вновь, она лишь переходит из одного вида в другой в различных физических и химических процессах. Иными словами, для любой изолированной системы (т е. такой термодинамической системы, которая не обменивается с окружающей средой ни теплотой, ни работой, ни веществом) количество энергии, заключенной в этой системе, сохраняется неизменным.  [c.111]

Дальнейшее обобщение и развитие энергетических концепций стали возможны на основе фундаментальных законов термодинамики. Трибосистема с позиций термодинамики необратимых процессов, как отмечалось выше, при определенных условиях является открытой термодинамической системой, обменивающейся энергией и веществом с окружающей средой. Известно, что в термодинамике неравновесных систем в отличие от равновесной термодинамики изучают изменения состояний, протекаюи ,ие с конечными, отличными от нуля скоростями. Предмет исследования - переносы массы, энергии, вызванные различными факторами, называемыми силами. Причиной возникновения потока всегда являются различия в значениях термодинамических сил температуры, давления и концентрации или их функции, т.е. перепады, или градиенты. Поэтому поток теплоты в трибосистеме появляется, если возникает градиент температуры, а поток вещества есть следствие наличия градиента концентрации и т.д. Следовательно, термодинамические силы представляют собой градиенты, характеризующие удаленность трибосистемы от термодинамического равновесия. Суть применения законов классической термодинамики к неравновесным системам заключается в предположении о локальном равновесии внутри малых элементов областей системы. Представление о локальном равновесии позволяет изучать больп1ое число практически важных неравновесных систем, к которым с полным основанием можно отнести и трибосистемы. При этом все уравнения сохраняют свою ценность по отношению к малым областям, а значит, и общность описываемых ими закономерностей. Так, уравнение Гиббса, показываюилее зависимость внутренней энергии U от энтропии S, объема и химических потен-  [c.107]


В последние годы получили быстрое развитие теория, применение и технология изготовления тепловых труб. В этой книге автор надеется представить всестороннее изложение техники тепловых труб (т. е. теорию, расчет, изготовление и применение). Она должна оказаться исключительно полезной книгой как для ин-жейера-практика, так и для преподавателя. Инженеры, занимавшиеся расчетом и разработкой других типов теплопередающих устройств, но которым в последнее время пришлось заняться исследованиями тепловых труб, найдут для себя обширный материал, собранный в одной книге. Преподаватели курса механики, которым придется готовить заключительные курсы лекций для студентов и начальные курсы для аспирантов, также найдут эту книгу полезной. Техника тепловых труб раскрывает студентам практические приложения фундаментальных законов термодинамики,- теплопередачи, материаловедения и технологии изготовления.  [c.7]

В настоящей книге поставлена задача изложения вопросов трения, смазки и износа как единой научной проблемы, построенной на классических представлениях естественных наук и широком использовании положительного опыта практики. Теоретические представления развиты на основе фундаментальных законов термодинамики, минимальных принципов, физики твердого тела, физико-химии поверхностных явлений. Физические модели процессов построены с учетом реального строения материалов и физико-химических свойств рабочих сред. Впервые для анализа и объяснения трения, смазочного действия и износа металлов привлечена теория дислокаций. Основой разрабатываемой теории являются представления о нормальном, теоретически неизбежном и практически допустимом ме-хано-химическом процессе трения и износа. Смазочное действие ассматривается как основное средство управления этим процессом. Рассмотрены условия возникновения недопустимых явлений повреждаемости, достаточно распространенных в практике. На основе разработанных положений и закономерностей рассмотрены конструкционные, технологические и эксплуатационные средства повышения надежности, долговечности, фрикционности и антифрикционности машин.  [c.6]

Для того чтобы упростить исследование, сосредоточим свое внимание на принципе наименьших необратимых сил, установив раз и эавсегда и имея постоянно в виду, что этот принцип можно заменить принципом наибольшей скорости порождения энтропии или некоторыми другими обращенными формами, которые мы еще обсудим в 4. Строгое доказательство этого принципа не представляется возмо кным. Однако этот принцип монаю обосновать с помощью статистических рассуждений [49], в основном, таким же способом, как и фундаментальные законы термодинамики. Естественной точкой отправления здесь служит великолепная работа Гиббса [11 по статистической механике. По сравнению с другими статистическими методами такой подход имеет то преимущество, что он не зависит от какой-либо частной молекулярной модели и потому применим к. июбому виду сплошной среды. И на самом деле имеется отчетливая аналогия между рассмотренным здесь принципом и принципами, установленными в гл. II работы Гиббса.  [c.10]

Определение температуры как физической величины, являющейся одной из фундаментальных в термодинамике, непосредственно связано с упомянутыми выше основными законами термодинамики. Обычно, исходя из первого закона тер-]лодинамики и используя формулировку Кельвина для второго закона, доказывают, что для обратимой тепловой машины, работающей по циклу Карно между температурами 01 и 02, отношение количества тепла Оь поглощенного при более высокой температуре 0ь к количеству тепла Оъ отданного при более низкой температуре 02, просто пропорционально отношению двух одинаковых функций от каждой из этих двух температур  [c.17]

Дело в том, что статфизика и термодинамика всегда были наиболее трудными разделами для изучения студентами во всех странах. Основанная на фундаментальных законах природы, оснащенная изощренным математическим аппаратом, оперирующая абстрактными категориями и применениями к громадному числу разнообразных явлений природы эта наука требует особого мастерства от преподавателя, который как мастер, создающий изящную скульптуру из камня, должен отсечь все лишнее.  [c.7]

Методы определения температуры, оспованпыс на применении второго закона термодинамики. В н. 10 было показано, что любое соотношение между Т и другими параметрами состояния, выведенное на основе второго закона термодинамики, является таким же фундаментальным определением абсолютной температуры, как и само определение Кельвина. Таким соотношением является, например, равенство (9.9).  [c.442]

Фундаментальные законы, совокупность которых составляет аксиомы термодинамики, называются началами термодинамики. Не все эти законы одинаковы по своему физическому значению и общности однако они эквивалентны в том емысле, что каждый из них является независимой аксиомой, которая не может быть иеключена при поетроении термодинамики. По этой причине тепловую теорему Нернста, а возможно и условие взаимности Онза-гера, лежащее в оенове термодинамического описания неравновесных процессов, следует рассматривать как начала термодинамики и именовать таковыми к ним же, естественно, относится и рассмотренное в гл. 1 нулевое начало термодинамики.  [c.26]

Ранее мы выяснили, что конденсация атомов (или ионов и электронов) приводит к понижению энергии системы и является вследствие этого энергетически выгодным процессом. Поэтому в невозбужденном состоянии при предельно низких температурах все тела находятся в конденсированном состоянии, причем, за исключением гелия,—это твердые кристаллические тела. Гелий при нормальном давлении — жидкость, но при давлении в 30 кбар он также становится кристаллом. Существуют различные подходы к объяснению самого факта существования в твердом теле периодического расположения атомов (трансляционной симметрии). Так, согласно теореме Шенфлиса, всякая дискретная группа движений с конечной фундаментальной областью (т. е. элементарной ячейкой) имеет трехмерную подгруппу параллельных переносов, т. е. решетку [22]. Можно объяснять необходимость существования кристаллической решетки, а в конечном счете и вообще симметричного расположения атомов, исходя из третьего закона термодинамики. Согласно этому закону, при приближении к абсолютному нулю температуры энтропия системы должна стремиться к нулю. Но энтропия системы пропорциональна логарифму числа возможных комбинаций взаимного расположения составных частей системы. Очевидно, любое не строго правильное расположение атомов влечет за собой большое число равновозможных конфигураций атомов и приводит к относительно большой энтропии, и только строго закономерное расположение атомов может быть единственным. Поэтому равная нулю энтропия совместима только со строго повторяющимся взаимным расположением составных частей тела [1]. Иногда симметричность расположения атомов в кристалле объясняют исходя из однородности среды.  [c.124]

Значение второго начала термодинамики шире тех следствий, которые вытекают из рассмотрения цикловых процессов по Р. Клаузиусу, что подтверждено многолетним опытом применения этого фундаментального закона в различных областях науки и техники. В связи с этим было признано целесообразным основной постулат его вводить по М. Планку, у которого второе начало истолковьгеается как закон, утверждаюш,ий, что в любом естественном процессе сумма энтропий всех тел, участвующих в процессе, возрастает .  [c.4]

Структура метода расчета на износ с учетом физических, химических и механических факторов. Проблема трения, износа, смазки является комплексной и базируется на фундаментальных законах физики, химии, механики сплошных сред, термодинамики, материаловедения. Закон изнашивания твердых тел в общем случае должен учитывать физические, химические, механические явления, протекающие в контакте, а также изменение контактной ситуащ1и (геометрических характеристик контакта, кинематики движения, структуры, состава приповерхностных и поверхностных слоев материалов, химических соединений на поверхностях твер-  [c.178]


В популярной форме рассказывпется об истории вечного двигателя от первых попыток его создания до современных изобретений . Раскрывается значение для энергетики двух фундаментальных законов — первого и второго нача,/1 термодинамики. Показана бесполезность попыток обойти этн законы независимо от сложности предла. аемых для этого устройств.  [c.2]

Если отнести Е" к Е, то получим так называемый эксергетический КПД Це=Е"1Е. Очевидно, что Г[е в идеальном случае равен единице, т. е. 100%, а в реальном т]е<100 %. Если же т]е получается больше 100 %, то мы неизбежно имеем дело с каким-либо вариантом рргп-2. Здесь просматривается четкая связь с фундаментальным энтропийным определением второго закона. Первый случай — идеальный процесс соответствует постоянству энтропии, второй — ее росту. Но пользоваться эксергетическим критерием более удобно он непосредственно включает энергетические величины и в этом отношении аналогичен первому закону термодинамики. (Напомним, что непременное условие выполнения первого закона — равенство энергий ZW — ZW для второго закона ЪЕ" ЪЕ. )  [c.159]

В основе терм один амики явлений переноса лежат два фундаментальных закона природы закон сохранения массы и закон сохранения и превращения энергии, а также принцип возрастания энтропии (второй закон класоической термодинамики) последний является основой теоремы Онзагера.  [c.7]

Наиболее важным из последних достижений в области термодинамики равновесных процессов является подход Хацопулоса и Кинана [1], основанный на единственной аксиоме. Этот подход позволил показать, что считавшиеся ранее в корне различными законы термодинамики логически следуют из единственного фундаментального закона устойчивого равновесия. Другое важнейшее достижение связано с проблемой термодинамической доступности энергии и понятием об эксергии. Проблема термодинамической доступности сводится к решению вопроса о том, в какой мере энергия доступна для производства работы. В последнее время значение этого вопроса резко увеличивается в связи с поясками путей экономии энергии. Несмотря на то что этот вопрос был поставлен еще Дж. У. Гиббсом и Дж. К. Максвеллом свыше ста лет назад и довольно интенсивно разрабатывался в Германии,  [c.12]

По мере того как мы, исходя из фундаментального закона устойчивого равновесия, будем глава за главой развивать понятия и теоремы, читатель увидит, что утверждения, получившие названия первого и второго законов термодинамики, принимают характер следствий и тем самым теряют право называться самостоятельными фундаментальнЪши законами . Кроме того, оказывается, что нет необходимости и в так называемом нулевом законе . Чтобы читателю было легче следить за логическим развитием длинной цепи идей, образующих фундамент термодинамической науки, мы будем строить генеалогическое древо термодинамики , показывая его рост в конце каждой главы. Это позволит более ясно представить логическую структуру нашей довольно абстрактной отрасли науки.  [c.14]


Смотреть страницы где упоминается термин Фундаментальные законы термодинамики : [c.60]    [c.76]    [c.104]    [c.72]    [c.95]    [c.67]    [c.11]   
Смотреть главы в:

Пособие по электротехническим материалам  -> Фундаментальные законы термодинамики



ПОИСК



Закон термодинамики

Термодинамика



© 2025 Mash-xxl.info Реклама на сайте