Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температурные явления при трении

ТЕМПЕРАТУРНЫЕ ЯВЛЕНИЯ ПРИ ТРЕНИИ  [c.68]

Результаты проведенных нами исследований температурных явлений при трении вполне согласовываются с выводами М. П. Левицкого, из которых следует, что при средних и высоких скоростях резания можно пренебречь теплопередачей в глубь резца, т. е. это количество тепла с небольшой погрешностью можно приравнять нулю.  [c.84]

Представленная физическая картина протекания температурных явлений при трении подтверждается данными практики.  [c.94]


При испытании на изнашивание немаловажную роль играет и масштабный фактор. Соблюдение простого геометрического подобия формы и размеров испытуемых образцов при прочих равных условиях трения недостаточно для сохранения физического подобия в состоянии II свойствах контактирующих поверхностей. Последнее заметно проявляется в различии элементов температурного поля и, следовательно, на условиях протекания деформации контактов и других явлений, сопутствующих трению.  [c.230]

Температура трущихся поверхностей ряда металлов оказывает значительное влияние на коэффициент трения. По данным С. И. Губкина и его сотрудников, максимум коэффициента трения наблюдается при температурах 500 и 850° С и понижение его при 700° С (фиг. 8). Подобная картина наблюдалась автором и при трении твердого сплава и минералокерамики о сталь при разных скоростях (фиг. 7, а) и, следовательно, при разных температурах. До настоящего времени нет точного объяснения этого явления, но можно предположить, что оно связано с образованием окисных пленок, а также с температурными фазовыми превращениями сплавов железа, при которых изменяется физико-механическое состояние поверхности.  [c.19]

Одной из важных в практическом отношении сторон явления избирательного переноса является переход от физической адсорбции к хемосорбции. Так как хемосорбция обычно начинается после достижения температуры десорбции физически адсорбированного вещества, то представляется возможность значительного расширения температурного интервала работы смазочной среды. Эту особенность избирательного переноса при трении необходимо учитывать при выборе смазки для получения большого температурного диапазона работы.  [c.97]

Очевидно, такие специфические условия протекания температурных явлений в поверхностном слое при трении порождают многие другие физические процессы, которые могут оказывать существенное влияние на состояние материала поверхностного слоя.  [c.117]

Проблема изучения тепловых и температурных явлений. Опыты показывают, что работа деформирующих стружку сил и работа сил трения почти полностью превращаются в теплоту. Поэтому при резании металлов стружка и контактные поверхности нагреваются до 500—1000°, о чем можно судить по дымящемуся маслу и по цветам побежалости на стружке, меняющимся от желтого до синего и далее до светло-серого цвета.  [c.15]

Попыткой более точного определения температур на поверхности трения является теория Блока [153], [154]. Блок решает эту задачу с рядом допущений, значительно упрощающих представление о тех температурных явлениях, которые происходят при скользящем контакте двух тел. Он не учитывает взаимного влияния элементарных тепловых источников, поверхностная температура определяется в предположении, что теплоемкость трущихся тел неограниченно велика.  [c.249]


Таким образом, условием подобия процессов гидродинамики и теплообмена при охлаждении шаровых твэлов будет, помимо геометрического подобия и температурного фактора, равенство трех критериев Re, Nu и Рг — модельного эксперимента и натурного явления. Хотя критерий Re является мерой сил инерции и трения потока теплоносителя, его применяют также и для  [c.47]

При работе механизмов на открытом воздухе или в цехах с повышенной влажностью тормоза снабжаются защитными кожухами. Наличие кожуха изменяет картину физических явлений процесса охлаждения тормоза. При работе тормоза в кожухе необходимо учесть конвективный теплообмен между кожухом и окружающей средой. Так как скорость перемещения кожуха вместе с механизмом мала по сравнению со скоростью движения поверхности трения шкива, то основное значение для конвективного теплообмена будет иметь естественная конвекция. Поэтому математическое описание процесса будет отличаться от предыдущего наличием в уравнениях движения воздуха главного вектора массовых сил. В остальном уравнения сохраняют прежний вид. Проведя преобразования, аналогичные приведенным выше, получим выражение температурного симплекса в виде  [c.621]

Узлы трения являются диссипативными системами. При внешнем трении рассеивание суммы кинетической и потенциальной энергии системы с частичным переходом в тепловую происходит в тонких слоях сопряженных тел. В нижележащих слоях температура увеличивается в результате теплопередачи и вследствие рассеяния механической энергии волн напряжений. На характер изменения температуры в поверхностных слоях пластмассовых подшипников можно эффективно влиять, подбирая соответствующий смазочный материал и регулируя интенсивность смазки. Проявление гистерезисных явлений в пластмассах значительно сильнее, чем в металлах, поэтому интенсивность и глубина температурных полей в полимерных телах трущихся пар определяется внешними силовыми условиями, преимущественно нагрузкой и скоростью относительного скольжения. Способность пластмасс поглощать механическую энергию влечет за собой быстрый рост температуры и тем самым отрицательно влияет на работоспособность подшипника — Прим. ред.  [c.231]

Как показано выше, трение является сложным многообразным процессом, зависящим от большого числа факторов температурного режима трения, давления, скорости скольжения, удельной работы и мощности трения, макрогеометрических характеристик фрикционного устройства и др. Эффекты взаимодействия (взаимовлияние) факторов дополнительно усиливают зависимость характеристик трения и износа от параметров режима и узла трения. Это объясняется тем, что при различных условиях трения изменяется характер контактного фрикционного взаимодействия и характер физико-химико-механических явлений, влияющих на трение.  [c.168]

Позднее перенос чугуна на пластмассовый элемент автомобиля изучали М. М. Бородулин и И. И. Васильев. При намазывании чугуна фрикционные качества пары трения снижаются, а на поверхности контртела образуются глубокие кольцевые выработки. Тормозные барабаны быстро выходят из строя. Явление намазывания в тормозных транспортных средствах было впервые обнаружено при работе тормозных накладок в горных условиях (температурный режим наиболее тяжелый) при работе на равнинной местности на первой стадии эксплуатации это явление остается незаметным.  [c.132]

Эксплуатация контактных торцовых уплотнений в кипящих жидкостях (горячей воде, легких углеводородах, аммиаке) обычно сопровождается повышенными утечками и интенсивным изнашиванием пары трения. При работе уплотнений часто наблюдаются хлопки и вибрация, в результате которых происходят периодические выбросы рабочей жидкости в виде парожидкостной смеси. Нестабильность - характерная особенность работы торцовых уплотнений в кипящих жидкостях. Это явление возникает из-за вскипания жидкостной пленки между уплотнительными поверхностями, что вызывает нарушение режима смазки и перегрев пары трения. В результате скопления паров и температурных деформаций уплотнительных колец происходит раскрытие стыка. Возникают повышенные утечки, охлаждающие пару трения. Далее уплотнительный стык смыкается и на короткое время восстанавливается нормальный режим смазки и герметичность уплотнения. Затем процесс повторяется.  [c.339]


При прокрутке снижению потерь трения способствует уменьшение давления газов, но в противоположную сторону действует изменение температурного режима (наблюдается снижение температур стенок и масла). В отдельные моменты времени может превалировать тот или другой фактор. Однако в большинстве случаев, по литературным данным, явление протекает подобно показанному на фиг. 8, т. е. потери трения при работе двигателя несколько больше, чем при прокрутке.  [c.14]

В этой главе описаны явления адгезии, происходящие в зоне трения при резании металлов и влияние этих явлений на износ инструмента. Сначала описываются явления адгезии на низких скоростях резания, когда разогрев контактных слоев незначительный и влиянием температурного фактора можно пренебречь. Затем описываются результаты опытов на повышенных скоростях резания, когда температура оказывает значительное влияние на состояние контактных слоев и активно воздействует на адгезию, трение и износ.  [c.162]

Пренебрежение к учету влияния тепловых факторов может привести к чрезмерному и неравномерному нагреву деталей механизма и нарушению нормального их взаимодействия. При этом могут возникнуть следующие вредные явления а) уменьшение зазоров между деталями (в подшипниках, в направляющих) и ухудшение условий и свойств смазки, и, как следствие, повышенный износ и заедание трущихся поверхностей б) нарушение точности работы механизма вследствие смещения деталей, вызванных неравномерным нагревом их или различной величиной температурных коэффициентов расширения материалов сопряженных деталей в) снижение коэффициента трения во фрикционных передачах, муфтах и тормозах г) понижение несущей способности (прочности) деталей. Расчет стальных и других металлических деталей, работающих при температуре выше 200° С и деталей из легких сплавов и пластмасс — выше 100—150° С, связан с учетом явлений ползучести и релаксации материала и рассматривается в специальной литературе.  [c.183]

Наблюдаемые при работе муфт с резиновыми упругими элементами явления ползучести, релаксации напряжений, тепловыделение связаны с вязкоупругими свойствами резины. Их учет позволяет получить более точную картину напряженно-деформированного и температурного состояний упругих элементов, решить ряд вопросов оптимизации конструкции муфт, в частности конструкции буртов муфт оболочкового типа (см. рис. 1.1, а, б) и некоторых других. Особенностью конструкции этих муфт является то, что передача вращающего момента между полу-муфтами осуществляется за счет сил трения в местах сопряжения упругих элементов с металлическими деталями полумуфт. Предварительная деформация упругого элемента позволяет создать определенное давление на поверхностях трения, а следовательно, и определенный запас по сцеплению между упругим элементом и полумуфтами.  [c.28]

Выполняя свою основную функцию по электромеханическому преобразованию энергии, ЭМУ вызывает побочные вторичные явления — тепловые, силовые, магнитные, оказывающие значительное, а в ряде случаев, например в гироскопических ЭМУ [7], и определяющее влияние на показатели объекта. Нагрев элементов ЭМУ определяет его долговечность и работоспособность, а в гироскопии — также точность и готовность прибора. Деформации и цибрации в ЭМУ возникают из-за наличия постоянных и периодически меняющихся сил различной физической природы, в том числе сил температурного расщирения элементов, трения, электромагнитных взаимодействий, инерции, от несбалансированности вращающихся частей, неидеальной формы рабочих поверхностей опор и технологических перекосов при сборке и др. и существенно влияют на долговечность и акустические показатели ЭМУ, а в гироскопии — через смещение центра масс и на точность прибора. Магнитные поля рассеяния ЭМУ создают нежелательные взаимодействия с окружающими его элементами, приводящие к дополнительным потерям энергии, вредным возмущающим моментам, разбалансировке и пр.  [c.118]

Основные недостатки фторопласта 4 (тефлона) — низкие твердость и износостойкость, а также холодотекучесть, что затрудняет его применение в чистом виде. Армировать же фторопласт обычно технологически достаточно сложно и не всегда эффективно. Однако в условиях автоматической компенсации износа направляющих допустимо применять его и в чистом виде (см. ниже). Область высоких скоростей скольжения фторопласта 4 также ограничивается температурными явлениями на поверхности трения. При повышении температуры фторопласт размягчается и начинает не изнашиваться, а строгаться [1]. Наиболее ценные антифрикционные свойства фторопласта 4 проявляются при малых скоростях. Так, проведенные на машине МВТУ испытания показали, что фторопласт 4 имеет практически постоянный коэффициент трения (f = 0,035ч-0,055) в диапазоне скоростей v = 0,2 12 м/мин при легкой смазке, который при переходе от покоя к движению практически не изменяется. В результате обеспечивается плавное движение суппорта или стола. При сухом трении коэффициент трения фторопласта 4 быстро возрастает с повышением скорости. При скоростях скольжения, меньших 1 м/мин, коэффициент трения фторопласта 4 составляет 0,1—0,15. Отсутствие скачкообразного движения при малых перемещениях —одно из главных преимуществ фторопласта 4.  [c.140]

В отличие от этого, при испытании противозадирных свойств масел на четырехшариковой машине, условно называемой ЧШМ-3, приходится иметь дело с комплексом явлений, возникающих при трении, и температурные условия работы смазочных материалов требуют тогда уточнения. Для этого можно прибегнуть к изучению структурных превращений поверхностных слоев металла при испытании масел с присадками, что позволяет приближенно определить температуру поверхностей трения и оценить различие в поведении присадок.  [c.164]


Вдобавок к открытию существенной нелинейности при малых деформациях дерева, цементного раствора, штукатурки, кишок, тканей человеческого тела, мышц лягушки, костей, камня разных типов, резины, кожи, шелка, пробки и глины она была обнаружена при инфинитезимальных деформациях всех рассмотренных металлов. Явление упругого последействия при разгрузке в шелке, человеческих мышцах и металлах температурное последействие в металлах появление остаточной микродеформации в металлах при очень малых полных деформациях явление кратковременной и длительной ползучести в металлах изменение значений модулей упругости при различных значениях остаточной деформации связь между намагничиванием, остаточной деформацией, электрическим сопротивлением, температурой и постоянными упругости влияние на деформационное поведение анизотропии, неоднородности и предшествующей истории температур факторы, влияющие на внутреннее трение и характеристики затухания колебаний твердого тела явление деформационной неустойчивости, известное сейчас, после работы 1923 г., как эффект Портвена — Ле Шателье, и, наконец, существенные особенности пластических свойств металлов, обнаруженные в экспериментах, в том числе явление при кратковременном нагружении,— все эти свойства, отраженные в определяющих соотношениях, были предметом широкого и часто результативного экспериментирования, имевшего место до 1850 г.  [c.39]

Процесс внешнего трения представляет собой сложную совокупность механических, физических и физико-химических явлений. Основные факторы, влияющие на трение и износ фрикционных пар, условно разделяют на три группы технологические (структура, химические, физические и механические свойства) конструктивные (схема контакта, макро- и микрогеометрия поверхностей трения, геометрический фактор Ква конструкция рабочих поверхностей, способ подвода смазки) эксплуатационные (удельная работа трения, относительная скорость скольжения, удельная нагрузка, температурный режим, смазка и ее свойства). В процессе трения под влиянием указанных факторов формируются поверхностные слои твердых тел, 6б усЖ0Нливаюш ие механизм трения и износа и отличающиеся специфическим структурным состоянием. Образующиеся в процессе трения поверхностные слои твердых тел характеризуются повышенной свободной энергией, физической и химической активностью, а также иными механическими свойствами, чем более глубоко лежащие слои, не участвующие в процессе контактирования. Поверхностные слои определяют механизм контактного взаимодействия и уровень разрушения при трении.  [c.26]

Физические основы резания металлов. Для резания металла к резцу необходимо приложить весьма значютельную силу. Если для разрыва осевой стали нужно развить напряжение 50—60 кПмм , то для срезания слоя металла с тон же стали необходимо напряжение 200 кГ/мм . Под действием приложенной силы стружка весьма, сложно деформируется, перемещается по передней поверхности, резца, подвергаясь дополнительно деформациям под действием сил трения. Работа деформаций превращается в эквивалентное тепло. При этом режущая часть резко нагревается до температур, достигающих 500—1000°. Все эти явления зависят друг от друга, причем эта зависимость весьма сложна. Однако из этой сложной совокупности явлений можно выделить следующие основные физические проблемы резания металлов 1) проблема изучения деформаций и напряжений при резании металлов 2) проблема тепловых и температурных явлений 3) проблема изучения трения ири высоких температурах и давлениях 4) проблема получения определенного качества обработанных поверхностей (точности и чистоты).  [c.14]

О скоростно-стойкостных зависимостях при строгании. В отношении температурных явлений строгание имеет особенности резец, нагревшийся за период резания, охлаждается во вревля холостого хода. Однако виесте с этим благоприятным обстоятельством имеются два неблагоприятных при холостом ходе, хотя доска суппорта, свободно вращаясь около оси вместе с закрепленным на ней резцом, отводит резец от обрабатываемой поверхности, задняя поверхность резца, скользя по обработанной, все же испытывает усиленное действие силы трения. Кроме того, в начале рабочего хода резец испытывает удар о заготовку. Эти обстоятельства заставляют уменьшать скорости строгания по сравнению со скоростями точения, для чего вводят поправочный коэффициент около 0,75  [c.321]

При работе тормоза совершается превращение кинетической энергии движущихся масс в тепловую энергию, и, следовательно, элементы тормоза нагреваются, это ухудшает условия работы тормозной накладки, увеличивая ее износ и понижая коэффициент трения (см. гл. 10). Понижение коэффициента трения при нагреве приводит к тому, что правильно рассчитанный тормоз не будет в состоянии остановить обслуживаемый им механизм на нормированном тормозном пути или удержать груз на весу в грузо-подъемном устройстве. Нагрев элементов тормоза нарушает точность пригонки деталей тормоза и привода, а также правильную работу подшипников тормозного вала. В результате температурного расширения тормозного шкива увеличиваются величины отхода фрикционного материала от металлического элемента трущейея пары, что обусловливает увеличение габаритов привода тормозного устройства и его мощности. Недооценка тепловых явлений в тормозах современных машин может привести к ненормальной работе тормоза и даже к аварии, особенно в связи с непрерывным увеличением скорости движения, грузоподъемности и интенсификацией работы. Таким образом, ограни-  [c.589]

На этом этапе испытаний насос отработал в общей сложности 1750 ч, общее число пусков — остановок составило 192. Гидравлические испытания велись при трех значениях температуры натрия —580, 350, 200 °С. Определение потерь на трение вала в натрии проводилось при трех уровнях натрия( в баке насосу. В процессе испытаний выяснилось, что перетечки натрия по внутреннему зазору мел<ду выемной частью и корпусом насоса в 3—4 раза выше чем ожидалось по результатам испытаний на воде. Произошло это в результате увеличения зазора из-за различного температурного расширения материалов. Ко второму этапу испытаний это явление было устранено за счет установки уплотнитешь-ных колец.  [c.257]

Кудинов В. А. Температурная задача трения и явление наростообразования при резании и трении. — В кн. Сухое и граничное трение. Фрикционные материалы. М., АН СССР, I960, с. 207 — 216.  [c.104]

Результаты испытаний на этапе 1 РЦИ, которые обычно выполняются в лабораторных условиях по определяющему параметру, например температуре или нагрузке, являются базовыми для последующих испытаний. На этапе 1 проводится выбраковка по признаку влияния определяющего параметра (например, температуры или нагрузки на / или I). Это аналогично требованию, чтобы уравнение / = f (pi, Рг, Рз, — Ры) было заменено на упрощенное / = f (pi). При этом предполагается, что множество значений определяющего параметра Pib большей мере, чем остальные Ра, Рз,. .. р , влияют на / и 7. Такой подход оправдан для контроля качества материалов, область применения которых определена множеством точек ф, представляющих какую-либо зону. Верхняя граница этой зоны (sup — супремум) представляет собой множество точек М, а нижняя граница (inf -инфинум) — множество точек т, т.е. М = sup I, am = inf Так выявляют границь применения сочетания материалов. Эти границы контролируются независимыми критериями, например термпературно-кинетическими [46, 48]. Основной характеристикой при выявлении температурно-кинетических критериев является критическая температура, характеризующая переход от умеренного трения и изнашивания к интенсивному и зависящая от режима работы узла трения. Например, вид критерия применительно к смазочному материалу определяется возможностью реализации критической температуры вследствие термического разрушения адсорбционных смазочных слоев и последующего металлического контакта (первая критическая температура) или вследствие износа и термической деструкции модифицированных слоев, которые образуются в результате химической реакции активных компонентов смазочного материала с металлом поверхности трения при повышенных температурах. Это явление имеет место при второй критической температуре [48, 49, 50]. Методы, посредством которых можно выявить температуры, соответствующие этим критериям, стандартизованы (ГОСТ 23.221-84).  [c.184]


На основе изложенного может быть сформулировано обобщенное уравнение энергии с учетом различных видов теплообмена (лучеиспускание, конвекция, теплопроводность), связанных с движением среды, наличием источников и стоков тепла, нестаци-онарности режима и работы объемных сил и сил трения. Задача о лучистом теплообмене, таким образом, является частным случаем этой весьма широкой постановки вопроса. Определение отдельных функций, входящих в общее уравнение энергии, строго математическим путем пока представляет непреодолимые трудности. В частности, при решении задач по лучистому теплообмену необходимо знать температурное поле и поле коэффициентов поглощения. Первое из них является результатом одновременно протекающих процессов тепловыделения и теплоотдачи, связанных с процессами горения и движения среды, т. е. с явлениями как кинетического, так и диффузионного характера, чаще всего не поддающихся точному математическому описанию.  [c.198]

Проанализируем, при каких условиях возможно возникновение пульсаций конденсата в аппарате, имеющем трубы 0 16x2 мм и /=5 м, работающем при давлении р—2,0 МПа и паросодержании на входе x l при коэффициенте т=17,0, 21=1,0. Коэффициенты трения Яо1= =0,047 и 1о2=0.031. Результаты расчета показывают, что при средних скоростях пароводяной смеси Atoi/Aio2 =i 0,15- 0,25 с возникают пульсационные явления Тпер= =10- -20 с. Развитые пульсации расхода конденсата вызывают циклические температурные напряжения, которые постепенно нарушают плотность соединения труб в Нижнем коллекторе (камере) и тогда возникнет аварийная ситуация.  [c.268]

Показатели качества РЖ гидросистем вследствие температурных и механических воздействий в процессе эксплуатации изменяются, например, быстро уменьшается вязкость загущенных масел (см. подразд. 2.5). РЖ подвергается изменениям в парах трения, дроссельных элементах, гидравлических трактах, рабочих клетках гидромашин, а также при акустических и ультразвуковых колебаниях. Для рационального функционирования гидросистемы при проектировании выполняют химмотологический анализ РЖ [35], результаты которого целесообразно использовать при анализе условий эксплуатации уплотнений. Уменьшение вязкости РЖ влияет на механизм утечек через уплотнения. Обра- зование при старении РЖ агрессивных продуктов усиливает процессы коррозии. Загрязнение РЖ продуктами изнашивания увеличивает износ пар трения в уплотнении. Газонасьпцение РЖ при интенсивном перемешивании резко снижает модуль объемной упругости и вызывает кавитационные явления.  [c.216]

Графики уравнений (132) и (134) изображены на рис. 316. На первый взгляд кажется странным, что температурные возмущения могут принимать также отрицательные значения. Однако нетрудно убедиться в закономерности такого явления. В самом деле, нагретые части воздуха при своем подъеме приводят в движение вследствие трения и такие слои воздуха, которые сами не нагреты эти слои воздуха, поднявшись на большую высоту, приобретают там температуру, меньшую температуры окружающих слоев воздуха, не участвовавших в движении. На рис. 316 приведены две кривые Зр = onst.  [c.562]

Предсказание возможности выпадения конденсата или образования гидратов в газопроводе, а также зон, в которых могут иметь место этг явления, требует, конечно, достаточно надежного расчета всей газотермодинамической картины в трубопроводе с учетом трения, нестационарно- сти и неизотермичности процесса, обусловленной в большой мере теплообменом с внешней средой, а при более тонком подходе к проблеме — и многокомпонентности состава природных газов, т, е. раздельного рассмотрения термодинамического состояния каждой фракции. Фазовые превращения оказывают обратное влияние на температурный и гидравлический режимы в газопроводе, и оценка этого влияния также важна для полного представления о газотермодинамическом процессе в нем. Учет  [c.738]

Рассмотренный пример показывает, что тепло, возникаюш,ее вследствие трения, оказывает суш,ественное влияние на охлаждаюш ее действие жидкости, обтекаюш,ей стенку. При больших скоростях течения может даже наступить такое состояние, когда более теплая, чем жидкость, стенка будет не охлаждаться, а, наоборот, нагреваться теплом, возникающим в текущей жидкости вследствие трения. Это явление имеет фундаментальное значение для проблемы охлаждения обтекаемой стенки при большой скорости течения. Мы с ним вновь встретимся ниже, при рассмотрении других случаев температурного пограничного слоя.  [c.275]

Температурное поле в зоне резания, вызванное плазменным нагревом. Основным фактором, позволяющим интенсифицировать процесс резания при плазменном нагреве, является тепловое разупрочнение обрабатываемого материала и изменение условий трения на контактных поверхностях инструмента. Оба эти явления присущи и другим комбинированным методам механической обработки, связанным с введением в зону резания дополнительной тепловой энергии, например резанию с электроконтактным подогревом (ЭКП), когда инструмент и заготовка подключаются к электрической цепи низкого напряжения и большой силы тока, или резанию с нагревом обрабатываемого материала токами высокой частоты (ТВЧ). Важно сопоставить плазменный способ нагрева с другими способами и выяснить, какими теплофизическими особенностями он обладает. Ответ на этот вопрос может быть получен при сравнительном анализе температурных полей в зоне резания, вызванных тем или иным видом нагрева без учета теплоты собственно процесса резания. Температурное поле, рассчитанное методом источников, в зоне резания при нагреве заготовки из стали 12Х18Н9Т плазмотроном эффективной мощностью 1 т1 = 12 кВт с коэффициентом сосредоточенности теплового потока дуги о = 6 см при расстоянии от кромки инструмента = 60 мм приведено на рис. 26, а. Режим резания 1=7 мм 5=1 мм/об v = 20 м/мин. Резец с пластиной ВК8, у = 0°, а = 6°, ф =  [c.58]

У металлов при низких темп-рах наблюдается ползучесть. В отличие от высокотемп-рной ползучести это явление но сильно зависит от теми-ры. Принято считать, что температурно независимая часть ползучести есть следствие кваптово-механич. туннельного эффекта. Кривые темп-рной зависимости внутреннего трения деформированных MOHO- и поликристаллов с ГЦК решеткой имеют пиако-  [c.218]


Смотреть страницы где упоминается термин Температурные явления при трении : [c.581]    [c.114]    [c.236]    [c.165]    [c.113]    [c.299]   
Смотреть главы в:

Энергетика трения и износа деталей машин  -> Температурные явления при трении



ПОИСК



Явление



© 2025 Mash-xxl.info Реклама на сайте