Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эксперименты модельные

Модели типа систем твердых тел в настоящее время являются наиболее широко используемыми. Эти модели целесообразно применять в случае, когда необходимо прогнозировать поведение сыпучей среды за областью эксперимента или предсказать поведение характеристик, трудно измеряемых в эксперименте. Модельное представление является основой для наиболее правдоподобных прогнозов в новых областях. Это представление имеет и свои недостатки — большая трудоемкость получения практических рекомендаций, так как приходится решать систему дифференциальных уравнений.  [c.91]


Параметры о, 6, с и с/ в формуле (4.67) определяются из экспериментов (модельных и натурных), при которых получают зависимость /р от ступенчато изменяющейся скорости  [c.106]

При изучении воздействия звукового удара на сооружения и отдельные элементы ограждающих конструкций широко используют модельные и натурные эксперименты. Модельные эксперименты проводят в ударных трубах и специальных имитаторах звукового удара. Ударная волна в имитаторах генерируется либо последовательным взрывом двух точечных зарядов со сдвигом по времени, равным продолжительности звукового удара, либо взрывом распределенного по длине трубы набора зарядов ВВ, обеспечивающим заданный профиль iN-волны. В таких устройствах проводят испытания моделей или отдельных элементов, например оконных стекол.  [c.100]

Таким образом, условием подобия процессов гидродинамики и теплообмена при охлаждении шаровых твэлов будет, помимо геометрического подобия и температурного фактора, равенство трех критериев Re, Nu и Рг — модельного эксперимента и натурного явления. Хотя критерий Re является мерой сил инерции и трения потока теплоносителя, его применяют также и для  [c.47]

В настоящее время проведены исследования на стенде с расходом угля 135 кг/ч и построена модельная установка, содержащая все элементы схемы, на расход угля 550 кг/ч, на которой изучались закономерности псевдо-ожиженного слоя, поведение угля, удаление серы и твердых частиц, загрязнение генераторного газа, его горение и действие на ГТУ. В экспериментах использовался ряд углей и продуктов их переработки (кокс и полукокс) с широким спектром свойств, в том числе с различной тенденцией к спеканию. Содержание золы в них варьировалось в пределах 2—13%, летучих—5—4, углерода— 38— 83%. Размер частиц составлял 200—1200 мкм.  [c.30]

В этой вводной главе прежде всего необходимо ввести основные определения и охарактеризовать свойства рассматриваемых волн оптического диапазона. Изложение начинается с анализа уравнений Максвелла и вытекающего из них волнового уравнения. При этом отмечается, что система уравнений Максвелла является следствием законов электрического и магнитного полей, обобщенных и дополненных гениальным создателем этой теории. Таким образом, сразу вводится понятие электромагнитной волны, возникающей в качестве решения волнового уравнения, и проводится рассмотрение ее свойств. При этом выявляется кажущееся противоречие между результатами экспериментальных исследований и решением волнового уравнения в виде монохроматических плоских волн. Данная ситуация может быть понята с привлечением принципа суперпозиции и спектрального разложения, базирующегося на теореме Фурье. В рамках этих представлений можно истолковать особенности распространения свободных волн в различных средах и определить понятия энергии и импульса электромагнитной волны, формулируя соответствующие законы сохранения. Рассмотрение излучения гармонического осциллятора, которым заканчивается глава, позволяет принять механизм возникновения излучения, облегчает модельные представления о законах его распространения и открывает возможность рассмотрения более сложных условий эксперимента, которое проводится в последующих главах.  [c.15]


Мы изложили схему довольно сложных расчетов, объясняющих механизм естественного вращения плоскости поляризации света некоторыми веществами. Для наглядной иллюстрации проведенных расчетов обратимся к модельному эксперименту (рис.4 15).  [c.159]

Морфологическое сходство микроструктур и структур, полученных при помощи модельных экспериментов, указывает на адекватность методов, применяемых при моделировании начальных стадий роста макроструктуры.  [c.191]

Математическая модель машины или аппарата отражает их рабочие процессы с известным приближением. Расчетные соотношения, входящие в математическую модель, как правило, отражают закономерности отдельных явлений, составляющих рабочий процесс, без учета взаимного влияния. Например, формулы для определения гидравлического сопротивления различных участков гидравлического тракта получены на основе экспериментов в идеализированных условиях (равномерное поле скоростей на входе, однородное температурное поле, отсутствие внешних возмущений и т. д.). В реальных конструкциях эти условия не соблюдаются. Поэтому иногда при разработке нов ых конструкций прибегают к техническому моделированию устройств, когда до постройки машины или аппарата их отдельные качества или итоговые характеристики изучаются на моделях в лабораторных условиях. Например, при продувке уменьшенных моделей самолетов или автомашин в аэродинамических трубах можно выявить их сопротивление движению и зависимость этого сопротивления от формы их отдельных элементов, устойчивость машины при дв ижении и режимы, опасные с точки зрения потери устойчивости, и т. д. Таким образом, техническое моделирование представляет собой разновидность экспериментального исследования, при котором изучаются характеристики рабочего процесса конкретной машины или аппарата на модельной установке.  [c.23]

Если для сопоставления формулы (6.56) с результатами экспериментов использовать значения п, определяемые по опытным кривым роста пузырьков, то, как следует из рис. 6.15, указанная формула хорошо согласуется с опытными данными. На рис. 6.15 приведены результаты большого числа экспериментальных работ, в которых исследовалось кипение различных жидкостей (вода, этанол, метанол, толуол, ацетон, четыреххлористый углерод, калий) при давлениях, не выше атмосферного. Как видно из рисунка, подавляющее большинство опытных точек лежит в полосе 40 % от расчетной кривой, хотя следует отметить, что над кривой оказалось заметно больше точек, чем под кривой. Однако с учетом фактического отличия формы пузырька от модельной (согласно рис. 6.14, 5) согласование расчетной кривой и опытных данных следует считать удивительно хорошим.  [c.282]

Основная идея теории подобия заключается в том, что первое частное решение явления (искомую закономерность) получают экспериментально на модели, а результаты представляют в критериальном виде, что позволяет легко и быстро получать данные для других явлений, подобных модельному. Теория подобия дает общие методические указания по выбору величин, измеряемых в опыте, по обработке полученных результатов, но обобщению результатов эксперимента на другие явления, подобные исследованному, а также позволяет рассчитать и построить модель, подобную натуре.  [c.80]

В случае отсутствия подходящего модельного насоса натурный насос рассчитывается заново. При этом возникает необходимость в его экспериментальной доводке. Особенно большая экспериментальная работа должна быть проведена при разработке мощных насосов, к технико-экономическим показателям которых предъявляются повышенные требования. Для удешевления и упрощения эксперимента его производят над моделью, значительно меньшей натурного насоса. Теория подобия дает возможность, испытав модель проектируемого насоса и пересчитав результаты опытов, предсказать свойства создаваемого насоса.  [c.148]

При обсуждении математических свойств критерия разрушения особо подчеркивается, что любая формулировка феноменологического критерия не является единственной единственность представляет собой следствие модельного способа построения критерия и не может проистекать из сформулированных выше основных принципов. Короче говоря, в рамках феноменологического подхода к проблеме разрушения результаты экспериментов можно использовать ие как средство обоснования той или иной теории разрушения, но лишь как подтверждение рациональности планирования эксперимента и как способ исследования адекватности полученного критерия исходной модели.  [c.460]


При обсуждении статистики экстремальных значений и определении поведения прототипа по данным для модели мы предполагали, что распределение плотности не зависит от размера тела, т. е. для одних и тех же объемов материала, взятых из прототипа и модели, плотность распределения дефектов будет одинаковой. Для реальных материалов это ни в коем случае не должно предполагаться. Процесс изготовления больших деталей часто существенно отличается от процесса для малых деталей, что приводит к различной микроструктуре и разному распределению дефектов. Эту возможность нужно всегда иметь в виду и следовало бы проводить некоторые эксперименты на модельных образцах, взятых непосредственно из исходных конструкций, чтобы сравнить с данными для обычных модельных образцов.  [c.173]

Методика модельного эксперимента. Экспериментальная установка. Исследования проводились на модельной установке, созданной на базе маятникового копра [1]. На массивном основании установлены две боковые стойки, в которых с помощью подшипников качения крепится ось вращения. На оси подвешен маятник, к которому жестко крепится молот с полусферическим индентором. Положение маятника (угол отклоне-  [c.127]

В табл. 14 приведены три варианта масштабных коэффициентов перехода от модели к натуре для параметров режима удара, полученные при различных начальных условиях. Многообразие параметров, влияющих на процесс теплообразования при ударе, не дает возможности учесть масштабные коэффициенты для всех параметров. Особенные трудности возникают при учете масштабных коэффициентов перехода параметров, характеризующих физико-механические свойства контактирующих материалов. Модельные и натурные испытания для настоящей работы проводили на одинаковых материалах (сталь 45, закалка, средний отпуск, HR 38—42), поэтому учет тепло-физико-механических свойств модели и натуры нецелесообразен ввиду их автомодельности. Точность моделирования может снизиться, но эксперименты показали, что она достаточна.  [c.154]

Накопление знаний и проведения модельных экспериментов может производиться в двух режимах диалог с машиной один на один или диалог типа деловой игры с участием (безучастия) машины как одного из партнеров.  [c.69]

Современные результаты численного моделирования говорят о том, что средняя глобальная температура земной поверхности может увеличиться примерно на 1°С к концу века и на 2—3°С к середине следующего столетия (погрешность модельной оценки приблизительно равна двум), однако ожидается, что повышение температуры воздуха в полярных областях будет в несколько раз больше это предположение основывается как на экспериментах с теоретическими моделями, так и на исследованиях реальных атмосферных изменений в прошлом. Подобное потепление в полярных областях могло бы привести к изменению интенсивности снегопада, поскольку более теплый воздух содержит больше влаги, а значит, за время полярной зимы выпадет больше снега и этот снег быстрее растает весной. Не исключено, что ледяной покров Северного Ледовитого океана начнет уменьшаться, оставляя все больше открытой воды у северных берегов СССР, Аляски и Канады недавние теоретические исследования на модели морских льдов показали, что к середине XXI в. полярный лед может исчезнуть полностью или, по крайней мере, будет каждое лето полностью таять.  [c.34]

Учреждения ВМС США проявляют все возрастающий интерес к проблемам коррозии разрушения материалов, используемых в глубоководной технологии. Эти процессы в значительной степени связаны с деятельностью микроорганизмов, обитающих в морских средах. Лаборатория прикладных исследований ВМС США провела коррозионные испытания различных металлов (и органических материалов) на глубине 1370 м около Багамских островов. При этом преследовались три цели получить необходимые данные об общей коррозии различных металлов на больших глубинах исследовать коррозионноактивные микроорганизмы в продуктах коррозии, донных отложениях п морской воде получить коррозионные данные для оценки надежности результатов модельных экспериментов, имитирующих глубоководные условия, проведенных в лаборатории.  [c.435]

В модельном эксперименте изменение диагностических параметров квазистационарной и спектральной модели нестационарного турбулентного течения производилось в результате целенаправленного изменения геометрических соотношений, характеризующих входной патрубок насоса. Для входного патрубка насоса, изображенного на рис. 3, а, различные сочетания геометрических соотношений достигались путем изменения диаметра камеры Z) входного D, ж выходного диаметров, изменение  [c.106]

Рассматривается задача оценки параметров линейных и нелинейных дифференциальных уравнений, описывающих колебания механических систем, в условиях проведения наиболее чистого (модельного) эксперимента [1—4]. Параметры оцениваются с помощью процедур метода динамических испытаний [3—4].  [c.51]

При теоретической ясности метода динамических испытаний [3—4] возможности его были к настоящему времени недостаточно полно продемонстрированы в условиях эксперимента. Настоящая работа была выполнена с целью проверки сформулированных ранее (см. [3]) теоретических положений в условиях чистого модельного эксперимента.  [c.51]

Рассматривается вопрос оценки параметров уравнений движения механических систем, т. е. решение задачи идентификации в условиях наиболее чистого (модельного) эксперимента. Оценка производится с помощью процедур метода динамических испытаний.  [c.181]

На фиг. 6. 5 показаны осциллограммы напряжений на поверхности вала модельной установки с двумя симметрично расположенными дисками при переходе через первую (а) и вторую (б) критические скорости. Колебания напряжений вызваны собственным весом, средние же отклонения — действием неуравновешенности. Эксперимент подтверждает тот факт, что прогибы и опорные реакции гибкого ротора с сосредоточенными массами так же, как и у ротора с распределенной массой при изменении скорости вращения, изменяются не только по величине, но и качественно. Следовательно, методика, разработанная для уравновешивания жестких роторов, не пригодна при уравновешивании гибких роторов. Необходимо выяснить вопрос о возможности такого уравновешивания гибких роторов с помощью ограниченного числа грузов, при котором полностью будут устранены динамические реакции в опорах на широком диапазоне скоростей и оптимально снижены изгибающие усилия в роторе.  [c.199]


И проектировщик, и конструктор прибегнут к арсеналу формул, позволяющих с приемлемой точностью произвести необходимый расчет. Но ведь формулы получены из эксперимента. Даже в тех случаях, когда чисто аналитическое рассмотрение процесса приводит к расчетной зависимости, для приобретения прав гражданства необходима ее практическая проверка, и первым погранпо-стом на ее пути становится лабораторный эксперимент. Важно также добавить, что во всех случаях нужен не просто эксперимент, а эксперимент модельный, т. е. тот, который моделирует изучаемое явление, результаты которого можно распространить на натурные процессы.  [c.102]

Несмотря на значительные расхождения между экспериментальными и расчетными данными (рис. 3.11), выражение для конвективной составляющей коэффициента теплообмена в ряде случаев [75, 76, 78, 88] довольно успешно описывает экспериментальные данные. Это позволило провести ряд специальных опытов, направленных на изучение механизма конвективного теплообмена в слоях крупных частиц. Исследования проводились на установке, подробно описанной в параграфе 3.4. Измерение коэффициентов теплообмена между поверхностью датчика-нагревателя и слоем дисперсного материала осуществлялось по методике, изложенной в 3.4.3. В данной серии опытов использовался датчик диаметром 13 мм, устанавливаемый вертикально вдоль оси колонны или горизонтально на расстоянии 62 мм от газораспределительной решетки. Слой образовывали модельные материалы — стеклянные шарики узкофракционного состава со средними диаметрами 0,45 мм (0,4—0,5), 1,25 мм (1,2— 1,3) и 3,1 мм (3,0—3,2). Их физические характеристики приведены в табл. 3.3. Коэффициенты теплообмена измерялись в псевдоожиженных слоях, затем в плотных, зажатых сверху жесткой металлической сеткой (опыты проводились в колонне из оргстекла, при этом движения частиц не наблюдалось). Эксперименты с плотн лми зажатыми слоями повторялись заметного разброса точек (вне пределов точности измерений) не наблюдалось.  [c.88]

Игорь Фомич нас многому научил, научил уважать чужие пришщпы. К моменту его появления в лаборатории мы скептически относились ко всякой зоологии , т.е. длительному и скрупулезному копанию в сложных и малоизученных объектах. Обычно в наших экспериментах мы использовали специальные модельные объекты, чтобы проверить отдельные задуманные заранее эффекты. Игорь Фомич назьшал это игрушками и советовал взяться за одно настоящее дело, которое потребует много лет. По большому счету, наверное, это, все-таки, был снобизм, и разные подходы могут приводить к интересным результатам. Вместе с тем, успехи школы Щеголева в области сверхпроводмости органических металлов—наглядное подтверждение успешности его подходов. Всех докладчиков на наших семинарах неизменно подкупал его живой неформальный интерес к любому физигескому явлению. Вопросы Игоря Фомича всегда были конкретны, он  [c.227]

Разработано множество людельных механизмов формирования фрактальных кластеров. Это во многом связано с развитием и все более широким внедрением вычислительной техники. Проведено огромное количество численных экспериментов [например, 36, 37, 38, 39], в которых выявлялись закономерности фрактальной природы реальных объектов на основе модельных механизмов. Среди моделей аг )егации следует выделить модель агрегации, ограниченной диффузией (DLA или ОДА), модель ограниченной диффузией кластерной агрегации (DL A) и модель кластер-кластерной агрегации (ССА).  [c.94]

Рис. 3.27. Изменение размерности самосогласованности D% плоского фрактального кластера в процессе его роста (данные модельного компьютерного эксперимента) Рис. 3.27. Изменение размерности самосогласованности D% плоского <a href="/info/477096">фрактального кластера</a> в процессе его роста (данные модельного компьютерного эксперимента)
Исчерпывающей теории возникновения турбулентности в различных типах гидродинамических течений в настоящее время еще не существует. Был выдвинут, однако, ряд возможных сценариев процесса хаотизации движения, основанных главным образом на компьютерном исследовании модельных систем дифференциальных уравнений, и частично подтвержденных реальными гидродинамическими экспериментами. Дальнейшее изложение в этом и следующем параграфах имеет своей целью лишь дать представление об этих идеях, не входя в обсуждение соответствующих компьютерных и эксперимеитальпых результатов. Отметим лишь, что экспериментальные данные относятся к гидродинамическим движениям в ограниченных объемах имеппо такие движения мы и будем иметь в виду ниже ).  [c.162]

Теоретический расчет и модельный эксперимент показывает, что напряжеавость поперечного магнитного поля в канале может быть аппроксимироваяв полиномом третг.ей степени  [c.114]

Отсюда следует, что при одинаковой жидкости в натуре и на модели т = 1) скорость модельного потока должна быть больше скорости натурного в раз. Это противоречие с требованиями критерия Фруда можно было бы устранить путем выбора надлежащего масштаба вязкости т . СЗднако это практически невозможно, так как модельные эксперименты можно проводить лишь с водой и воздухом и только в редких случаях использовать другие жидкости (масло или глицерин). Поэтому практически мы 134  [c.134]

Течение жидкости в тонкой пленке в данном случае обусловлено градиентом кривизны ее поверхности (градиентом кривизны мениска). Прямыми измерениями в модельных экспериментах установлено, что при испарении с поверхности мениска жидкой пленки кривизна поверхности в зоне наиболее интенсивного испарения возрастает. Для схемы рис. 8.4 это означает, что АНIdr < О, т.е. кривизна поверхности пленки уменьшается по мере удаления от оси симметрии. Поскольку давление в паре р" однородно, из формулы Лапласа  [c.351]

Этот вывод был проверен в нескольких сериях модельных экспериментов на электродах из железа-армко, помещенных в подкисленные растворы сульфата натрия. Площадь горячего и холодного электродов в сумме поддерживалась одинаковой, но 1менялось соотношение между ими. Как,и следовало ожидать, при известном выборе такого соотношения термогальваническая макропара давала наибольшую силу тока. При этом точка максимума на кривой вполне закономерно смещалась в сторону общей доли катодного участка по мере того, как возрастала температура горячего электрода макро-пары.  [c.174]

Доклад основан на анализе литературных данных, обсуждениях отдельных вопросов с технологами морского оборудования п "результатах, полученных в рамках собственных исследовательских программ баттелевской лаборатории в области морской коррозии. Наиболее надежной считалась информация о разрушении материалов в реальных морских условиях, а не результаты модельных лабораторных экспериментов.  [c.12]

В статье рассматриваются проблемы моделирования нестационарных турбулентных течений в неподвижных элементах гидромашин на базе модельного эксперимента, получение на стадии проектирования оптимальных геометрических форм неподвижных элементов гвдромашин, обеспечивающих снижение динамических  [c.103]

Рассмотрены методы многопараметрической оптимизации гидроупругих возмущений потока в неподвижных элементах гидромашин на базе модельного эксперимента. Построены математические зависимости гидродинамических харак-теристин потока в функции от геометрических факторов. Полученные математические модели оптимизированы методами нелинейного программирования, В результате оптимизации получены рекомендации по выбору оптимальных геометрических характеристик неподвижных элементов гидромашин.  [c.118]

Современные экспериментальные методы позволяют путем измерений на натуральных узлах ВВЭР определять действительные величины деформаций и напряжений, а также регистрировать силовые, температурные и другие воздействия в условиях натурного или модельного эксперимента. Получаемые данные при экспериментальных исследованиях напряжений требуют несколько этапов обработки. Основными из них независимо от вида и характера конкретного эксперимента являются счедующие  [c.60]



Смотреть страницы где упоминается термин Эксперименты модельные : [c.284]    [c.48]    [c.85]    [c.29]    [c.81]    [c.125]    [c.90]    [c.148]    [c.56]    [c.168]    [c.150]    [c.114]    [c.92]   
Моделирование в задачах механики элементов конструкций (БР) (1990) -- [ c.36 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте