Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система Расчет технологической точност

Техническое задание и техническое предложение Выбор технологических методов и разработка вариантов маршрутов обработки и сборки Формирование совокупности структурно-компоновочных вариантов построения снстемы машин Выбор оптимального варианта построения системы машин Расчеты ожидаемой точности и длительности обработки по вариантам с учетом совмещения операций Укрупненные расчеты ожидаемой производительности и экономической эффективности по сравниваемым вариантам Расчет и выбор оптимального варианта  [c.28]


После нахождения первого приближения величины б .с осуществляется итерационный расчет МГД-генератора (операторы 4—6) таким образом, чтобы значение с необходимой точностью соответствовало заданному значению за счет изменения величины давления перед каналом р- . Для этого используется метод Ньютона, модифицированный для условий наличия погрешности при вычислении рассматриваемой функции (оператор 6). Затем следует расчет сопла (оператор 7). Параметры перед соплом рассматриваются как характерные для камеры сгорания, и в соответствии с ними определяются ее геометрические размеры, тепловые потери и недостающий параметр окислителя. Такой расчет (операторы 8—13) производится итерационно, также с использованием модифицированного метода Ньютона (операторы 11, 13). После этого находится количество регенеративных подогревателей турбины, рассчитывается компрессор с его системой охлаждения (оператор И) ж делается проверка достаточности приближения по Gn. (оператор 15). Если приближение недостаточно, расчет повторяется вновь по уточненным параметрам, необходимым при вычислении Ga. - В случае выхода из цикла определяются температурные напоры в парогенераторе, позволяющие уточнить последовательность размещения в нем поверхностей нагрева рассчитывается мощность установки в цепом и ее к.п.д. (оператор 16). На этом расчет технологической схемы заканчивается. Таким образом, итерационный цикл вычисления Gn. является внешним. Как видно из рис. 5.4, в алгоритме имеются внутренние циклы при расчете МГД-генератора и камеры сгорания. Кроме того, большое количество внутренних циклов содержится почти в каждом из указанных обобщенных вычислительных операторов, но они опущены, чтобы не усложнять блок-схему.  [c.124]

Сложность способов изображения физико-химических процессов, происходящих в системе (на обеих проекциях), если поля изотермы не плоскости, весьма существенно снижает интенсивность инженерных технологических расчетов, их точность и применимость метода.  [c.158]

Известные численные методы расчета технологических задач пластического течения, основанные на вариационных принципах теории пластичности и аппроксимации пластической области конечными элементами, приводят к большим системам нелинейных уравнений, решение которых трудоемко и не гарантирует высокую точность моделирования процессов.  [c.245]

При расчете технологического процесса на точность учитываются следующие технологические факторы систематические переменные — размерный износ и тепловые деформации режущего инструмента, систематическое изменение во времени сил резания, обусловленных затуплением режущего инструмента случайные — рассеивание черновых размеров заготовок в пределах допуска, колебание механических свойств заготовок, рассеивание положения шпинделя в подшипнике передней опоры вследствие наличия зазоров, рассеивание, обусловленное изменением сил резания и жесткости технологической системы, рассеивание средних значений диаметров прутков (заготовок), неоднородность физико-механических свойств различных экземпляров режущего инструмента одной марки, рассеивание погрешностей настройки и др.  [c.59]


Жесткость звеньев технологической системы обычно определяется экспериментально приложением статической силы. Более точные данные о жесткости получают в процессе обработки, при котором на результаты измерения влияют вибрации и все три составляющих силы резания. Наибольшее влияние на точность обработки оказывает составляющая усилия резания, направленная по нормали к обрабатываемой поверхности (Ру). Влиянием остальных составляющих (Рх, Р) в практических расчетах на точность можно Б большинстве случаев пренебречь.  [c.104]

Разработка оптимального процесса сборки требует большого объема вычислений, связанных с выбором схемы сборки, состава и последовательности выполнения операций, состава технологического оснащения сборочных работ, с расчетом точности сборки, с нормированием и расчетом технологической себестоимости сборки. Сборочные работы органически взаимосвязаны с предшествующими этапами производственного процесса изготовления изделия. Поэтому задачи проектирования сборочных-работ должны решаться комплексно, с учетом других задач технологической подготовки производства изделия, что возможно лишь в автоматизированной системе технологической подготовки производства. Автоматизация технологического проектирования базируется на математическом моделировании производства, отражающем закономерности и связи между свойствами изделия и производственной системы в виде математических отношений. Эти отношения должны отражать реальное физическое содержание процессов производства, и знание их необходимо не только при автоматизированном, но и при традиционном, неавтоматизированном проектировании.  [c.16]

После этого можно непосредственно приступать к проектированию технологического процесса сборки изделий, которое включает следующее [2] предварительную оценку целесообразности автоматизации и механизации сборки изделий анализ технологичности и экономичности собираемых изделий и разработку вариантов их совершенствования с учетом условий производства, возможности их унификации и стандартизации выявление рациональной последовательности установки деталей в изделия выбор метода соединения деталей расчет необходимой точности относительного положения деталей для их соединения расчет режимов сборочного процесса расчет затрат времени на соединение деталей выбор технологической оснастки для соединяемых деталей выбор сборочного оборудования выбор загрузочно-транспортных средств выбор оптимальной структуры сборочной операции и рациональной компоновки сборочной системы.  [c.106]

На завершающих стадиях проектирования (технический проект, разработка рабочей документации), когда основные проектные решения по выбранному варианту уже проработаны, т. е. определены технологический процесс, количество и тип оборудования, разработаны конструкции механизмов и пр., необходимо уточнение ожидаемых характеристик проектируемой системы, в том числе по производительности, с целью сравнения их с требуемыми (ожидаемая производительность и требуемая согласно производственной программе, ожидаемая точность обработки и допустимая, ожидаемые экономические показатели и нормативные). На данном этапе при расчетах ожидаемой производительности должны учитываться такие факторы, как проектные режимы работы, быстродействие механизмов и устройств и ожидаемый уровень их надежности, степень загрузки оборудования и пр. По результатам расчетов и сопоставления величин ожидаемой и требуемой производительности могут быть скорректированы проектные решения (режимы обработки, число параллельно работающих единиц оборудования, нормы обслуживания наладчиками, система эксплуатации инструментов и пр.). Расчеты производятся в условиях неполной и недостаточно достоверной исходной информации, особенно в части ожидаемой надежности работы, величины организационных простоев и пр.  [c.65]


Основными признаками являются принцип программного управления, тип программоносителя и технологические возможности системы ПУ. Такие признаки, как точность системы ПУ, код интерполятора и характеристики командоаппарата, не влияют на последовательность расчета и выбор алгоритма, а лишь участвуют при вычислениях в виде параметрических постоянных и ограничений.  [c.42]

ЕДт — колебания упругих объемных и контактных деформаций элементов технологической системы вследствие их нагрева при резании, трения подвижных элементов системы, изменения температуры в цехе. Такое представление об элементарных погрешностях является условным и обосновано главным образом удобством их расчета. В некоторых случаях можно определять отдельно погрешности, влияющие на точность обработки. Погрешность измерения в общем случае учитывают  [c.22]

Расчетно-аналитическая модель предполагает полную детерминированность процесса, для которого точно известны как начальная точность, так и влияние сопутствующих факторов. Путем решения систем уравнений, описывающих закономерности переноса погрешностей технологического процесса, однозначно определяется искомая точность. Факт детерминированности означает, что при одном и том же комплексе исходных условий при каждо м последующем расчете будем получать один и тот же результат. Однако реальные процессы не могут быть правильно отображены детерминированными моделями и правомерность применения детерминированной модели в таких случаях зависит от детальности изучения исследуемого процесса. Математическое описание процессов в этом случае заключается в последовательном определении начальных (исходных) погрешностей заготовки далее устанавливается в аналитическом виде их влияние на окончательную точность готовой детали и, наконец, решается полученная система уравнений.  [c.49]

На размеры и форму обрабатываемой детали в значительной степени влияют деформации и упругие отжатия технологической системы под действием сил резания. При этом изменяется траектория движения режущего инструмента, деформируются элементы приспособлений, изменяется положение детали, происходит неравномерное движение перемещающихся частей станка. Для некоторых процессов обработки резанием выведены аналитические зависимости по расчету точности под влиянием сил резания [27, 29].  [c.54]

Таким образом, цена качества ремонта слагается из затрат на создание и функционирование системы обеспечения качества ремонта, подготовку производственного персонала, обеспечение средствами ремонта необходимой точности и средствами измерений и контроля. Наибольшие финансовые вложения связаны с совершенствованием материальной базы ремонта, в которую входят технологическое оборудование (созданное в собственном вспомогательном производстве и приобретенное), технологическая оснастка, испытательные и контрольные средства. Расчеты показывают, что достижение нормативной послеремонтной наработки требует вложений в действующее производство денежных средств в раз-  [c.659]

Выходные параметры оценивают возможности станка по получению точности размера (Ху), конусообразности обработанного отверстия (Х2), расстоянию между обработанными отверстиями (Х ) и шероховатости поверхности (Х4) определяющие область работоспособности, устанавливаются, исходя из требований к точности обработки, но занижаются по отношению к ним, поскольку в образование погрешности обработки свой вклад вносят и другие компоненты технологической системы. Та доля, которая приходится на станок, является результатом расчета точности обработки с учетом запаса на износ, поскольку при эксплуатации станок теряет свою точность.  [c.366]

Для выполнения подобного расчета необходимо прежде всего знать вид профильной кривой контролируемой поверхности. Если на поверхностях с регулярным профилем поведение системы можно определить с известной степенью достоверности, то для нерегулярных поверхностей результат будет зависеть от характера профильной кривой и распределения неровностей на трассе измерения. Очевидно, что многообразие технологических обработок делает задачу в достаточной мере неопределенной. В связи с этим при разработке норм точности и технических требований на профилометры типа 740 мы применили несколько иной подход к решению задачи была сделана попытка характеризовать си стему определенным кругом параметров. Предполагалось, что при соответствующем нормировании по этим параметрам можно ожидать удовлетворительное совпадение в показаниях приборов на технических поверхностях.  [c.98]

Коэффициенты oq, а . .. а п связаны функциональной зависимостью с оптимизируемыми параметрами, определяющими качество формирования пучка в рассчитываемой эмиссионной системе (линейность фазовой характеристики, требуемый угол сходимости, требуемая сила тока пучка и др.)- Число оставляемых членов полинома определяется количеством оптимизируемых параметров системы. Формирование заданной эмиссионной системы с той или иной степенью точности производится в процессе повторяющихся циклов последовательных приближений. Конструктивно-технологическими ограничениями на искомую эмиссионную систему задаются на начальном этапе расчета.  [c.332]

Упрощение расчетной схемы, рассмотрение ее как линейной с присущим ей свойством суперпозиции открывают широкие возможности для упрощения расчетов динамических систем. Возможность рассмотрения технологической системы как линейной позволяет разработать наглядную и логичную теорию точности, основанную на дифференцированном анализе простейших элементов технологического процесса или операции. При этом полностью раскрывается физическая сущность этих элементов. Обязательным условием является возможность описания этих элементов аналитически.  [c.29]

Расчет суммарной погрешности обработки. Точность обработки детали по заданным геометрическим параметрам зависит от совокупного действия большого числа факторов, связанных со смещением элементов технологической системы станок — приспособление — инструмент — деталь (далее СПИД) из заданного положения в рабочее.  [c.20]


В монографии освещена проблема повышения точности и производительности обработки деталей на металлорежущих станках путем автоматического управления ходом технологического процесса (адаптивное управление). Приведены теоретические основы адаптивного управления ходом технологического процесса обработки, методика проектирования и расчета систем адаптивного управления. Освещена проблема автоматической перенастройки системы СПИД с одного типоразмера детали на другой по точностным параметрам оптимизации процесса обработки. Описаны станки, оснащенные системами автоматического управления упругими перемещениями и другими факторами, системами автоматической точностной перенастройки и оптимизирующими системами. Показана область применения этих систем и их эффективность.  [c.4]

В настоящее время зачастую при расчете режима резания вопрос о непременном получении деталей требуемой точности ставится так, что лишь подразумевается обязательное выполнение этого требования или просто вводятся соответствующие ограничения (порой не всегда обоснованные). Но практика, а также проведенные исследования показывают, что часто критерии эффективности перестают быть выполнимыми или же резко сокращается возможность дальнейшего увеличения эффективности операции, как только вопросы качества становятся на первый план. Кроме того, запись критерия эффективности в подавляющем большинстве случаев делается не совсем строго не учитываются допуски на соответствующие точностные параметры деталей, погрешности, сопровождающие технологический процесс, уровень размерной настройки технологической системы, различного рода ограничения и т. д. Редко рассматривается достаточно длинный промежуток времени, когда на операции имеет место не только процесс формообразования поверхностей деталей, но смена обрабатываемой детали, инструмента, размерная настройка, поднастройка, а для универсальных станков и перенастройка системы СПИД.  [c.397]

В свою очередь на число инструментов, которые целесообразно концентрировать на станке, влияет большое количество факторов. К основным из них можно отнести конструкцию деталей (с учетом значения величин а, 6 и с), технологическую последовательность ее обработки, жесткость системы и ее надежность, требования к точности обработки, технические характеристики узлов (например, значения максимальных усилий подачи и мощности силовых головок), габаритные размеры станков и другие факторы. В связи с тем что математический учет всех перечисленных ограничений весьма затруднителен, расчет станкоемкости ведут при двух основных ограничениях простоях из-за смены инструментов и устранения отказов в работе различных узлов и механизмов. Оба эти вида простоя будут возрастать с увеличением числа инструментов на станке и тем самым ограничивать степень их концентрации. Таким образом, станкоемкость  [c.334]

Создание сложных приборов и приборных комплексов ставит перед разработчиками не только проблемы массы и габаритов, надежности и долговечности, но и проблему серийного производства этих изделий. Разработка схемы, конструкции и технологии является единым процессом создания приборов и устройств с постоянными магнитами, широко используемых в приборостроении и автоматике. Поэтому уже на стадии проектирования необходимо обеспечить их серийноспо-собность. Для этого необходимо решить следующие основные задачи провести анализ и расчет технологической точности выходных параметров приборов, что позволит судить об их воспроизводимости в условиях серийного производства, управлять точностью и обоснованно выбирать допуски на выходные параметры провести анализ и расчет допусков на входные параметры (серийное производство приборов не может быть налажено без разработанной системы допусков на входные параметры).  [c.224]

Специфика рассматриваемой операции шлифования заключается в том, что прибор активного контроля управляет рабочим циклом по размеру детали, давая команду на переключение режима чернового и чистового шлифования. Исключение составляет этап выхаживания, которое прекращается по времени. Управление по размеру исключает влияние на точность обработки тепловых явлений в станке и инсурументе и размерного износа инструмента. Управление по времени на этапе выхаживания приводит к рассеиванию размеров из-за погрешностей упругой деформации системы СПИД и температурных деформаций детали. Однако измерение прибором активного контроля глубины желоба, равной полуразности двух диаметральных размеров (цилиндрической поверхности буртика и диаметра желоба), почти исключает влияние на точность обработки тепловых погрешностей детали. Погрешность установки и геометрические неточности элементов станка на размер детали здесь влияния не оказывают, сказываясь лишь на ее форме. В связи с этим в формуле (14.Ь) для расчета технологического размера имеет место только одна составляющая погрешности — величина упругой деформации технологической системы СПИД -перед выхаживанием Кг. Таким образом, глубина желоба после шлифования определяется суммой настроечного размера Н , по которому станок переключается на этап выхаживания, и погрешности упругой деформации Y2, определяемой уравнениями (14.51)—(14.18).  [c.494]

В основу этой методики положен расчетно-аналитический. метод исследования производственных попрешностей, основанный на анализе основных технологических факторов. При расчете учитываются следующие технологические факторы геометрические погрешности станка, упругие деформации технологической системы, тепловые деформации и размерный износ режущего инструмента и неточности настройки станка. Поми.Мо методического материала по расчету на точность проф. А. П. Соколовским приведены приближенные (ориентировочные) данные, позволяющие производить практические расчеты точности чистовой токарной и фрезерной обработки стали инструментом, оснащенным твердым сплаво.м.  [c.58]

Как указывалось выше, нормативные данные по расчету оонов--ных групп производственных погрешностей составлены в основном применительно к определенным значениям жесткости станка или технологической системы. Следовательно, при расчете технологического процесса на точность необходимо располагать данными о жесткости применяемого оборудования. При проектноточностных расчетах можно использовать данные по средней жесткости станков определенного класса точности или значение жесткости того станка, на котором непосредственно проектируется предполагаемая обработка.  [c.74]

После ввода в управляющую ЭВМ геометрии детали и режущего инструмента, марок обрабатываемого и инструментального материалов, параметров станочного оборудования и приспособлений и другах известных технологических условий обработки, а также после задания требуемых показателей точности обработки и качества поверхностного слоя детали, система расчета режимов резания определяет оптимальные условия обработки. Для полученньк условий обработки определяется оптимальная величина энергетического критерия и пределы его возможного отклонения, зависящие от величин допустимьк от-  [c.117]


Для создания теоретических основ технологии машиностроения большое значение имели работы Н. А. Бородачева по анализу качества и точности производства К. В. Вотинова, осуществившего обширные исследования жесткости технологической системы станок — приспособление — инструмент — заготовка и ее влияния на точность обработки А. А. Зыкова и А. Б. Яхина, положивших начало научному анализу причин возникновения погрешностей при обработке. В 1959 г. вышла книга В. М, Кована Основы технологии машиностроения , обобщившая научные положения технологии машиностроения и методику технологических расчетов, относящиеся к различным отраслям машиностроения. Задачи экономии металла и повышения производительности труда при механической обработке теоретически обоснованы Г. А. Шаумяном.  [c.7]

Освоение производства приборов и новой техники измерения шло настолько быстро, что к 1940 г. на некоторых предприятиях были внедрены методы автолштического контроля изделий. Массовое производство изделий можно осуществить лишь при определенной системе допусков на отклонения параметров. До 1935 г. разработка допусков велась научно-исследовательским сектором завода Калибр и одним из управлений ВСНХ. В 1935 г. было организовано Научно-исследовательское бюро взаимозаменяемости под руководством проф. И. Н. 1 ородецкого. Почти все государственные стандарты на допуски изделий и калибров для их контроля разрабатывались в этом бюро [7]. Эта же организация стала ведущей в области разработки измерительных приборов для машиностроения. Одновременно развернулись работы по взаимозаменяемости и технике измерений в научно-исследовательских организациях различных отраслей промышленности. Решения поставленных задач исследования все в большей степени обосновывались теоретическими положениями. Так, в работах Б. С. Балакшина [16] и И. А. Бородачева [30] при исследовании размерных цепей расчет допуска на замыкающее звено выполнен на основе теории вероятностей. В 1950 г. были опубликованы результаты исследований проф. Н. А. Калашникова [881 по вопросам точности зубчатых колес. Вопросы точности стали рассматриваться не только по отношению к готовому изделию, но и по отношению к технологическому процессу их изготовления. В 1939 г. проф. В. М. Кован и А. Б. Яхин рассмотрели теоретические вопросы технологии машиностроения.  [c.45]

На кафедре продолжались исследования жесткости технологической системы. В результате исследований В. А. Скрагана было выяснено влияние сил трения в подвижных соединениях станков на упругие деформации технологической системы при переменных силах резания. Было установлено наличие сдвига фаз между силой резания и деформацией узлов металлорежущих станков, обусловленное действием сил трения. Сдвиг фаз меладу силой резания и деформацией технологической системы в ряде случаев приводит к значительному усложнению закономерностей копирования погрешностей обработки и к более сложным расчетам точности формы обрабатываемых деталей. Во многих операциях механической обработки значительное время занимают периоды врезания и выхаживания, характеризующиеся неустановившимся процессом резания (переменной толщиной стружки), который может протекать быстрее или медленнее в зависимости от жесткости технологической системы и режимов обработки. Изучение этих процессов позволило более полно охватить вопросы влияния жесткости технологической системы на точность и производительность механической обработки.  [c.348]

Изложенная в этой главе общая методика построения математических моделей технологических процессов дает возможность рассчитывать точность обработки для различных типов процессов, встречающихся на практике. Для наиболее характерных случаев, начиная с простейших операций, имеющих один вход и один выход, и кончая сложными процессами со многими входами и выходами, составлены расчетные таблицы.В этих таблицах для каждого варианта процесса приведены структурные схемы и соответствующие им уравнения связи и формулы для расчета математических ожиданий, дисперсий и практических полей рассеивания погрешностей обработки по заданным характеристикам исходных факторов заготовок и преобразующей системы. Каждой развернутой структурной схеме процесса соответствует эквивалентная матричная структурная схема. Формулы суммирования получены для общего случая, когда все анализируемые технологические факторы взаимно коррелированы между собой. Ниже будут рассмотрены примеры, иллюстрирующие применение изложенного материала к решению практических задач, связанных с анализом и расчетом точности конкретных технологических процессов.  [c.304]

Точность расположения осей отверстий у обрабатываемой детали обеспечивают соответствующим расположением осей шпинделей станка от технологических баз. Наиболее податливым звеном технологической системы при обработке отверетия является инструментальная наладка, состоящая из режущего и вспомогательного инструментов. Расточные борштанги с резцами и осевые инструменты, используемые без направления или с направлением во втулках приспособления, при расчете отжатий рассматривают как балки, работающие при определенных схемах закрепления и нагружения. Влияние других элементов технологической системы на упругие перемещения оси отверстия учитывают экспериментальными коэффициентами. Кроме этого на  [c.476]

Для предварительных расчетов, связанных с конструктивной компоновкой и выбором наблюдаемых точек колеблющейся системы при режимах со,/со < 0,25 и мере демпфирования б = 0,2 (добротность Q = 5), допустимо применение приближенных зависимостей перемещений по координатам от неуравновешенности при условии отсутствия упругих и вязких связей. При этом отклонения от результатов, вычисленных по точным зависимостям, получаются по амплитудам порядка 5—6%, а по угловым координатам 2—3°. Принимая в качестве критерия точности балансировки для данной технологической операции оправданное производственной практикой снижение величины неуравновешенности ротора за один пуск в 10 или 15 раз, видно, что полученный порядок отклонений при применении приближенных зависимостей допустим. Однако это не исключает после конструктивной компоновки колеблющейся системы уточнения ее геометрическо-массовых параметров и режима колебаний контрольного расчета по точным формулам с целью уточнения ожидаемых ошибок. В большинстве случаев такой расчет не требуется, тем более, что в резерве обычно имеются некоторые возможности снижения ошибки за счет изменения параметров и режимов при отладке опытного образца балансировочного устройства, не прибегая к каким-либо существенным изменениям конструкции.  [c.34]

Особенно велики погрешности расчета при температурах и давлениях, соответствующих рабочему режиму низкотемпературной /верхней/ части деметанизатора. При этих условиях технологический поток состоит в основном из трех компонентов - водорода, метана и этилена. Задача исследования состояла в разработке аналитической методики расчета параметров парожидкостного равновесия в трехкомпонентной системе водород - мэтан - этилен в диапазоне температур 130-190 К и давлений 0,1-б,0 МПа, способной обеспечить точность расчета, сопоставилот с точностью экспериментального исследования. ьл  [c.84]

Поскольку технологическая система по сути своей является физической системой, любое состояние которой хара1сгеризуется сбалансированной совокупностью параметров взаимодействия ее элементов, то любое изменение любого из указанных параметров взаимодействия в принципе, может вызвать изменения иных параметров взаимодействия. Степень взаимного влияния пофешностей оценивается особо. При расчетах точности изготовления деталей, лимитирующая точность которых не превышает IT8 - 9, суммарная пофешность может бьггь оценена на основе действия принципа суперпозиции.  [c.140]

Создание технологии машиностроения как науки принадлежит советским ученым профессорам А. Н. Каширину, М. Е. Егорову, Б. С. Балакшину, Н. А. Бородачеву, А. П. Соколовскому, В. М. Ко-вану, Э. А. Сатель, А. Б. Яхину и др. Ими разработаны теоретические основы технологии машиностроения и дано научное обоснование вопросам точности обработки деталей, расчетов размерных цепей, жесткости системы станок — деталь — инструмент, вибрации при обработке металлов на металлорежущих станках, типизации технологических процессов и др. В развитии технологии машиностроения также большую роль сыграли научно-исследовательские и проектные институты.  [c.3]

Вопросы взаимозаменяемости, точностных расчетов машин и механизмов, назначения допусков на них и технические измерения получили свое развитие в трудах ряда советских ученых. Была создана наука о точности, разработаны методы инженерных расчетов точности машин, приборов и технологических процессов и новые методы и средства технических измерений и контроля качества продукции. Эти труды находят широкое применение при научных исследованиях качества продукции, анализах точности изделий и их производства. Работы советских ученых обеспечили выпуск различных нормалей, государственных стандартов и международных рекомендаций, связанных с точностными расчетами, назначением допусков, метрологией и техническими измерениями. Внедрение этих работ в промышленность, их широкое распространение внутри страны и за границей во многом определило развитие взаимозамёняемости и технических измерений в Советском Союзе и за ру-белшм. Утверждены государственные стандарты (ГОСТ 16319—70 и 16320—70) на точностные расчеты размерных цепей, в основу которых положена теория размерных цепей, разработанная заслуженным деятелем науки и техники д-ром техн. наук проф. Б. С. Балакшиным, а также работы других ученых и многолетний опыт практического применения этой теории в промышленности. В последние годы выпущен ряд новых государственных стандартов на допуски и посадки различных сопряжений (гладких цилиндрических, конических, резьбовых, зубчатых и других). Многие из этих стандартов соответствуют международным рекомендациям СЭВ и 150. Так, например, государственные стандарты на допуски резьбовых и зубчатых сопряжений соответствуют рекомендациям, принятым международными организациями СЭВ и 150. В настоящее время ведется большая подготовительная работа в СССР и в Международных организациях 150 и СЭВ по переводу допусков из системы ОСТ на гладкие цилиндрические соединения в систему 150 и наоборот.  [c.3]


Определение величины упругого перемещения в процессе обработки путем измерения всех трех составляющих вектора силы резания с учетом степени влияния их на точность производится с помощью специальных динамометрических узлов. Проектирование и расчет динамометрических узлов производится на основании величины и соотношения коэффициентов Л, В, С, которые могут быть определены для различных станков, согласно приведенной выше методике. В зависимости от конструкции станка и варианта решения поставленной задачи динамометрические узлы могут быть встроены в различные звенья системы СПИД, причем эти звенья своими размерами могут даже и не участвовать в образовании основной технологической размерной цепи. Однако при этом необходимо учитывать, что по мере удаления динамометри-  [c.177]

На рис. 3.23 показаны упругие характеристики системы СПИД универсального токарно-винторезного станка 1А616 с обычным и упругим резцедержателями. Как следует из графика рис. 3.23, б, упругая характеристика с упругим резцедержателем приобрела требуемый вид. Зависимость Ад = f t, з) определяет величину диапазона изменения 5, требуемого для поддержания заданного значения упругого перемещения, а следовательно, и чувствительность изменения 5. Следует отметить еще одно важное обстоятельство, связанное с выбором 5 в качестве параметра управления. Продольная подача входит в формулу для расчета величины основного технологического времени. Поэтому управление упругими перемещениями за счет изменения величины продольной подачи не только увеличивает точность обработки, но и сказывается на производительности. В условиях обычной обработки режимы резания устанавливают исходя из худших условий обработки (максимальных значений припуска, твердости материала заготовки, наихудшей режущей способности инструмента), чтобы не было перегрузки системы СПИД. Так как точно определить эти условия нельзя, то, опасаясь перегрузки, еще более занижают режимы.  [c.203]

Если к решению задачи размерной настройки, поднастройки и перенастройки технологической системы подойти более строго, то, кроме сказанного, на величину Лр должны быть наложены дополнительные, причем весьма существенные ограничения, конкретизирующие выбор или расчет Лр. Например, рассматривая схему (рис. 5.1, а) применительно к обработке вала, можно констатировать следующее. Если величина допуска характеризует точность заданного межпереходного (межоперационного) размера, то Лр следует выбирать ближе к нижней предельной границе, тем самым оставляя меньшую часть припуска для съема на последующих операциях (переходах), что повышает производительность технологического процесса в целом. Если же характеризует окончательную точность размера, необходимо размерную настройку производить таким образом, чтобы величина Лр размещалась как можно ближе к верхней предельной границе, в частности, необходимо оставить сравнительно большую часть производственного допуска на износ детали в машине, что благоприятно скажется на стабильности качества, долговечности машины и тем самым в большей степени удовлетворит запросы потребителей.  [c.321]


Смотреть страницы где упоминается термин Система Расчет технологической точност : [c.197]    [c.39]    [c.27]    [c.174]    [c.29]    [c.36]    [c.140]    [c.3]   
Материалы в приборостроении и автоматике (1982) -- [ c.224 , c.226 ]



ПОИСК



Системы Расчет

Технологическая точность

Технологические Расчёт - Точность

Технологические расчеты



© 2025 Mash-xxl.info Реклама на сайте