Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Создание сложных тел

Пошаговая инструкция. Создание сложных тел  [c.780]

Служит для создания сложных тел и областей из пересечений дв> ( и более тел или областей.  [c.264]

Модификация твердого тела. Модификация - это процедура преобразования исходной модели в новую модель изделия. Модификация модели зависит от способа ее построения и базируется на истории создания твердого тела. Редактирование модели сложного тела выполняется на любом этапе истории его создания. Так, на самом нижнем уровне можно редактировать параметры контуров, перестраивать их геометрию, а также изменять значения параметров твердотельных примитивов. На любом другом уровне конструктор может выполнять модификацию сложного тела путем манипуляций конструктивными элементами.  [c.25]


Дальнейшее развитие электроники твердого тела позволило перейти от дискретных полупроводниковых приборов к созданию и серийному производству узлов электронной аппаратуры и схем, устройств и приборов в целом. Это прогрессивное направление техники получило название микроэлектроники. Научной задачей, решаемой с помощью микроэлектроники, является создание сложнейших кибернетических систем для использования в народном хозяйстве, для освоения космоса, для исследований в области биологии и медицины. Техническая задача микроэлектроники сводится к дальнейшему сокращению размеров и массы электронной аппаратуры, увеличению плотности монтажа при одновременном повышении ее долговечности и надежности. Осуществить это возможно только на основе резкого сокращения затрат мош,ности в электронных схемах на полупроводниковых элементах. Экономическая задача микроэлектроники заключается в существенном сокращении потребности в материалах, трудоемкости и капитальных вложений в производство электронной аппаратуры н приборов, в перевозку деталей и аппаратуры, а также в снижении энергетических затрат при ее производстве и эксплуатации.  [c.231]

Предполагается, что в дальнейшем оба пакета сольются в единый пакет трехмерного моделирования. Уже в следующей версии поверхности могут быть использованы как границы для твердых тел с учетом их параметрического расположения. Также предполагается выпуск пакета, ориентированного на создание сложных трехмерных параметрических сборок.  [c.291]

В настоящей главе мы рассмотрим теорию проводимости металлов, предложенную Друде [1] на заре нашего столетия. Успехи модели Друде были значительными она и по настоящий день часто используется, поскольку позволяет быстро построить наглядную картину и получить грубые оценки характеристик, более точное определение которых могло бы потребовать сложного анализа. Однако модель Друде не могла объяснить некоторые эксперименты и, кроме того, приводила к ряду концептуальных трудностей, что и определило круг вопросов, с которыми теории металлов пришлось иметь дело в следующую четверть века. Они нашли свое разрешение лишь после создания сложной и тонкой квантовой теории твердого тела.  [c.17]

Исходной информацией для этапа 1 проектирования является информация о детали, для которой проектируется заготовка. Приведенная схема инвариантна к типам штамповочного оборудования, форме и размерам детали, но правила создания каждой подсистемы зависят от ряда факторов, например от конструкции детали, технических требований и др. Это предопределяет создание нескольких локальных подсистем для каждого типа оборудования класса заготовок (поковок). Самые простые детали, для которых проектируются заготовки,— это осесимметричные детали типа тел вращения (класс 1), а наиболее сложные — асимметричные тела произвольной формы (класс 4). В соответствии с этим направление развития САПР в горячештамповочном производстве — переход от автоматизированного проектирования поковок для простых деталей к более сложным [17].  [c.89]


Как следует из схемы, представленной на рис. В.1, информация о НДС является ключевой для анализа прочности и долговечности элементов конструкций. Поэтому правильность оценки работоспособности той или иной конструкции в первую очередь зависит от полноты информации о ее НДС. Аналитические методы позволяют определить НДС в основном только для тел простой формы и с несложным характером нагружения. При этом реологические уравнения деформирования материала используются в упрощенном виде [124, 195, 229]. Анализ НДС реальных конструкций со сложной геометрической формой, механической разнородностью, нагружаемых по сложному термо-силовому закону, возможен только при использовании численных методов, ориентированных на современные ЭВМ. Наибольшее распространение по решению задач о НДС элементов конструкций получили следующие численные методы метод конечных разностей (МКР) [136, 138], метод граничных элементов (МГЭ) [14, 297, 406, 407] и МКЭ [32, 34, 39, 55, 142, 154, 159, 160, 186, 187, 245]. МКР позволяет анализировать НДС конструкции при сложных нагружениях. Трудности применения МКР возникают при составлении конечно-разностных соотношений в многосвязных областях при произвольном расположении аппроксимирующих узлов. Поэтому для расчета НДС в конструкциях со сложной геометрией МКР малоприменим. В отличие от МКР МГЭ позволяет проводить анализ НДС в телах сложной формы, но, к сожалению, возможности МГЭ ограничиваются простой реологией деформирования материала (в основном упругостью) [14]. При решении МГЭ упругопластических задач вычисления становятся очень громоздкими и преимущество метода — снижение мерности задачи на единицу, — практически полностью нивелируется [14]. МКЭ лишен недостатков, присущих МКР и МГЭ он универсален по отношению к геометрии исследуемой области и реологии деформирования материала. Поэтому при создании универсальных методов расчета НДС, не ориентированных на конкретный класс конструкций или вид нагружения, МКЭ обладает несомненным преимуществом по отношению как к аналитическим, так и к альтернативным численным методам.  [c.11]

Развитие аэродинамики последних лет характеризуется наряду с углублением фундаментальных исследований созданием и широким внедрением эффективных методов расчета параметров обтекания тел жидкой или газообразной средой. Появление электронных вычислительных машин (ЭВМ) привело к возможности решения сложных аэродинамических задач путем прямого числового расчета. При этом использование ЭВМ способствовало не только ускорению вычислений, но, что особенно важно, существенному изменению и совершенствованию методики исследований, проявившихся в создании фактически нового направления в прикладной аэродинамике — так называемого вычислительного эксперимента. Мощные электронно-вычислительные системы могут и уже широко используются для реализации крупных аэродинамических программ. Масштабы этих работ все больше возрастают, увеличивается эффективность использования ЭВМ, что является существенным вкладом в ускорение научно-технического прогресса в ракетно-космической технике.  [c.3]

Знак носителей определялся по знаку коэффициента Холла. Однако связь коэффициента Холла со знаком носителей довольно сложная в твердых телах со сложной структурой зон, которая существует в сверхпроводниках на основе меди. Другим методом определения знака носителей является измерение коэффициента Зеебека, который характеризует возникающую в образце разность потенциалов при создании в нем градиента температур. Измерения показали, что знак коэффициента Зеебека в новых сверхпроводниках меняется на обратный в сравнении со знаком в дырочных сверхпроводниках. Это также служит достаточно надежным подтверждением, что носители заряда в новых сверхпроводниках - электроны.  [c.380]

Кроме функций построения базовых тел в пакетах твердотельного моделирования реализованы различные функции создания тел сложной внешней формы. Это так называемые кинематические тела (рис. 1.3) и тела вращения (рис. 1.4). В качестве формообразующих линий в таких телах сложной формы могут использоваться кривые, двумерные примитивы, сложные замкнутые или незамкнутые контуры.  [c.19]


Рассмотрим подробнее три возможных способа модификации тела, построенного ранее. Различные истории создания тела диктуют тот или иной способ его модификации. Если история создания состоит из двух уровней, бывает проще построить новый формообразующий контур и создать новое тело вращения, чем редактировать существующий в истории контур. В этом случае рещающим фактором являются умение конструктора использовать тот или иной метод редактирования. Наличие в истории создания разнообразных твердотельных конструктивных элементов может позволить перестроить их в результирующем теле быстрее, чем создать новую образующую сложной формы.  [c.26]

Прежде всего различными являются технически осуществимые способы создания бегущих поперечных и продольных волн на деформируемых телах (движителях), используемых в волновых механизмах. Если поперечная волна на гибком элементе в волновых передачах обычно создается обкатными роликами-генераторами, кулачками, магнитными силами, то образование бегущей продольной волны является, по-видимому, более сложной технической задачей. В качестве источника волновой деформации здесь могут использоваться такие явления, как тепловое расширение тел, пьезоэлектрический эффект, силы земного притяжения, механические воздействия и др.  [c.147]

Движение теплоносителя в активной зоне ядерных реакторов является, как правило, турбулентным. Процессы, связанные с турбулентностью, сравнительно легко поддаются решению только в некоторых простых случаях. При решении же задач гидродинамики и теплообмена в активной зоне трудность описания турбулентного потока усугубляется сложностью геометрических форм элементов активной зоны, неравномерным характером энерговыделения и необходимостью определения локальных характеристик. Эти обстоятельства потребовали применения комплексного расчетно-экспериментального подхода к решению задач и создания новых методов (приближенное тепловое моделирование, учет анизотропности турбулентного обмена в сложных каналах, модель пористого тела и т. п.) с широким применением ЭВМ. На наш взгляд, только комплексный подход позволит получить наиболее полное представление о сложных процессах гидродинамики и теплообмена в активных зонах реакторов и создать надежные расчетные рекомендации. Диапазон теплогидравлических расчетов весьма широк от инженерных оценок по приближенным формулам до численных расчетов на математических моделях с помощью ЭВМ в зависимости от стадии проектирования ядерного реактора и степени изученности тепло-физических процессов.  [c.7]

Однако применение в качестве теплоносителя быстрого реактора натрия, который под действием излучения становится радиоактивным, и его несовместимость с водой— рабочим телом паротурбинного цикла — потребовали создания трехконтурных схем преобразования тепла. Значительное смягчение спектра нейтронов деления и ухудшение в связи с этим характеристик воспроизводства, высокие удельные капиталовложения и сложная эксплуатация трехконтурных схем преобразования тепла АЭС с быстрыми реакторами на натрии пока не позволяют реализовать те преимущества, которые заложены в идее развития системы АЭС с быстрыми реакторами, а частый выход из строя парогенераторов натрий—вода заметно снижает надежность АЭС [1.5].  [c.10]

Использование описанного метода определения коэффициентов облученности в ряде случаев дало позитивные результаты и успешно используется па практике. К сожалению, такой подход наталкивается иногда на сильные затруднения технического характера. Эти затруднения обусловливаются, во-первых, необходимостью создания с помощью светотехнических средств равномерной светимости поверхности излучающего тела, которое может в общем случае иметь весьма сложную геометрическую конфигурацию. Во-вторых, геометрическая форма лучевоспринимающего тела в свою очередь может быть очень сложной, что сильно затруднит измерение освещенности на его поверхности.  [c.327]

Утилизация тепловой энергии уходящих газов котельных, дизельных и газотурбинных установок, регенерация тепловой энергии последних, получение нагретой воды в контактных водонагревателях, испарительное охлаждение и гигроскопическое опреснение воды, тепловлажностная обработка воздуха и мокрая очистка газов — вот далеко не полная область применения контактных аппаратов. Это объясняется, во-первых, простотой их конструкции и незначительной металлоемкостью по сравнению с рекуперативными поверхностными теплообменниками, возможностью изготовления из неметаллических материалов во-вторых,— повышением эффективности установок за счет более полного использования тепловой энергии, возможности улучшения параметров термодинамического цикла, регулирования расхода рабочего тела, внутреннего охлаждения или нагревания установки в-третьих, — возможностью создания новых установок и их технических систем, обеспечивающих сокращение расхода топлива, воды, материалов, увеличение мощности и производительности, улучшение условий труда и уменьшающих загрязнение окружающей среды. Далеко не полностью еще раскрыты возможности использования процессов тепло- и массообмена в контактных аппаратах энергетических и теплоиспользующих установок. Этому способствует существующий чисто эмпирический подход к расчету, не позволяющий выявить внутреннюю связь физических явлений в сложных процессах тепло- и массообмена, отразить эту связь в расчетных зависимостях и использовать в практической деятельности.  [c.3]


Вода (HjO) является наиболее распространенным теплоносителем и в достаточной мере удовлетворяет указанным выше требованиям. Она используется также в качестве рабочего тела в большинстве существующих ядерных энергетических установок и является незаменимым теплоносителем нижней ступени комбинированных энергетических циклов. Хороший растворитель многих веществ — вода позволяет создавать установки с использованием растворов урановых солей одновременно в качестве ядерного топлива и теплоносителя. Основной ее недостаток — высокое давление пара при сравнительно небольших температурах (1 ата при 99° С и 225,5 ата при 374,2 С). Это вызывает дополнительные трудности при создании паросиловых установок высокой экономичности. Присутствие в воде растворенных солей, удаление которых довольно сложно, также является недостатком. Особо высокие требования предъявляются к обессоливающим устройствам первого контура.  [c.20]

Создание специализированных моделей на основе прямой аналогии позволяет не только обеспечить высокое быстродействие, но и сравнительно просто решать задачи нестационарного тепло- и массопереноса для тел сложной конфигурации, с изменяющимися краевыми условиями, с внутренними источниками и стоками, с подвижными границами, сопряженные задачи и т. д. На таких моделях имеется возможность решения прямых, обратных, инверсных и сопряженных задач. Это очень важное качество моделей, построенных на основе прямой аналогии.  [c.12]

После создания сложного тела исходные объекты не сохраняются. Установка значения системной переменной delobj, равным О, не срабатывает, поскольку исходные объекты уже были изменены. Если необходимо повторно использовать исходные объекты, то их копируют в другое место на чертеже. Воспользуйтесь командой undo (ОТМЕНИ), если вас не удовлетворяет результат.  [c.777]

Однако такого рабочего тела до сих пор найти не удалось. Поэтому возникла идея создания сложного цикла с двумя рабочими телами, или так называемого бинарного цикла. В таком сложном цикле одно рабочее тело должно иметь высокую критическую температуру при сравнительно низком давлении. Это рабочее тело используется в цикле, осуществляемом в области высоких температур. Другое рабочее тело должно иметь сравнительно высокое давление насыщения при температуре окружающей среды. Второе рабочее тело используется в цикле, осуществляемом в области низких температур. Соединение этих двух циклов дает возможность значительно расширить общий перепад температур и тем самым увеличить общий термический к. п. д. по сравнению с паро-водяным циклом.  [c.308]

История создания твердого тела содержит граничное представление всех конструктивных элементов, параметры и названия всех использованных объектов. Выделение самостоятельных геометрических моделей конструктивных элементов производится копированием прямо из истории создания. Это дает возможность быстрого доступа в любых моделях сложных тел, к любым промежуточным результатам и использования их при построении новых тел, а также позволяет организовать коллективный доступ к результатам работы многих конструкторов в едином проекте, не создавая дополнительных (резервных) ко1шй всех конструктивных элементов. Кроме самой геометрии в истории создания хранится описание каждой операции в хронологическом порядке их выполнения, которые можно редактировать прямо в дереве истории создания.  [c.24]

Эту стадию охлаждения тела, подчиняющуюся простому урав не-нию (III, 47), Г. М. Кондратьев назвал регулярным режимом. В созданной им теории регулярного режима [9] выводы аналитической Рис. 6, Схема сложного тела теории теплопроводности, относящиеся к телам однородным и ив отропным, обобщены и распространены на случай сколь угодно сложной системы, изображенной условно а рис. 6.  [c.62]

Архимед (287-212 до н.э.)-выдающийся древнегреческий ученый. Родом из Сиракуз (Сицилия). Разработал предвосхитившие интегральное исчисление методы нахождения площадей, поверхностей и объемов различных фигур и тел с больщой точностью, вполне удовлетворительной для нужд своего времени, определил значение числа п. В механике особенно интересовался математическими соотнощениями между силами, действующими на рычаг, а также расчетами положения центра тяжести различных тел в технике-много занимался разработкой и созданием сложных систем (полиспастов) для поднятия больших тяжестей, а также водоподъемных механизмов (архимедов винт) и военных метательных машин. Одним из его главных открытий является закон о подъемной силе в жидкостях, носящий его имя.  [c.234]

Регулирование путем изменения фазового угла, степени сжатия и смещения 1циклов связано с созданием сложной механической системы и с ухудшением к. п. д. двигателя при работе на режимах с частичной нагрузкой. Поэтому регулирование двигателей Стирлинга в настоящее время производится в основном изменением температуры и давления рабочего тела в цилиндре. Система регулирования изменением температуры отличается большой сложностью, так как этот процесс протекает очень медленно из-за значительной инерционности процесса теплообмена в двигателе с внешним подводом теплоты. Кроме того, изменение температуры рабочего тела связано с существенным изменением к. п. д. двигателя, который снижается при частичных нагрузках.  [c.116]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

Значительный вклад в развитие теоретической механики был сделан отечественными учеными. Назовем здесь М. В Остроградского (1801—1862, работы в области аналитической механики) и П. Л. Чебышева Ц821—1894, работы в области теории механизмов и машин), С. В. Ковалевскую (1850— 1891), решившую задачу для сложного случая движения твердого тела около неподвижной точки. Наибол1.ший вклад в теоретическую механику за последующий период был сделан А. М Ляпуновым (IS. j —1918), особенно его трудами по созданию теории устойчивости движения механических систем, Н. Е. Жуковским (1847—1921), основополон ником современной аэродинамики, а также И. В Мещерским (18.59—193. )), давшим решение задачи о движении точки переменной массы, С А. Чаплыгиным (1869—1942), А. Н. Крыловым (1863—1945), Н. Г Четаевым (1902—1959) и др.  [c.16]


Сопротивление материалов вместе с такими смежными дисциплинами, как теории упругостй, пластичности, ползучести, строительная механика и другие занимается вопросами, связанными с поведением деформируемых твердых тел. В теории упругости, по сути, анализируются те же вопросы, что и в сопротивлении материалов, но задачи решаются в более точной постановке, свободной от упрощающих гипотез. Поэтому для их решения приходится использовать сложный математический аппарат, что в какой-то степени ограничивает возможность их применения в практических инженерных расчетах. Однако результаты более точного и глубокого анализа явлений, рассматриваемых в теориях упругости, пластичности и других дисциплинах, достаточно широко используются в сопротивлении материалов при создании приближенных методов расчета.  [c.176]

Перейдем теперь к описанию проблем, составляющих основу магнитоупругости. Исследование взаимодействия магнитного поля с упруго-деформируемыми электропроводящими телами составляет предмет магнитоупругости. Укажем лишь некоторые из них магнитострикционная деформация кристаллических тел пьезомагнетизм магнитоупругость тел, обладающих свойством магнитной поляризуемости задачи индукционного нагрева тел задачи разрушения тел под действием импульсных электромагнитных полей и др. Перечисленные проблемы возникают, в частности, при создании импульсных соленоидальных катушек, магнитогидродинамических ускорителей, различных типов магнитокумулятивных генераторов при управлении движением плазмы и во многих других прикладных задачах, где влияние магнитного поля существенно сказывается на деформации твердого тела. Более сложными задачами магнитоупругости являются задачи взаимодействия с электромагнитным полем материалов, обладающих свойством магнитной поляризуемости (ферромагнетики, антиферромагнетики, ферримагнетики). Это объясняется, прежде всего, отсутствием простых фундаментальных з -  [c.239]

В данном случае возмущение создается попере -шой силой. Но можно представить себе и другой способ создания возмущения, например можно приложить распределенную налрузку, неравномерно нагреть стержень, вследствие чего он искривится и т. д. Возникает естественный вопрос — будет ли зависеть критическая сила от типа возмущения. Для упругих систем, как оказывается, нритическая сила от характера возмущения не зависит. Для пластических тел это не так и положение может быть более сложным. К ритическая лила, понимаемая в указанном смысле, может зависеть от характера возмущения.  [c.114]

Однако, говоря о проектировании деталей или узлов машиностроительных изделий, мы имеем в виду традиционное классическое конструирование. Большинство машиностроительных деталей строится с использованием сложных формообразующих контуров. Конструктору предлагается обншрный инструментарий создания и редактирования двумерных примитивов (прямых, дуг, окружностей, многоугольников и т.д.) и сложлых кошу роЕ. Выбор метода построения, а значит, и конкретных функций построения контуров и тел в дальнейшем будет определять как способ внесения изменений в геометрическую модель изделия, так и проектирование технологии ее обработки, например, в процессе фрезерования.  [c.20]

Всевозрастающий интерес ученых, инженеров и технологов к физике плазмы связан с необходимостью решения ряда важнейших фундаментальных и прикладных задач, в которых плазма должна выполнять сложную роль и высокотемпературного рабочего тела, и носителя электрических зарядов, и источника электромагнитных излучений в широком диапазоне длин воли, н электромагнитной силовой динамической системы, и активной среды с инверсной населенностью. К таким задачам относятся создание управляемых термоядерных реакторов, магиитогидродинамических преобразователей тепловой энергии в электрическую, электрореактивных плазменных ДЕ)И1 ателей для космических аппаратов, мощных лазеров на основе низкотемпературной плазмы сложного состава в качестве активной среды, гмазмохи-миЧеских реакторов, плазменно-технологических установок для плй вки резки, сварки и пайки металлов, нанесения различных покрытий и др.  [c.384]

Теория ползучести — одно из направлений механийй дефор- мируемого твердого тела, которое сложилось за последнее время. Она занимает свое место рядом с такими разделами механики, как теория упругости и теория пластичности. Ползучесть влияет на прочность и устойчивость конструкций и деталей машин. Поэтому расчет соору кений на прочность с учетом свойств ползучести материала приобретает первостепенное значение для современной техники. Однако теория ползучести является не только основой для создания методов расчета элементов конструкций и деталей машин, работающих в сложных эксплуатационных уело- -ВИЯХ. Теория ползучести, обладая своеобразным полем зрения , служит для понимания того, как выбрать тот или Иной материал для данной конструкции, в каких условиях его нужно испытывать, какие требования необходимо предъявлять к технологии возве- дения сооружений или изготовления различных элементов конструкций и деталей машин. Бот почему за последнее время вышел в свет целый ряд фундаментальных исследований и монографий, посвященных теории ползучести и теории вязкоупругости как у нас в стране [216, 302, 307, 336, 399, 415], так и За рубежом [63,261,479,556,594,611,632].  [c.7]

Использование концепции коэффициента интенсивности позволило получить решения целого ряда задач о телах с трещинами. Многие из этих решений приведены в справочниках [8, 9]. Теория Ирвина была также распространена и на анизотропные среды [10—12]. Включение эффектов пластичности в анализ разрушения [13, 14] привело к созданию довольно сложных и полезных теорий для однородных ква-зихрупких материалов. В 1972 г. общество ASTM официально приняло определения и методы измерения вязкости разрушения [15].  [c.223]

Наиболее подходящим направлением пре- образования солнечной энергин в полезную работу является ее использование для замещения органического топлива при получении теплоты в парогенераторе. Однако, как и при применении органического топлива, КПД преобразования ограничивается диапазоном температуры рабочего тела, в данном случае — пара. Поскольку создание и эксплуатация очень крупных коллекторных систем для концентрации солнечных лучей является делом сложным, в настоящее время в таких системах удается получить пар, как правило, с относительно небольшой температурой. Как следствие, КПД преобразования солнечной энергии в электроэнергию в таких установках может составлять около 10%. Чтобы получить I ГВт электрической мощности, потребовалось бы 10 ГВт мощности солнечного излучения.  [c.34]

Свойства веществ при низких температурах, в частности явление сверхпроводимости, начинают широко использоваться во многих отраслях техники, в том числе и в радиоэлектронике. Возникшая на этой базе новая область электроники — электроника низких температур, называемая обычно криогенной электроникой, или просто криоэлектроникой, несмотря на свою молодость имеет уже существенные достижения и обнадеживающие пер--спективы для дпльнейшего эффективного развития. Оно стимулируется не только интенсивно проводимыми фундаментальными исследованиями, приводящими к открытию новых физических явлений в твердых телах при низких температурах, но и необходимостью решения сложных проблем большого народнохозяйственного значения. К таким проблемам, в частности, ют 10сятся создание малогабаритных сверхчувствительных приемников, способных воспринимать столь слабые- радиосигналы, которые обычные приемники не в состоянии обнаружить, создание больших и сверхбольших интегральных схем для разработки нового класса ЭВМ, повышение стабильности частоты и частотной избирательности СВЧ аппаратуры, освоение новых, считавшихся недоступными для дальнего приема, диапазонов радиоволн вплоть до ИК области, и ряд других.  [c.205]

В настоящее время предложены различные гипотезы о физической природе прочности твердых тел. Исходной предпосылкой физической природы прочности являются силы межатомного или межмолекулярного взаимодействия. Для реальных материалов, особенно композиционных, имеющих достаточно сложную атомномолекулярную структуру, до сих пор не создан математический аппарат, описывающий природу сил взаимодействия. Для моделей сред, как правило, состоящих из однотипных регулярно расположенных атомов, было показано [22,23], что сила взаимодействия межатомных связей в системе, состоящей из N цепочек, определяется выражением Р (х) = рх — ух , где р — жесткость системы X — смещение атома у — коэффициент ангармоничности межатомного взаимодействия.  [c.72]

В теории линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами такое построение решения известно под названием метода Коши- Исторически, однако, получилось так, что в сопротивлении материалов тот же по существу метод был разработан на основе механических идей, В создании метода в такой трактовке принял участие ряд ученых, среди них были А- Клебш, И. Г. Бубнов, Н. П. Пузыревский, А. Н. Крылов, Н, К- Снитко. Этот метод получил название метода начальных параметров. Он используется в механике твердых деформируемых тел не только при интегрировании уравнения изгиба балки, но и в других случаях (см. гл. II, XI), где ситуация аналогична (наличие участков)—при интегрировании дифференциальных уравнений изгиба балки на упругом основании, сложного (продольно-поперечного) изгиба балки и других аналогичных.  [c.215]


Однако создание такой конструкции очень сложно. Ведь газ обладает весьма малой теплопроводностью. Возможно, что внутрь газа будет выгодно впрыскивать небольшими порциями радиоактивные элементы, которые будут его непрерывно подогревать. Возможно, вместо газа в качестве инертного тела применят легкоплавкие и легкоиспаряющиеся металлы, которые будут вытекать с меньшей скоростью, чем газ, но вследствие более высокой теплопроводности лучшие поглотят тёпло реактора. Так или иначе, атомная ракета возможна и она будет построена.  [c.190]

Малая точность литых и сварных диафрагм привела к созданию конструкций, в которых исключен или резко уменьшен трудноуправляемый процесс усадки расплавленного, металла, как основной источник неточности. Например, в свое время фирмой лМетро-Виккерс была разработана наборная конструкция диафрагмы, ранее широко применявшаяся и в СССР. В ней цельно-фрезерованные сопла приклепываются к телу диафрагмы (фиг. 62, в). Конструкция сложна и дорога, велики утечки пара между лопатками трудно выдерживать перекрыши. Она была создана в период, когда сварку еще не считали процессом, подходящим для изготовления таких напряженных и точных деталей, как диафрагма. Эго совпало с тем временем, когда уже выявились и все недостатки заливки в сталь, а чугун не мог больше применяться в связи с ростом начальных параметров пара.  [c.202]

Соединение с пазом в лопатке (фиг. 82, д) представляет собой обращенный Т-образный хвост. Изготовление его более сложно, особенно при наличии захвата. Для создания плотности в месте захвата подчеканивать приходится диск. Заготовки лопаток более дорогие, так как лопатки могут быть выполнены только заодно с промежуточным телом. Преимуществами следует считать уменьшение толщины диска и то, что при осевых задеваниях страдает сменная лопатка, а не диск. Концевые замки простые. Сложность изготовления данной конструкции оправдывается только для сильно нагруженных лопаток.  [c.237]

Электрические модели позволяют не только автоматизировать инженерный труд, но и повысить его культуру. Практика проектирования, изготовления и эксплуатации электрических моделей показывает целесообразность создания специализированных моделей. По быстродействию модели, построенные на основе кепо-средственной аналогии, превосходят все известные другие модели. Высокая надежность, простота в обращении, высокая стабильность результатов позволяют рекомендовать их более широкое использование. Дальнейшее развитие и совершенствование специализированных электрических моделей расширит арсенал вычисл тель ной техники и позволит облегчить инженерный труд при решении сложных задач, выдвигаемых бурно развивающейся наукой и техникой.  [c.410]

При создании мощных турбин радиальноосевого типа вследствие больших размеров колеса и необходимости применения высококачественного металла, стойкого в кавитационном и коррозионном отношении, сложной проблемой является изготовление рабочего колеса гидротурбины. Приходится решать трудные задачи металлургам, сварш,икам и технологам-маши ностр он тел ям.  [c.159]


Смотреть страницы где упоминается термин Создание сложных тел : [c.776]    [c.816]    [c.123]    [c.67]    [c.17]    [c.465]    [c.600]   
Смотреть главы в:

AutoCAD 2002 Библия пользователя  -> Создание сложных тел



ПОИСК



Организация и последовательность создания сложных систем

Организация создания сложных систем - Этапы

Создание

Создание расчетных моделей и расчет оболочек сложной формы

Создание сложных объектов

Создание сложных типов линий

Средства создания сложных конструкций



© 2025 Mash-xxl.info Реклама на сайте