Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение силы или давления

Силой называется такое воздействие других материальных тел на данное, в результате которого данное тело пришло в движение или изменило уже имеюш,ееся движение (или, как говорят, изменилось кинематическое состояние тела). Из этого определения следует, что всякая сила есть результат действия одного тела на другое. В качестве примеров сил можно привести силу земного притяжения, называемую силой тяжести, силы тяготения — силы взаимодействия между планетами, мускульную силу людей, силу ветра, давления воды, пара и др.  [c.8]


При определении силы давления ветра на одиночное здание или на его отдельные элементы достаточно знать закон распределения аэродинамических коэффициентов и соответствующие площади граней, воспринимающих повышенное давление или разрежение. В этом случае  [c.256]

Определение силы давления жидкости, действующей на ту или иную поверхность, имеет большое практическое значение при механических расчетах стенок, заглушек, перегородок, мембран и других устройств.  [c.44]

В задачу силового расчета механизма входят определения сил, действующих на звенья механизма динамических давлений на кинематические пары механизма или их реакций приведенного момента (или приведенной силы), создающегося на входном звене, как результат действия всех сил в механизме.  [c.131]

Определение реакций или динамических давлений в кинематических парах относится к задаче кинетостатического расчета механизма. При этом, кроме статически действующих сил, приложенных к звеньям механизма, учитываются силы ИНерции.  [c.281]

Определение сил давлений звеньев имеет важное значение для расчета звеньев механизма на прочность и износостойкость, а также для вычисления сил трения. Величина сил давлений может быть найдена аналитическим или графоаналитическим методом (посредством построения планов сил). Сущность графоаналитического метода состоит в следующем.  [c.140]

Вместо термина силы реакции можно пользоваться более ясным выражением силы геометрического происхождения . Они задаются геометрическими связями, существующими между различными частями системы, или, как в случае твердого тела, между отдельными материальными точками. Силам реакции мы противопоставляем то, что мы называли внешними силами . Вместо этого можно пользоваться более ясным термином силы физического происхождения или же сторонние силы, приложенные извне . Причина их лежит в физических воздействиях таковы, например, сила тяжести, давление пара, напряжение каната, действующее на систему извне, и т. д. Физическое происхождение этих сил проявляется в том, что в их математическом выражении содержатся особые, поддающиеся лишь опытному определению константы (постоянная тяготения, отсчитываемые по манометру или барометру деления шкалы и т. п.). Трение, о котором мы будем говорить в 14, нужно отнести частично к силам реакции, частично к сторонним силам к первым — если оно является трением покоя к последним — если оно является трением движения (в частности, трением скольжения). Трение покоя автоматически исключается принципом виртуальной работы, трение же скольжения нужно причислить к сторонним силам. Внешне это проявляется в том, что в закон трения скольжения [уравнение (14.4)] входит определяемый экспериментально коэффициент трения /.  [c.75]


Выполненные теоретические и экспериментальные исследования функциональной зависимости перемещений при неполном проскальзывании от сдвигающей силы, удельного давления, качества поверхностей деталей и наличия смазки указывают на ее чрезвычайно сложный характер [341. Поэтому при расчетах колебаний сложных механических систем приходится пользоваться некоторыми усредненными значениями коэффициентов вязкого трения или поглощения, определенными на близких по конфигурации и нагруженности деталях. Так, в работе Д. Н. Решетова и 3. М. Левиной [35] приводится коэффициент поглощения энергии в плоском сухом стыке направляющих токарного станка ф=0,15 на частотах 15—100 Гц. Смазка контакта увеличивает коэффициент поглощения в три — четыре раза, причем одновременно увеличивается его динамическая жесткость в 1,5—2 раза.  [c.82]

В результате проведенного анализа упрощенной схемы одномерного движения адиабатического двухфазного потока в канале, по-разному ориентированному в поле сил тяжести, можно сделать следующие выводы. Сопоставление опытных данных при движении двухфазного потока в горизонтальном и вертикальном каналах следует производить не при одинаковых расходах смеси и весовых газосодержаниях, а при одинаковых расходах жидкости (и> ) и истинных объемных газосодержаниях (ф). При этом сопоставлении нивелирный напор необходимо вычислять не по общепринятым формальным определениям (1) или (2), а по формуле (14). Для того чтобы качественно оценить ошибки, к которым может привести невыполнение этих условий сопоставления, рассмотрим конкретный численный пример для вынужденного движения пароводяного потока в вертикальном и горизонтальном плоском канале шириной г=10 мм при давлении р=76 кГ/см (ft да 10- кГ-сек/м да 2-10-в кГ-сек/м f 735 кГ/м f да да 40 кГ/м ), приведенной скорости воды ш =10 м/сек и 3 > 0.9. При расчете воспользуемся формулами, полученными выше для ламинарного кольцевого течения двухфазного потока. Безусловно, это приведет к идеализации реального процесса, так как в действительности характер движения фаз будет в этих условиях турбулентным, режим течения смеси не обязательно кольцевым и т. п. Однако качественная сторона явлений (по крайней мере для таких режимов течения двухфазного потока, как снарядный и дисперсно-кольцевой) этими формулами будет, по-видимому, отражена.  [c.173]

Простейшим прибором для определения силы тяги является П-образная стеклянная трубка, наполненная водой или какой-нибудь другой окрашенной жидкостью (рис. 13). Такой прибор называется тягомером. Один конец его сообщается посредством резиновой трубки с тем пространством, в котором желают измерить давление или разрежение, а другой — с атмосферой.  [c.94]

Общая работа внешней силы, распределенной по определенному закону по поверхности мембраны или пластинки, может быть заменена работой некоторой эквивалентной силы, приведенной к центру. Так, например, работа сил равномерного давления р , производимая при смещении в центре на За круглой мембраны или пластинки, колеблющейся по закону a = aJ r), будет равна  [c.184]

Механическое подобие. Число Рейнольдса. Если для двух потоков около или внутри геометрически подобных тел картины линий тока также геометрически подобны, то такие потоки называются механически подобными. Весьма важно найти условия, при которых для внешне геометрически подобных потоков осуществляется также и механическое подобие. Для этого, очевидно, необходимо, чтобы в подобно расположенных точках сравниваемых потоков отношения трех сил перепада давления, силы трения и силы инерции — были одинаковыми. Так как эти три силы уравновешивают друг друга, то в дальнейшем мы можем ограничиться рассмотрением только двух из них мы выберем силу инерции и силу трения, так как перепад давления, по крайней мере для несжимаемых потоков, не обладает сам по себе какими-либо характерными признаками. Различные геометрически подобные потоки мы будем сравнивать друг с другом при помощи каких-либо характерных длин /1, /г,... и характерных скоростей VI, г>2,... За характерную длину можно взять, например, диаметр или длину тела, ширину канала и т. п., а за характерную скорость — скорость движения тела или среднюю скорость в определенном сечении канала. Плотность и вязкость в различных потоках также могут иметь различные значения обозначим их соответственно через рх, р2, -. и через р,х, 1Л2,--- Составляющие силы инерции, одна из которых (см. конец предыдущего параграфа) равна  [c.148]


Способы отсчетов угловых перемещений. Для отсчетов угловых перемещений применяют дуговые и круговые шкалы с интервалами делений через угловой градус или дольные и кратные ему величины. В специальных измерительных приборах круговые шкалы со стрелочными указателями градуируются с ценой делений, соответствующих определенным долям величин давления, напряжения, силы тока и т. д.,  [c.167]

Кинетостатикой называется такой раздел динамики механизмов, в задачу которого входит определение давлений в кинематических парах, сил, действующих на звенья механизма, а также уравновешивающей силы или уравновешивающего момента.  [c.217]

При определении силы, необходимой для перемещения транспортных машин, кроме трения качения между колесами и полотном дороги или рельсами, надо учесть еще трение скольжения на осях. При решении подобных задач пользуются формулой, выражающей зависимость силы тяги Р от давления N на ось и учитывающей оба вида трения  [c.82]

Перейдем к определению силы ёЯх-Внешними силами являются поверхностные силы (силы давления жидкости, окружающей выделенную элементарную массу, на ее боковые грани) и силы объемные (или массовые). В соответствии с расположением выделенного объема получим (рис. 3.7)  [c.69]

Независимо от того, стоит ли автомобиль на месте или движется, на него всегда действуют определенные силы. Если он неподвижен и установлен на горизонтальной площадке, на него действует сила тяжести (вес автомобиля) и силы противодействия дороги давлению колес (реакции дороги), направленные в противоположную сторону действия силы тяжести. При этом сила тяжести направлена вертикально вниз. На автомобиле, стоящем на наклонной плоскости, сила тяжести раскладывается на две составляющие, одна из которых прижимает автомобиль к дороге, а другая стремится его опрокинуть. При этом опрокидывающий момент будет тем больше, чем больше угол наклона автомобиля и выше его центр тяжести. На автомобиль, находящийся в движении, кроме силы тяжести, действуют следующие силы сила тяги, сила сопротивления качению, сила сопротивления воздуха, сила сопротивления подъему (при движении в гору), центробежная сила, сила сопротивления боковому скольжению, сила инерции (сопротивления разгону) и сила сцепления с дорогой (рис. 100).  [c.157]

Для определения силы давления составляем уравнение моментов относительно оси вала. Момент силы натяжения ремня, нити и т.п. (наклонной или нет) вычисляем как произведение величины силы на соответствующий радиус со знаком, соответствующим направлению вращения вокруг вала. Уравнение содержит одну неизвестную, которую легко найти.  [c.95]

Если при взаимодействии тела с потоком полное теплосодержание и энтропия (или давление торможения) газа изменяются вдоль трубок тока, то сила определенная по формуле (6.4), в общем случае не равна нулю и может быть положительной (и тогда тело при движении в газе испытывает сопротивление X = или отрицательной (тогда на тело при движении его в газе действует сила тяги T = — Rx ).  [c.120]

В 1848 г. Джоуль на собрании Манчестерского философского общества выступил с докладом Некоторые замечания о теплоте и о строении упругих жидкостей , который в дальнейшем был напечатан в трудах этого Общества. Основываясь на результатах своих опытов по определению механического эквивалента теплоты и опытов по исследованию особенностей адиабатного сжатия и расширения воздуха, Джоуль высказал положение, что теплота и механическая сила обратимы одна в другую и что теплота является живой силой весомых частиц. Это проливает свет на строение упругих жидкостей, так как оно показывает, что теплота упругих жидкостей представляет собою ту механическую силу, какой они обладают . И дальше упругая сила или давление должны представлять собою эффект движения частиц, из которых состоит всякий газ . Выводы Джоуля по существу говорили об одно.м из основных положений кинетической теории газа. В 1856 г. была напечатана работа Кренига Очерки теории газов . После этой работы было опубликовано несколько работ Клаузиуса, посвященных кинетической теории газов, а затем работы Максвелла, Лошмита и др., которые и заложили основу этой теории.  [c.29]

Определим силу действия свободно11 струи, вытекающей из OTi e, -стия или насадка, на ненодви кную стенку. Эта задача является частным случаем jia MOTpennou в нредыду цем параграфе задачи определения силы действия потока на стенки канала. Рассмотрим сначала стенку конической формы с осью, совпадающей с осью струи (рис. 1.115). Сечениями 2—i и 2—2 выделим участок потока. Сечение 2—2 представляет собой поверхность вращения. Так как давления во входном 1—1 и выходном 2—2 сечениях равны атмосферному, то силы F II F давления равны пулю. Весом выделенного участка потока пренебрегаем. При этом статическая реакция потока  [c.149]

Другой предельный случай характеризуется малыми числами Рейнольдса (Re 1) и не очень сильным вращением и радиальным движением (Re = < 1, Re = < l). когда мало влияние нелинейных инерционных си.л мелкомасштабного движения и микродвижепие определяется взаимодействием сил вязкости, давления и линейных инерционных сил. Такой режим микродвижения называется стоксовым или ползущим и его определение сводится к линейной задаче  [c.119]

ТО на тело действует импульс силы (И, связанный с изменением/ количества движения йк соотношением йк= = сИ, где сИ — время, в течение которого происходит изменение вектора количества движения па величину ёк. Таким образом, на поглощающее или отражающее свет тело должЕ1а действовать определенная сила Р. Величина нормальной составляющей этой силы, отнесенной к единице площади тела, дает величину действующего на него светового давления.  [c.184]


В аэродинамике решетки профилей обе эти задачи обычно рассматриваются применительно к суммарным параметрам решетки. Здесь под прямой задачей понимается определение аэродинамических сил и нахождение угла выхода потока при заданном поле скорости перед решеткой заданной конфигурации. В случае потока вязкой жидкости или газа возникает также необходи.мость в определении потерь полного давления.  [c.8]

Движение твердых тел в жидкссти (обтекание жидкостью твердых тел) представляет одну из важнейших проблем гидромеханики. Основной задачей при этом является определение сил, которые возникают при относительном движении тела и жидкости. Тело, движущееся в жидкости, встречает со стороны последней сопротивление, для преодоления которого нужно приложить некоторую силу. Таким будет, например, сопротивление, которое встречает при своем движении самолет, автомобиль или поезд со стороны воздуха, корабль или подводная лодка со стороны воды. В случае когда тело пеюдвижно, а жидкость обтекает его, наоборот, тело оказывает сопротивление движению жидкости, на преодоление которого затрачивается часть энергии потока обтекающей жидкости. Примером этого является давление ветра на здание, обтеканиз мостового быка водой и т, п.  [c.227]

Отметим, что обычно поляру профиля (или поляру летательного ап в координатах, имеющих различные масштабы величин Су и, так этих величин различны (как правило, на порядок меньше, чем с, 1.30. Определение положения центра давления связано с расчето устойчивости тела вращения в полете. Эта устойчивость зависит от формы тела, положения его центра масс, скорости полета, угла а аэродинамической силы и точки ее приложения.  [c.31]

Дальнейшее обобщение и развитие энергетических концепций стали возможны на основе фундаментальных законов термодинамики. Трибосистема с позиций термодинамики необратимых процессов, как отмечалось выше, при определенных условиях является открытой термодинамической системой, обменивающейся энергией и веществом с окружающей средой. Известно, что в термодинамике неравновесных систем в отличие от равновесной термодинамики изучают изменения состояний, протекаюи ,ие с конечными, отличными от нуля скоростями. Предмет исследования - переносы массы, энергии, вызванные различными факторами, называемыми силами. Причиной возникновения потока всегда являются различия в значениях термодинамических сил температуры, давления и концентрации или их функции, т.е. перепады, или градиенты. Поэтому поток теплоты в трибосистеме появляется, если возникает градиент температуры, а поток вещества есть следствие наличия градиента концентрации и т.д. Следовательно, термодинамические силы представляют собой градиенты, характеризующие удаленность трибосистемы от термодинамического равновесия. Суть применения законов классической термодинамики к неравновесным системам заключается в предположении о локальном равновесии внутри малых элементов областей системы. Представление о локальном равновесии позволяет изучать больп1ое число практически важных неравновесных систем, к которым с полным основанием можно отнести и трибосистемы. При этом все уравнения сохраняют свою ценность по отношению к малым областям, а значит, и общность описываемых ими закономерностей. Так, уравнение Гиббса, показываюилее зависимость внутренней энергии U от энтропии S, объема и химических потен-  [c.107]

Однако в том случае, когда исследуют движения многих тел, действующих друг на друга путем удара или давления, будь то непосредственно, как при обычном ударе, или же при посредстве нитей или несгибаемых рычагов, к которым они прикреплены, или же вообще каким-либо иным образом, то этого рода задача принадлежит к проблемам более высокого порядка, которая не может быть разрешена с помощью приведенных выше положений. Дело в том, что в этом случае силы, дёйствующие на тело, неизвестны и их следует определить на основании действия, которое тела должны оказывать одно на другое в соответствии с их взаимным положением. Таким образом здесь необходимо привлечь на помощь еще один принцип, который служит для определения силы тел, находящихся в движении, в соответствии с их массой и скоростью.  [c.299]

Если на подобном проволочном прибвре испытывать влияние поверхностно-активных веществ, например жирных кислот, вводимых в вазелиновое масло или керосин, то обнаруживается резкое уменьшение износа под влиянием таких веществ. Уменьшение износа наблюдается и при довольно больших нагрузках, которые можно осуществить, несколько меняя способ применения прибора. Для этой цели заставляют проволоку 333 охватывать поверхность вспомогательного ролика В (рис. 105). Прижимая при помощи груза Р ролик к цилиндру с определенной силой, можно обеспечить точечный контакт проволоки с поверхностью вращающегося цилиндра. В этом случае нагрузка распределяется на очень малую площадь смазочной прослойки, причем последняя находится под действием очень высокого удельного давления.  [c.220]

G 01 [Измерение механического напряжения, крутящего момента, работы, механической энергии, механического КПД или давления газообразных и жидких веществ или сыпучих материалов Р-- Линейной или угловой скорости, ускорения, замедления или силы ударов. Индикация наличия, отсутствия или направления движения R — Электрических и магнитных величин) D — Индикация или регистрация в сочетании с измерением вообще, устройства или приборы для измерения двух или более переменных величин, тар1чфные счетчики, способы и устройства для измерения hjhi испытания, не отнесенные к другим подклассам i - - Взвешивсишс, М -Проверка статической и динамической балансировки машин, испытания различных конструкций или устройств, не отнесенные к другим подклассам N — Исследование или анализ материалов путем определения их хи.мических или физических свойств]  [c.40]

Под давлениел понимается действие определенной силы, перпендикулярно направленной к поверхности какого-либо тела. За единицу измерения давления в технической системе единиц принимается 1 кгс1слА (1 килограмм силы на квадратный сантиметр или 1 техническая атмосфера).  [c.11]

Измерение электрического сопротивления систем с клеевыми соединениями г производилось путем определения силы тока через образец и падения напряжения на участке образца. В целях проверки пригодности полученных расчетных зависимостей для термического сопротивления наполненной клеевой прослойки, обработанной в магнитном поле, была проведена серия экспериментальных исследований. Объектами исследования были клеевые композиции на основе полиэфирной смолы ПН-1 со стиролом в качестве полимеризуюш его растворителя, а также на основе эпоксидной смолы ЭД-5 и ПЭПА с диспергированными в них железным (карбонильный) Р-50 или никелевым (карбонильный) ПНК порошками. Склеивались стандартные образцы из стали 45 с поверхностями, обработанными шлифованием с последующей зачисткой шкуркой до 7а класса чистоты. Давление отверждения поддерживалось на у]ровне (2—3)-10 Па. Толщина клеевой прослойки выдерживалась в пределах 0,3 мм.  [c.216]

Существуют и другие подходы для определения критических параметров (в частности, скорости полета) на границе устойчивости. Для этого в уравнениях свободных колебаний (38) полагают Я, = ш и находят значения скорости, удовлетворяющие этим уравнениям. Критическую скорость флаттера можно также определить экспериментально в аэродинамической трубе на динамически подобной модели и в процессе летных испытаний летательного аппарата. В последнем случае прибегают к экстраполяции, чтобы по тенденции определяющих флаттер параметров с ростом скорости полета найти приближенно величину критической скорости флаттера. Возникновение флаттера связано с определенным тоном свободных упругих колебаний в потоке воздуха. Распределение деформаций по конструкции при потере устойчивости определяет комплексную форму колебаний флаттерного тона. В зависимости от преобладания амплитуд той или иной части ЛА и характера деформированного состояния различают виды флаттера. Например изгибно-крутильный флаттер крыла, изгибно-изгибный флаттер в системе стреловидное крыло — фюзеляж, изгибно-элеронный флаттер, рулевой флаттер и т. д. Для характеристик флаттера несущих поверхностей часто определяющее значение имеют различные грузы, размещенные иа них двигатели, подвесные баки с горючим, шасси. Существенными параметрами являются жесткости крепления этих тел на поверхности крыла. Вообще для флаттера принципиально важны параметры связаииости форм движения. Например, для совместных колебаний изгиба и кручения крыла такими параметрами являются координаты точек (линий) приложения сил аэродинамического давления, инерции и упругости. Смещение центра масс относительно оси жесткости вперед способствует стабилизации системы. Совмещение всех трех точек развязывает виды колебаний, и в этом случае флаттер невозможен. Это свойство обычно имеют в виду при динамической компоновке конструкции. Важными параметрами являются распределенные нли сосредоточенные жесткости. Последние характерны для органов управления  [c.490]


Для определения сил закрепления необходимо знать условия выполнения сборочных процессов. Так, при склеивании (клеем БФ-2 и др.) необходимо прижатие соединяемых деталей давлением 15-20 МПа. При пайке силу прижатия устанавливают из условия прочной фиксации собираемых деталей. При выполнении резьбовых соединений базовая деталь изделия воспринимает реактивный момент от затяжки этих соединений, поэтому их необходимо прочно удерживать от провертывания. Если используется многошпиндельное винтозавертывающее устройство, реактивный момент воспринимается деталью и корпусом устройства. Зная внешнюю силу или момент, схему установки и закрепления собираемого изделия, а также реакции опор, можно найти необходимую силу закрепления.  [c.336]

Во многих вопросах аэродинамики, вообще, не встречается надобности в интегрировании дифференциальных уравнений движения жидкости. К числу этих вопросов относятся, например, вопросы о сопротивлении тела движению, о его подъемной силе, аэродинамическом моменте и т. д. Здесь требуется определить лишь суммарное силовое взаимодействие между средой и телом, а распределение давлений или касательных напряжений по поверхности тела остается, по сути дела, безразличным. Конечно, зная распределение нормальных или касательных напряжений, всегда можно суммированием найти и результирующие аэродинамические силы или моменты. Но для того чтобы найти распределение нормальных или касательных напряжений, нужно обычно решать сложные дифференциальные уравнения, что, как уже указывалось, далеко не всегда практически осуществимо. Поэтому очень часто приходится в аэродинамике прибегать к другому способу, который дает не столь 11счерпывающие сведения о движении жидкости, как первый, но позволяет сравнительно просто решать многие практические задачи, в частности, связанные с определением аэродинамических сил и моментов. Этот второй способ можно назвать, в противоположность первому, способом конечных объемов. Он заключается в том, что в жидкости мысленно выделяют некоторый конечный объем (т. е. такой объем, внутри которого нельзя пренебрегать изменением скорости пли плотности) и ко всей массе жидкости, зак.лю-ченной в этом объеме, применяют теоремы механики, относящиеся к системе материа.пьных точек (например, теорему изменения коли-  [c.268]

Криволинейные поверхности весьма распространены в технике. Это стенки резервуаров различной формы, трубы, крышки люков, запирающие элементы щаровых задвижек и т. д. Определение силы давления жидкости на такие поверхности более сложно, чем на плоские стенки, так как силы, действующие на элементарные площадки этих поверхностей, не параллельны в пространстве. В общем случае, как это известно иа механики, такая пространственная система сил приводится к главному вектору (силе) и главному моменту (паре сил), которые достаточно сложно определять, поэтому ограничимся рассмотрением случая воздействия жидкости на такие криволинейные поверхности, для которых пространственная система возникающих при этом элементарных сил давления приводится к одной равнодействующей. К ним относятся поверхности, имеющие точку, ось или плоскость симметрии в частности сферические, цилиндрические и конические. Именно такой формы поверхности чаще всего встречаются при рещении практических задач.  [c.39]

В этой главе имеются отдельные задачи на определение величины сил и давлений соответственно в кгс и в кгс/м" (или в кгс/см ) согласно системе единиц МКГСС. Это сделано в чисто учебных целях.  [c.7]

Включаемым элементом фрикционной муфты может служить ее ведущая (см. рис. 41, а) либо ведомая (см. рис. 41, б) часть. При включении сила прижатия фрикционных элементов Создается усилием руки при помощи рычажного механизма или давлением сжатого воздуха посредством пневмоцилиндра. При выключении, зазор между фрикционными элементами должен достигать определенной величины для исключения так называемого прихватывания в может неограниченно эту величину февышать.  [c.91]

Когда нет необходимости производить полный кинетостатический расчет плоского механизма, в результате которого устанавливаются силовые воздействия в его кинематических парах, задача сводится лишь к определению уравновешиваюш,ей силы или момента, приложенных к какому-либо подвижному звену механизма. Давления в кинематических парах могут оставаться неизвестными, как внутренние силы для механизма в целом . Что касается потерь на вредные сопротивления, то их можно считать практически постоянными для всех положений механизма и учитывать введением в расчет механического коэффициента полезного действия.  [c.187]


Смотреть страницы где упоминается термин Определение силы или давления : [c.145]    [c.616]    [c.471]    [c.18]    [c.476]    [c.190]    [c.190]    [c.164]    [c.258]   
Смотреть главы в:

Гидромеханика Учебное пособие Издание 2  -> Определение силы или давления



ПОИСК



Аналитический способ определения силы и центра давления

Аналитическое определение силы гидростатического давления на плоские стенки. Центр давления

Введение. Диаграмма энтальпия — состав. Учет давления при построении диаграммы. Движущие силы и тепловые потоки на диаграмме энтальпия — состав. Определение S-состояния при

Графоаналитический метод определения силы давления и центра давления

Графоаналитическое определение силы давления и центра давления на плоские прямоугольные поверхноОпределение положения ригелей в плоских прямоугольных затворах

Давление Определение

Критическое число М и его определение по заданному распределению давления в несжимаемом обтекании. Поведение коэффициента подъемной силы и момента при около- и закритических значениях числа

Определение силы взаимодействия между шпангоутом и стенкой бака при внутреннем давлении

Определение силы гидростатического давления на цилиндрические стенки

Определение силы давления жидкости на плоскую поверхность

Определение силы давления жидкости на поверхности Плоская поверхность

Определение силы и центра давления с помощью понятия пьезометрическая поверхность

Определение силы суммарного давления жидкости на плоские фигуры

Определение суммарной силы давления как равнодействующей системы параллельных сил

Сила давления

Силы Определение



© 2025 Mash-xxl.info Реклама на сайте