Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система термодинамическая открытая

Открытая система - термодинамическая система, обменивающаяся энергией и веществом с окружающей средой.  [c.151]

Открытая термодинамическая система — термодинамическая система, которая может обмениваться веществом с другими системами.  [c.83]

В полностью ионизированной плазме скорость процессов ионизации равна скорости процессов рекомбинации. Такое стационарное состояние совпадает с состоянием термодинамического равновесия в закрытой системе. В открытой системе энергетически неизолированной (энергия может как подводиться, так и отводиться) стационарное состояние ионизации не всегда совпадает с состоянием термодинамического равновесия. Поэтому при термодинамическом расчете плазмы должно учитываться как излучение плазмы, так и степень ее ионизации. Несмотря на многообразие явлений, сопутствующих плазме, состояние ее в настоящее время опре-  [c.233]


С термодинамической точки зрения железо в водяном паре составляет нестабильную систему. В случае коррозии труб поверхностей нагрева котла такая система является открытой, поскольку из нее непрерывно выводятся образующиеся в ходе коррозии газообразные продукты.  [c.125]

До сих пор первый закон термодинамики рассматривался применительно к закрытым системам. В открытой термодинамической системе изменение ее внутренней энергии дополнительно связано с обменом веществом.  [c.95]

Поскольку композиты представляют собой сложные гетерогенные, термодинамически открытые неравновесные системы, синтез которых происходит в неравновесных условиях, то для научного прогнозирования и управления свойствами конечного материала необходим современный, активно развивающийся в последние годы, синергетический подход и учет процессов самоорганизации, происходящих в ходе эволюции системы. Подробнее этот вопрос будет рассмотрен в конце книги.  [c.7]

Согласно второму закону термодинамики в изолированной системе энтропия, являющаяся показателем состояния системы и критерием эволюции системы, всегда возрастает. Однако, в природе в большинстве своем системы являются открытыми. В открытых системах может устанавливаться стационарное состояние, при котором необходимо учитывать не только общий статистический баланс энергии, но и скорости трансформации энергии. Это в полной мере относится и к автоколебательным процессам, являющимся самоорганизующимися. Для неустойчивых систем характерна необратимость, повышающая энтропию. В равновесных условиях производство энтропии минимально. Нестабильность возникает из нестабильной динамики. С точки зрения И. Приго-жина [15, 16] нестабильность и хаос позволяют сформулировать законы природы без противоречий между динамическим описанием и термодинамическим, так как энтропия выражает фундаментальное свойство физического мира, существование симметрии неустойчивого времени.  [c.107]

Какие термодинамические системы называются открытыми  [c.57]

Как указывалось выше, под открытыми понимаются термодинамические системы, которые кроме обмена теплотой и работой с окружающей средой допускают также и обмен массой. В технике широко используются процессы преобразования энергии в потоке, когда рабочее тело перемещается из области с одними параметрами (pi, t i) в область с другими (р2, V2). Это, например, расширение пара в турбинах, сжатие газов в компрессорах.  [c.43]


Рис. 5,1. Открытая термодинамическая система Рис. 5,1. Открытая термодинамическая система
Рассмотренные выше примеры касались однородных закрытых систем, и поскольку переменные химического состава в них не использовались, то полученные выводы справедливы либо при равновесных химических превращениях веществ в системе, либо при полном отсутствии таковых. Усложнения, появляющиеся при анализе открытых систем или систем с неравновесным химическим составом, вызваны прежде всего увеличением числа аргументов характеристических функций. Можно и в этом случае попытаться применить рассмотренную последовательность получения термодинамических характеристик, т. е. по-прежнему изучать зависимости Ср(Т), V T, Р) и т. п., но при определенных, фиксированных химических составах. Такой путь был бы, однако, неоправданно трудоемким, если в начале его не ориентироваться на использование уравнений Гиббса—Дюгема. Для применения последних надо знать прежде всего зависимость свойств от состава фазы, и определение этих зависимостей при параметрах 7, Р составляет основную задачу экспериментальной термодинамики растворов.  [c.95]

Ранее отмечалось, что термодинамические системы не могут находиться в состоянии неустойчивого равновесия. Но очень часто между устойчивыми и неустойчивыми состояниями существует значительная область значений термодинамических переменных, в которой критерии устойчивого равновесия не выполняются, но система тем не менее может существовать длительное время, причем ее состояние зависит от бесконечно малых изменений внешних переменных. Это состояние нейтрального (безразличного) равновесия. Любые гетерогенные системы, в которых происходят процессы, не влияющие на состояние ее-щества в гомогенных частях системы, т. е. не изменяющие интенсивных термодинамических характеристик фаз, находятся. по отношению к таким процессам в нейтральном равновесии. Чтобы пояснить особенности этого состояния, рассмотрим устойчивость равновесия гетерогенной системы, состоящей из двух открытых фаз, а и р, с одинаковым химическим составом и плоской межфазной границей. Можно воспользоваться уже выведенными формулами (12.15) — (12.17) или (12.19), если положить в них а = 0 или г = оо. Нетрудно видеть, что в этом случае при постоянных Т, V  [c.119]

Первые две задачи можно решить на основе второго закона термодинамики. Для решения третьей задачи Г.П. Гладышев [2] принял, что изучаемая открытая система находится в термостате, вместе с которым она образует полную термодинамическую систему. Например, такой полной системой является совокупность окружающей среды (термостата) и собственно самой открытой нестационарной системы в виде локального объема V (рисунок 1.5).  [c.20]

Изучаемая нестационарная открытая система первоначально не находится в равновесии со своим термостатом ее эволюция направлена в сторону достижения частичного равновесия системы с термостатом. С учетом того, что эволюцией системы управляют потенциалы (термодинамические силы), характеризующие состояние системы, Г.П. Гладышев [2] использовал для анализа открытых систем удельную величину функции Гиббса, отнесенную к единице объема или массы. Напомним, что в соответствии с функцией Гиббса движущей силой процесса для закрытых систем при постоянных температуре и давлении является стремление системы к минимуму свободной энергии (максимуму энтропии), если в системе не совершается никакая работа кроме работы расширения [17]. Гиббс предвидел широкие возможности термодинамики для решения различных задач, сделав следующие предсказания ...Несмотря на то, что статистическая механика исторически обязана возникновением исследованиям в области термодинамики, она, очевидно, в высокой мере заслуживает независимого развития как вследствие элегантности и простоты ее принципов, так и потому, что она приводит к новым результатам и проливает новый свет на старые истины в областях, совершенно чуждых термодинамике .  [c.21]


Первое начало термодинамики является математическим выражением количественной стороны закона сохранения и превращения энергии в применении к термодинамическим системам. Оно было установлено в результате экспериментальных и теоретических исследований в области физики и химии, завершающим этапом которых явилось открытие эквивалентности теплоты и работы, т. е. обнаружение того, что превращение теплоты в работу И работы в теплоту осуществляется всегда в одном и том же строго постоянном количественном соотношении.  [c.36]

Второе замечание относится к возможности введения термодинамического потенциала открытой системы  [c.108]

Действительно, центральная формула для расчета флуктуаций в изолированной системе — соотношение Больцмана (7.26) — основана на представлении о микроканоническом, равновероятном распределении вероятностей микросостояний системы, соответствующих данному макроскопическому, неравновесному состоянию. Вывод функции распределения вероятностей флуктуаций термодинамических параметров в открытой системе также опирается на формулу Больцмана, применяемую в этом случае к совокупности система+среда .  [c.173]

В условиях соединения металлов с приложением различных видов и концентраций энергий в термодинамически открытой системе энергия — металл — внешняя среда определение характеристических параметров (критических точек), при которых реализуется спон-тонное изменение свсйстиа системы, обусловленное самоорганизацией диссипативных структур, возможно на основе создания адекватных физико-математических моделей процессов, протекающих при сварке, и исследования их с помощью компьютерного эксперимента — наиболее тонкого ииструмепта.  [c.110]

Результаты исследований позволяют объяснить эффект безызнос-ности на основе законов неравновесной термодинамики и теории образования структур при неравновесных процессах. Согласно термодинамике неравновесных процессов новые структуры могут появляться в природе в тех случаях, ко1 да выполняются следующие четыре необходимых условия I) система является термодинамически открытой, т.е. может обмениваться веществом и (или) энергией со средой 2) динамические уравнения системы нелинейны 3) отклонение от равновесия превышает критическое значение 4) микроскопические процессы происходят коопе-рированно (согласованно) (59, 71] Названные условия могут быть реализованы в некоторых трибосистемах, которые при определенных условиях обладают свойствами открытых термодинамических систем, а микроскопические физико-химические процессы при трении происходят коопериропанно и ведут к возникновению и самоорганизации структур, связанных с производством отрицательной энтропии и увеличением упорядоченности системы. Установлено, что свойства открытой термодинамической системы и самоорганизация структур присуп и трибо-системам в условиях избирательного переноса при трении,  [c.142]

Упорядоченное состояние физической (или другой) системы связано с согласованностью поведения подсистем (молекул, атомов). Это приводит к формированию упорядоченных структур в открытых системах в результате обмена энергией и веществом с окружающей средой, когда устанавливается определенное соотношение между производством энтропии и ее обменом со средой. Это следует из принципа Пригожина—Гленс-дорфа [18]— минимума производства энтропии, определяющего поведение системы вдали от термодинамического равновесия. Производство энтропии играет в необратимых процессах такую же роль, как энтропия в равновесных системах. Энтропию открытых систем, обменивающихся энергией и веществом с окружающей средой, Гленсдорф и Пригожин рассматривают в виде суммы двух составляющих  [c.12]

Теорема о минимуме производства энтропии отражает инерционные свойства неравновесных систем когда заданные граничные условия не позволяют достичь термодинамического равновесия, система останавливается в состоянии с мини мальной диссипацией. Справедливость неравенства dpidt О была доказана [18] для линейных необратимых процессов, т.е. в рамках линейной термодинамики. Вопрос о возможности обобщения принципа и на нелинейные термодинамические системы оставался открытым.  [c.13]

В соответствии с термодинамикой неравновесных процессов новые структуры могут возникать в природе в тех случаях, когда выполняются следующие четыре необходимых условия [28, 47, 51 ] 1) система является термодинамически открытой, т. е, может обмениваться веществом т и (или) энергией Е со средой 2) динамические уравнения системы нелинейны 3) отклонение от равновесия превышает критическое значение 4) микроскопические процессы происходят кооперированно (согласованно).  [c.270]

В предыдущей главе в основном анализировались простые системы и открытые фазы в состояниях устойчивого равновесия (устойчивых состояниях), причем особое внимание уделялось равновесию между реагирующими компонентами. В настоящей главе полученные ранее сведения будут применены к изучению потоковых процессов, в которых происходит переход химически активных веществ между заданными начальным и конечным состояниями. При этом будет рассмотрен вопрос о том, как такой процесс мог бы быть обратимым (что возможно лишь в Термотопии ), Это позволит продолжить начатый ранее анализ термодинамической доступности энергии и установить критерии совершенства установок, которые за счет потребляемой работы производят экстракцию или выделение из смеси одного или нескольких компонентов.  [c.397]

В. В. Эбелинг сформулировал следующие условия образования диссипативных структур 1) термодинамическая система является открытой 2) динамические уравнения системы нелинейны 3) отклонение от равновесия превышает критическое значение 4) микроскопические процессы протекают кооперативно.  [c.102]


ОТКРЫТЫЕ СИСТЕМЫ, термодинамические системы, к-рые обмениваются с окружающей средой в-вом, а также энергией и импульсом. К наиболее важному типу О. с. относятся хим. системы, в к-рых непрерывно протекают хим. реакции (извне поступают реагирующие в-ва, а продукты реакций отводятся). Биол. системы, живые организмы можно также рассматривать как открытые хим. системы. Такой подход к живым организмам позволяет исследовать процессы их развития и жизнедеятельности на основе законов термодинамики неравновесных процессов, физ. и хим. кинетики.  [c.506]

Прямым и исключительно важным следствием постулатов о равновесии и температуре служит вывод о том, что в равновесных системах все внутренние термодинамические свойства являются функциями внешних свойств и температуры системы. Зтим утверждается существование строго ограниченного числа независимых переменных, определяющих внутреннее состояние равновесной системы, т. е. все множество ее термодинамических свойств. Число независимых переменных, достаточное для описания термодинамического состояния равновесной сис темы, известно под названием общая вариантность равновесия, оно, следовательно, на единицу больше числа внешних переменных. Если открытая система содержит с компонентов и может изменять свой объем, то число внешних переменных будет с+, а вариантность в случае полного равновесия равняется ( + +2. Этим числом учитывается возможность существования одного теплового, одного механического и с диффузных контактов системы с окружением.  [c.23]

Отсутствие времени в термодинамических соотношениях не означает, однако, что при их выводе не используются никакие сведения о кинетике процессов. Достаточно обратить внимание на физический смысл начальных определений, таких как изолированная система, тепловой контакт, открытая система и другие, чтобы убедиться в наличии общих кинетических условий в любой термодинамической задаче. Например, понятие изолированности означает пренебрежимо малую скорость релаксационного процесса в большой системе, включающей в себя рассматриваемую изолированную систему и внешнюю среду. Последняя же, чтобы выполнять роль резервуара неограниченной емкости с постоянными характеристиками на всбй граничной поверхности, должна, наоборот, обладать бесконечно большими скоростями релаксации по всем переменны . Смысл кинетиче-  [c.33]

Таким образом, термодинамический эффект, вызванный изменениями количеств веществ в системе, можно вырааить тремя способами. Вонпервых, его можно представить как сумму эффектов от каждого из компонентов системы. Независимыми переменными в этом случае служат количества (или массы) компонентов, и вклад каждого из них о внутреннюю энергию системы записывается в виде ifdrtf. Этот способ описания пригоден для процессов в открытых системах. Вопрос о химическом равновесии внутри системы при нем остается невыясненным. Так функции и(S, V, п) или U(T, V, п) могут относиться как к химически равновесной системе, так и к системе, в которой нет химических превращений веществ. Обе эти возможности должны указываться заранее при формулировке задачи. Последнее замечание относится и к описанию процессов в закрытых системах, у которых все внешние переменные п фиксированы и поэтому обычно не включаются в набор аргументов термодинамических функций. Например, уравнение состояния (2.1) в виде Р = Р(Т, V) справедливо как для химически равновесной смеси веществ, так и для гомогенной системы без химических превращений. Общие выражения (2.2) —(2.7) для частных производных одинаковы в обоих случаях, о численные значения термических коэффициентов av, Pv и других свойств при наличии химических реакций и без них могут существенно различаться. Наглядный пример этого — уравнения (5.30), (5.31).  [c.69]

В сформулированных в предшествующем разделе критериях равновесия термодинамических систем также не в полной мере использованы следствия второго закона о максимальности энтропии изолированной системы или о минимальности термодинамических потенциалов при тех или иных условиях равновесия. Действительно, знаки неравенств для вариаций первого порядка в (11.1), (11.13) и других критериях соответствуют виду экстремума энтропии, внутренней энергии и т. д., но эти знаки, как отмечалось, относятся к особому случаю граничного экстремума характеристической функции. Если же последняя имеет в равновесии стационарное значение, то вопрос о виде экстремума (минимума, максимума или точки пЬрегиба) при использовании (11.1), (11.13), (11.31) и других остается открытым и для ответа на него надо дополнить указанные критерии соответствующими условиями устойчивости равновесия  [c.115]

В настоящей г лаве даются понятия о термодинамической, статистической и информационной энтропии, рассматриваются типы термодинамических систем, а также основные принципы макродинамики и синергетики, контролирующие самоорганизацию диссипативных структур в квазизакрытых и открытых системах. Приводятся примеры самоорганизации таких структур применительно к процессам, протекающим вдали от термодинамического равновесия в различных системах.  [c.6]

Согласно этому принципу, состояние неравновесной системы характеризуется локальными термодинамическими потенциалами, которые зависят от координаты времени только через характеристические термодинамические параметры, причем д]гя всех термодинамических величии справедливы уравнения классической гермодинамики. Это позволяет базировать рассмотрение неравновесных открытых систем на анализе термодинамической самоорганизации структур, в которых ji0KajtH30BaH некий квазиравновесный процесс. В этом случае эволюция системы представляется как ее переход через ряд термодинамических квазиравновесных состояний, а зависимость состояний системы от времени описывается с помощью параметров, контролирующих наиболее медленный процесс. Этот подход  [c.22]

Ю.Л. Климонтович [ 18] доказал S - теорему и показал, что принцип минимума производства энтропии справедлив и в нелинейной области. Теорема позволяет оценить относительную степень упорядоченности неравновесного состояния системы и предсказать направление, в котором под влиянием внешнего воздействия изменяется термодинамический процесс, протекающий в открытой системе. В соответствии с S - теоремой принцип минимума производства энтропии утверждает, что при критических фазовых переходах через пороговые значения управляющих параметров происходит скачкообразное уменьшение энтропии (оно нормировано на постоянное значение средней кинетической энергии).  [c.28]

Принцип минимума производства энтропии - для открытых неравновесных систем, находящихся в стационарном состоянии, далеком от термодинамического равновесия,- это стремление достичь состояния, аналогичного равновесному когда существенные для описания системы параметры не изменяются во времени и dSldt = 0, где dSldt = р - производство энтропии. Отличие равновесных систем от систем, далеких от термодинамического равновесия, заключается в том, что равновесные системы характеризуются максимальным неизменным во времени значением энтропии (меры разупорядочен-  [c.152]


Химический потенциал х — термодинамическая функция состояния, определяющая изменерше термодинамических потенциалов при изменении числа частиц в системе и необходимая для описания свойств открытой системы (системы с переменным числом частиц).  [c.215]

Система, изолированная от окружающей среды таким о(5разом, что не может обмениваться с ней веществом, называется закрытой, обменивающаяся веществом — открытой. Процессы превращения теплоты в работу и процессы превращения работы в теплоту, реализуемые в тепловых машинах, осуществляются термодинамической системой так называемым рабочим телом, которое изменяет в этих процессах свое физическое состояние.  [c.11]

После Карно обоснованием второго начала термодинамики занимались Тсмсон и Клаузиус. Томсон сформулировал второе начало термодинамики в виде утверждения о невозможности осуществления теплового двигателя с одним единственным источником теплоты, т. е. такой машины, которая путем охлаждения моря или земли производила бы механическую работу в любом количестве, вплоть до исчерпания теплоты моря и суши и в конце концов всего материального мира. Ему же принадлежит открытие термодинамической шкалы температур. Клаузиус исходил из идей Карно и придал выводам последнего большую общность и строгость с учетом эквивалентности тепла и работы, т. е. окончательно освободил термодинамику от гипотезы о теплороде. Исторической заслугой Клаузиуса является формулировка второго начала термодинамики в виде следующего утверждения теплота сама собой не может переходить от тела холодного телу горячему. Позже он дал более расширенную формулировку второе начало гласит, что все совершающиеся в природе превращения в определенном направлении, которое принято в качестве положительного, могут происходить сами собой, т. е. без ксмпенсации, но в обратном, т. е. отрицательном, направлении они могут происходить только при условии, если одновременно происходят компенсирующие процессы. Далее Клаузиус вывел на основе этого принципа особую функцию состояния — энтропию. С помощью этого нового понятия Клаузиус придал второму началу термодинамики форму закона возрастания энтропии изолированной системы. Этот закон, по мнению Клаузиуса, должен был иметь силу для всей Вселенной, что оказалось неправомерной, а потому и неверной для всей Вселенной экстраполяцией второго начала термодинамики.  [c.154]

В седьмой главе изложена теория флуктуаций термодинамических величин в равновесных системах и рассмотрены ее приложения к обоснованию фундаментального положения неравновесной термодинамики — соотношений взаимности Онзагера. Представление о флуктуациях выходит за рамки классической равновесной термодинамики, и в учебных пособиях по термодинамике теория флуктуаций обычно не излагается. Теория флуктуаций использует как положения классической термодинамики, так и выводы статистической механики. В связи с этим изложены некоторые положения классической равновесной статистической механики Гиббса и на их основе дан вывод формулы Больцмана для расчета флуктуаций термодинамических величин в изолированных системах и далее — в открытых системах, обменивающихся с окружающей средой энергией и веществом. Рассмотрены условия термодинамической устойчивости систем по отношению к непрерывным изменениям параметров состояния и их взаимосвязь с флуктуациями термодинамических переменных. Получены выражения для средних квадратов флуктуаций основных термодинамических величин. Проанализированы границы применимости термодинамической теории флуктуаций особое внимание уделено предположе-  [c.5]

Здесь необходимо подчеркнуть, что, хотя флуктуирующие параметры в открытой системе могут в принципе принимать любые значения, фактически отклонения от средних величин для макроскопических систем не велики (относительные флуктуации параметров малы). В термодинамическом пределе (1 - -оо, Л/ -voo, l//A/= onst) выражения для термодинамических величин, получаемые на основе применения микроканонического (7.1), канонического (7.5) и большого канонического (7.9) распределений, отличающихся условиями взаимодействия системы с окружающей средой, совпадают. Более детальное обоснование положения о малости относительных флуктуаций в открытых системах будет дано в 7.5.  [c.157]


Смотреть страницы где упоминается термин Система термодинамическая открытая : [c.25]    [c.110]    [c.6]    [c.35]    [c.20]    [c.27]    [c.60]    [c.309]    [c.367]    [c.683]   
Техническая термодинамика и теплопередача (1986) -- [ c.6 ]



ПОИСК



Открытие

Открытые

Система открытая

Термодинамическая система

Уравнение первого закона термодинамики для закрытых и открытых термодинамических систем



© 2025 Mash-xxl.info Реклама на сайте