ПОИСК Статьи Чертежи Таблицы Во многих вопросах аэродинамики, вообще, не встречается надобности в интегрировании дифференциальных уравнений движения жидкости. К числу этих вопросов относятся, например, вопросы о сопротивлении тела движению, о его подъемной силе, аэродинамическом моменте и т. д. Здесь требуется определить лишь суммарное силовое взаимодействие между средой и телом, а распределение давлений или касательных напряжений по поверхности тела остается, по сути дела, безразличным. Конечно, зная распределение нормальных или касательных напряжений, всегда можно суммированием найти и результирующие аэродинамические силы или моменты. Но для того чтобы найти распределение нормальных или касательных напряжений, нужно обычно решать сложные дифференциальные уравнения, что, как уже указывалось, далеко не всегда практически осуществимо. Поэтому очень часто приходится в аэродинамике прибегать к другому способу, который дает не столь 11счерпывающие сведения о движении жидкости, как первый, но позволяет сравнительно просто решать многие практические задачи, в частности, связанные с определением аэродинамических сил и моментов. Этот второй способ можно назвать, в противоположность первому, способом конечных объемов. Он заключается в том, что в жидкости мысленно выделяют некоторый конечный объем (т. е. такой объем, внутри которого нельзя пренебрегать изменением скорости пли плотности) и ко всей массе жидкости, зак.лю-ченной в этом объеме, применяют теоремы механики, относящиеся к системе материа.пьных точек (например, теорему изменения коли- [Выходные данные]