Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Лагранжа — Якоби

Мы установим сначала, какую форму принимает для таких систем интегральный инвариант Пуанкаре — Картана после этого рассмотрим, как записать для них систему уравнений, вид которой напоминает уравнения Лагранжа или уравнения Гамильтона, но порядок ниже (за счет использования интеграла энергии) далее выясним, как выглядят в этом случае вариационный принцип Гамильтона и уравнение Гамильтона — Якоби и какие возможности открываются для определения полного интеграла этого уравнения.  [c.326]


Эти уравнения называются уравнениями Я -оби. Легко видеть, что каждое из уравнений Якоби имеет второй порядок, что общий порядок системы уравнений Якоби равен 2п — 2 и что подобно уравнениям Лагранжа эта система разрешима относительно старших производных и, следовательно, ири обычных предположениях решение полностью определяется начальными данными.  [c.329]

Уравнение (1. 123) совпадает, по существу, с обобщенным уравнением Лагранжа — Якоби, найденным Ю. Д. Соколовым ).  [c.102]

Принцип Якоби показывает, что если связи и силовая функция не зависят от времени, то и определение траектории выполняется независимо от времени. Это свойство, не представляющееся очевидным в уравнениях Лагранжа, обнаруживается при первом взгляде, когда уравнения написаны в канонической форме. Из канонических уравнений видно также, что если траектория известна, то t определяется квадратурой (п° 450),  [c.324]

Принцип Мопертюи-Лагранжа. При заданной константе энергии h уравнения движения консервативной или обобщенно консервативной системы могут быть записаны в форме уравнений Якоби (см. уравнения (36) п. 152). Эти уравнения имеют форму уравнений Лагранжа второго рода, где в качестве функции Лагранжа L выступает функция Якоби Р, а роль независимой переменной играет обобщенная координата qi. По аналогии с действием S по Гамильтону введем действие по Лагранжу  [c.483]

Об одной ошибке. Укажем на одну распространенную ошибку ), связанную с получением уравнений Лагранжа из интеграла Якоби. Из уравнения (6.7.2) вытекает, что  [c.101]

По сути дела, это означает всего лишь изменение порядка действий при выводе интеграла Якоби из уравнений Лагранжа.  [c.101]

Из выражения, найденного Якоби для принципа наименьшего действия, видно, что если силовая функция и связи не зависят от времени, то и траектория определяется независимо от времени, что не очевидно в уравнениях Лагранжа, но ясно видно из рассмотрения канонических уравнений, которые показывают также, что если траектория известна, то время определяется квадратурой. В принципе наименьшего действия в форме Якоби рассматривается траектория изображающей точки, а не закон ее движения по этой траектории, так как время в этот принцип не входит ни в явном, ни в неявном виде. Поэтому из этого выражения принципа можно получить уравнения движения изображающей точки только введя какой-либо параметр.  [c.867]


Использование обобщенных координат — одно из преимуществ формализма Гамильтона—Якоби. Что же касается уравнений Лагранжа, то их особенное преимущество состоит в том, что все вычисления сводятся к составлению выражения для кинетической энергии, выраженной в функции /, д,д, а к простым дифференцированиям. При рассмотрении принципа Гамильтона надо допустить, что систему можно заставить перейти от того же начального к тому же конечному положению, что и в действительном движении, с помощью некоторого фиктивного движения (бесконечно мало отличающегося от действительного), не заботясь о том, чтобы удовлетворялись уравнения динамики, но сохраняя связи. Интеграл Гамильтона может обратиться в нуль для всех вариаций, совместимых со связями, лишь в том случае, если сумма под знаком интеграла постоянно равна нулю. В противном случае, изменяя знаки всех 3 одновременно, можно выбрать их так, чтобы сумма под знаком интеграла была все время положительна, а следовательно, интеграл не был бы равен нулю. При 17 = 0 из принципа Г амильтона получим  [c.868]

Векторный анализ, включающий теорию винтов. Кинематика. Динамика частицы и твердого тела. Уравнения Лагранжа и Гамильтона. Вариационные принципы. Уравнение Гамильтона — Якоби. Скобки Пуассона. Теория относительности.  [c.439]

ОНТИ, Москва, 1937.— Уравнения Лагранжа и Гамильтона, теория преобразований, уравнение Гамильтона — Якоби, переменные действие—угол, устойчивость, движения твердого тела, возмущения.  [c.440]

Принцип Даламбера. Уравнения Лагранжа и Гамильтона. Канонические преобразования. Теория Гамильтона — Якоби. Особое внимание к геометрии фазового пространства.  [c.441]

Компактный учебник, в котором рассматриваются моменты инерции, неголономные связи, принцип виртуальной работы, динамику частицы и твердого тела, уравнения Лагранжа, Аппеля и Гамильтона, уравнение Гамильтона — Якоби, устойчивость около положения равновесия или равномерного движения. Удар и возмущения.  [c.441]

Подробное изложение принципа Даламбера, уравнений Лагранжа, вариационных принципов, вариации произвольных постоянных, оптики Гамильтона, характеристической функции, уравнений Гамильтона — Якоби, разделения переменных, интегральных инвариантов, систематическое интегрирование систем канонических уравнений, канонические преобразования, подстановки или производящие функции, эквивалентные системы.  [c.442]

Свойства механических систем определяются дифференциальными уравнениями движения системы, в качестве которых могут быть приняты уравнения Лагранжа второго рода. Покажем, как могут быть получены эти уравнения из принципа наименьшего действия в форме Якоби.  [c.507]

Вывод уравнений Лагранжа второго рода из принципа Якоби. Так как предполагается, что движение по всем траекториям сравнения происходит с одним и тем же запасом энергии /г, то  [c.507]

Уравнения Лагранжа. Интегралы энергии и Якоби 221  [c.221]

Различные формы уравнений Лагранжа. Интеграл энергии и интеграл Якоби  [c.221]

Интеграл Якоби. Рассмотрим уравнения Лагранжа (10)-(11) в случае, когда на систему действуют потенциальные и непотенциальные силы  [c.229]

Книга содержит систематическое изложение теоретической механики и основ механики сплошных сред. Большое внимание уделено фундаментальным понятиям и законам механики Ньютона — Галилея, законам изменения и сохранения импульса, кинетического момента и энергии, уравнениям Лагранжа, Гамильтона и Гамильтона — Якоби для класса обобщенно-потенциальных сил, а также законам механики сплошных сред, на единой основе которых рассматриваются идеальная и вязкая жидкости, упругое тело. В книге подробно излагаются-, задача двух тел и классическая теория рассеяния, законы изменения импульса, кинетического момента и энергии относительно неинерциальных систем отсчета, теория линейных колебаний систем под действием потенциальных, гироскопических и диссипативных сил, метод Крылова — Боголюбова для слабо нелинейных систем, методы усреднения уравнений движения. Книга содержит большое количество примеров интересных для физиков, в частности рассматриваются примеры на движения зарядов в заданных электромагнитных полях, задачи на рассеяние частиц, колебания молекул, нелинейные колебания, колебания систем с медленно меняющимися параметрами, примеры из магнитогидродинамики. Книга рассчитана на студентов и аспирантов физических специальностей.  [c.2]


Переменные Якоби. Уравнения Лагранжа можно упростить, если исключить в лагранжиане недиагональные члены вида таШь га и-С этой целью удобно перейти к переменным Якоби, которые вводятся следующим образом пусть q2 = Г12 дз — вектор, соединяющий центр масс  [c.68]

Мы закончим этот параграф выводом соотношения, аналогичного уравнению Лагранжа — Якоби в классической задаче многих тел (материальных точек), взаимно притягивающихся по закону Ньютона.  [c.345]

В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Чтобы вывести принцип Якоби, достаточно повторить до-казательство, уже данное в п° 432, т. е. показать, что исключение времени из уравнений Лагранжа  [c.323]

Гамильтон (1805—1865). Совершенно новый мир, скрывавшийся за достижениями Лагранжа, открылся в исследованиях сэра Уильяма Роуанн Гамильтона. Уравнения Лагранжа были довольно сложными дифференциальными уравнениями второго порядка. Гамильтон сумел преобразовать их в систему дифференциальных уравнений первого порядка с удвоенным числом переменных позиционные координаты и импульсы рассматривались при этом как независимые переменные. Дифференциальные уравнения Гамильтона линейны и разрешены относительно производных. Это простейшая и наиболее удобная форма, к которой могут быть приведены уравнения вариационной задачи. Отсюда название канонические уравнения , данное им Якоби.  [c.391]

Стержень на вращающейся плоскости. В качестве следующего примера рассмотрим систему, исследовавшуюся нами в 8.11. Стержень движется по гладкой плоскости, которая равномерно вращается вокруг горизонтальной оси, фиксированной в этой плоскости. Эта задача проще решается с помощью уравнений Лагранжа, но интересно также решить ее методом Гамильтона — Якоби. Согласно (8.11.1) имеем  [c.298]

Система Лиувилля впервые рассматривалась в Journal de math., XIV, 1849, стр. 257. Интегрирование можно выполнить непосредственно с помощью уравнений Лагранжа, не прибегая к теореме Гамильтона — Якоби см., например, Уиттекер [27]. Другое элементарное доказательство см. далее в этой книге ( 26.9).  [c.329]

Якоби показал, что функция Я может содержать время также expli ite, не делая невозможным образование вариации и вытекающего отсюда дифференциального уравнения. Я использовал это, чтобы добавить к Я еще сумму Е(Р,. р,), в которой Pi обозначает координату, а Р,- — силу, действующую в направлении координаты р, смысл этого будет точнее разъяснен ниже. Величины Р, рассматриваются как заданные функции времени, однако независимые от координат. В этой форме теорема о минимуме вариации дает уравнения Лагранжа для сил Р,. Тем самым целый ряд специаль-  [c.431]

Заметим, что из выражения, найденного Якоби для принципа наименьшего действия, видно, что если силовая функция и связи не зависят от вре-.мени, то и определение траектории выполняется независимо от времени, что не представляется очевидным в уравнениях Лагранжа, но непосредственно ясно из рассмотрения ка[юнических уравнений, которые показывают  [c.875]

Нетрадиционно освещается ряд тем кинематика, общие теоремы динамики, вывод уравнений Лагранжа, уравнение Гамильтона — Якоби. Часть материала выходит за рамки университетского курса элементы теории линейных и квадратичных по скоростям интегралов, применение вариационных принципов, новое доказательство теоремы Дарбу о канонических координатах. В книгу включены задачи, иллюстрирующие и дополняющие теоретический материал, даны методические указания к ним.  [c.2]

П. В. Воронец опубликовал новый метод преобразования дифференциальных уравнений динамики, который позволил значительно расширить известные ранее результаты в области задачи п тел. Развивая идею Э- Рауса об игнорировании координат , он показал, что в случае, когда уравнения движения системы допускают линейные относительно скоростей интегралы, из этих уравнений можно исключить циклические координаты и соответствующие им скорости и ускорения. Этот метод дал возможность П. В. Во-110 ронцу сравнительно просто получить известные результаты Ж. Лагранжа, К. Якоби, Э. Бура, А. Бриоши и Р. Радо при произвольном законе притяжения. П. В. Воронец подробно исследовал задачу четырех тел и указал случай интегрируемости в квадратурах для закона притяжения обратно пропорционально кубам расстояний. В случае сил взаимодействия, пропорциональных любой степени расстояний, он установил возможность двух типов движений. Исследуя дифференциальные уравнения задачи трех тел Ув форме Лагранжа, Воронец изучил случай аннулирования кинетического момента, а также случай пространственного движения, при котором образуемый телами треугольник остается равнобедренным и массы точек, расположенных в его основании, равны.  [c.110]


Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]

Полученное условие представляет собой первый интеграл канонг ческих уравнений Гамильтона, известный как интегра. Якоби. Он существует при тех же предположениях, что и ин теграл Якоби уравнений Лагранжа второго рода.  [c.454]

В 1935 г. немецкий ученый Якоб Нильсен вывел уравнения движения механических систем совершенно нового вида, но эквивалентных уравнениям Лагранжа  [c.10]

Проблема точного интегрирования уравнений динамики — одна из самых популярных тем исследования, начиная со знаменитых Математических начал натуральной философии Ньютона. Руководящей идеей в этом круге вопросов является общая идея симметрии. При решении задачи о центральном движении Ньютон уже использовал соображения симметрии факторизуя орбиты группы вращений, он свел эту задачу к изучению движения по прямой в потенциальном поле. Впоследствии Лагранж и Якоби заметили, что классические интегралы задачи многих гравитирующих тел связаны с инвариантностью уравнений движения относительно группы преобразований Галилея. Это фундаментальное наблюдение обобщено Эмми Нётер каждой группе преобразований, сохраняющих действие по Гамильтону, отвечает интеграл уравнений движения. Верно и обратное фазовый поток уравнений Гамильтона, в которых гамильтонианом служит известный интеграл, переводит решения исходных уравнений движения в решения тех же уравнений. На этой идее основано доказательство известной теоремы Лиувилля о полной интегрируемости уравнений Гамильтона фазовые потоки инволютивных интегралов попарно коммутируют и порождают абелеву группу симметрий максимально возможной размерности на многообразиях их совместных уровней.  [c.6]

Уравнения движения в первых двух случаях подробно изучены с разных точек зрения в классических работах Эйлера, Пуансо, Лагранжа, Пуассона, Якоби. Случай Ковалевской нетривиален во многих отношениях. Он был найден Ковалевской из условия мероморфности решений уравнений Эйлера — Пуассона в комплексной плоскости времени. Случай Горячева — Чаплыгина намного проще его можно проинтегрировать с помощью разделения переменных. Покажем это.  [c.89]

Как мы видели, движение механичесжнх систем можно описать с помощью различных дифференциальных уравнений уравнений Ньютона, уравнений Лагранжа с реакциями связей, уравнений Лагранжа в обобщенных координатах, канонических уравнений Гамильтона и уравнения Гамильтона — Якоби.  [c.449]

М. тесно связана со многими др. разделами физики. Ряд понятий и методов М. при соотвотствукщих обобщениях находит приложение в оптике, статистич. физике, квантовой М., электродинамике, теории относительности и др. (см., напр., Действие, Канонические уравнения механики, Лагранжа функци.ч, Лагранжа уравнения механики, Гамильтона — Якоби уравнения, Наименьшего действия принцип). Кроме того, при решении ряда задач газовой динамики, теории взрыва, теплообмена в движущихся жидкостях и газах, динамики сильно разреженной среды (см. Супераэродинамика), магнитной гидродинамики и т. д. одновременно используются методы и ур-ния как теоретич. М., так и соответственно термодинамики, молекулярной физики, теории электричества и др.  [c.210]


Смотреть страницы где упоминается термин Уравнение Лагранжа — Якоби : [c.329]    [c.331]    [c.232]    [c.672]    [c.483]    [c.330]    [c.18]   
Смотреть главы в:

Справочное руководство по небесной механике и астродинамике Изд.2  -> Уравнение Лагранжа — Якоби


Справочное руководство по небесной механике и астродинамике Изд.2 (1976) -- [ c.290 ]



ПОИСК



Гам??л?.то??а Якоби уравнение уравнению

Лагранжа Якоби

Различные формы уравнений Лагранжа. Интеграл энергии и интеграл Якоби

Уравнения Лагранжа

Уравнения Якоби

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте