Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интеграл Гамильтона

Интеграл в уравнении (2) носит название интеграла Гамильтона, а само соотношение (2) устанавливает принцип Гамильтона.  [c.222]

Интеграл Гамильтона принимает, таким образом, вид А  [c.223]

ТОГО, МОЖНО рассмотреть случаи, когда имеется несколько переменных Xj и интеграл У является кратным функция / будет тогда содержать производные от у, по каждому из переменных Xj. Наконец, можно рассматривать вариации, при которых конечные точки не являются фиксированными. Некоторые из этих обобщений будут рассмотрены нами позже. Пока же мы можем ограничиться интегралом типа (2.12), из которого интеграл Гамильтона  [c.51]


VI. 1. Пример на применение принципа Гамильтона. Вычислить величину интеграла Гамильтона в пределах = О до а) для случая действительного свободного падения материальной точки 2 = б) для случаев  [c.328]

В то время как при пользовании принципом Гамильтона мы сравниваем лишь траектории, бесконечно мало отличающиеся друг от друга, траектории в фазовом пространстве координат д, q (здесь 2 , z) в обоих случаях отличаются от истинного движения на конечные величины. Несмотря на это, величина интеграла Гамильтона и теперь оказывается меньшей в случае а), чем в случае б)  [c.357]

Асинхронная вариация интеграла Гамильтона. Возвратимся к лагранжевой системе (31) общего типа. Выражение (33) вариации 5S относится к переходу от заданного естественного движения а к любому его синхронно-варьированному движению а , даже между различными конечными конфигурациями, если bq не предполагаются равными нулю при i = to и Мы увидим сейчас, какое при-  [c.426]

Дальнейшие замечания об обобщении принципа Гамильтона. Если движение о, к которому относится интеграл Гамильтона S, удовлетворяет лагранжевой системе (31), то на основании выражения (39) имеем Л = О, потому что, по предположению, биномы 2, обращаются в нуль с другой стороны, как мы видели в п. 43 гл. V, в качестве следствия из лагранжевых уравнений имеет место соотношение  [c.427]

Замечания о вычислении S и А. Как мы уже упоминали в п. 10, при вычислении интеграла Гамильтона  [c.434]

Интеграл Гамильтона, асинхронная вариация 426  [c.547]

Интеграл Гамильтона и вторая лагранжева форма уравнений динамики  [c.307]

Использование обобщенных координат — одно из преимуществ формализма Гамильтона—Якоби. Что же касается уравнений Лагранжа, то их особенное преимущество состоит в том, что все вычисления сводятся к составлению выражения для кинетической энергии, выраженной в функции /, д,д, а к простым дифференцированиям. При рассмотрении принципа Гамильтона надо допустить, что систему можно заставить перейти от того же начального к тому же конечному положению, что и в действительном движении, с помощью некоторого фиктивного движения (бесконечно мало отличающегося от действительного), не заботясь о том, чтобы удовлетворялись уравнения динамики, но сохраняя связи. Интеграл Гамильтона может обратиться в нуль для всех вариаций, совместимых со связями, лишь в том случае, если сумма под знаком интеграла постоянно равна нулю. В противном случае, изменяя знаки всех 3 одновременно, можно выбрать их так, чтобы сумма под знаком интеграла была все время положительна, а следовательно, интеграл не был бы равен нулю. При 17 = 0 из принципа Г амильтона получим  [c.868]


Переход к новому типу каузальной связи, который условно можно было бы назвать <(Квантовым и который характерен для квантовой (нерелятивистской и релятивистской) механики, где уже классические величины заменяются операторами, где вероятность состояния индивидуальной частицы и индивидуального акта взаимодействия имеет, как известно, совсем иной смысл, чем вероятность состояния ансамбля в классической статистической механике, приводит к тому, что положение и роль принципа Гамильтона оказываются в квантовой механике совершенно иными, чем в классической физике. Важная историческая роль, сыгранная принципом и оптико-механической аналогией в начальной стадии формирования волновой механики, объясняется не только тем, что существует реальная связь и предельный переход от механики атома к классической физике, но также и тем, что существуют общие черты в типах каузальной связи макро- и микрокосмоса. Но именно потому, что для энергии и времени, так же как для импульса и соответствующей координаты, в квантовой механике имеют место перестановочные соотношения, а сами они являются уже операторами, классический интеграл Гамильтона (и принцип наименьшего действия) имеет в ней не-  [c.873]

Покажем далее, что интеграл Гамильтона  [c.900]

ИНТЕГРАЛ ГАМИЛЬТОНА И ВТОРАЯ ЛАГРАНЖЕВА ФОРМА УРАВНЕНИЙ ДИНАМИКИ.  [c.51]

Полный интеграл Гамильтона — Якоби приводит к следующим трем первым интегралам невозмущенного движения  [c.758]

Свободная точка единичной массы движется в вертикальной плоскости ху под действием силы тяжести. Составить дифференциальное уравнение в частных производных Якоби— Гамильтона и найти его полный интеграл (ось у направлена вертикально вверх).  [c.376]

Пользуясь результатами, полученными при решении предыдущей задачи, и свойствами полного интеграла уравнения Якоби — Гамильтона, найти первые интегралы уравнений движения точки.  [c.376]

Физический маятник массы М вращается вокруг неподвижной горизонтальной оси. Момент инерции маятника относительно этой оси равен /, расстояние от центра масс маятника до оси равно I. Составить дифференциальное уравнение Якоби — Гамильтона, найти его полный интеграл и первые интегралы движения маятника (нулевой уровень потенциальной энергии взять на уровне оси маятника).  [c.376]

Движение волчка, имеющего одну неподвижную точку О, определяется углами Эйлера ф, 0 и ср. Пользуясь результатами рещения задачи 49.11, составить уравнение в частных производных Якоби — Гамильтона и найти полный интеграл его.  [c.376]

Какому условию должен удовлетворять интеграл канонических уравнений Гамильтона  [c.390]

В TOM случае, если система находится только под действием консервативных сил и при этом концы временного интеграла ti и 4 не варьируются, т. е. 8ti = 8t2 = 0, уравнение принципа Гамильтона — Остроградского принимает вид  [c.397]

Применение принципа Гамильтона — Остроградского к установлению действительного движения механической системы в промежутке времени от ti до связано с определением экстремума криволинейного интеграла  [c.401]

На прямом пути удовлетворяются уравнения Лагранжа системы поэтому все выражения, стоящие в скобках под знаком интеграла в формуле (61), тождественно равны нулю. Отсюда сразу следует, что на прямом пути вариация действия по Гамильтону равна нулю, т. е. что прямой путь является экстремалью рассматриваемой вариационной задачи — на прямом пути действие по Гамильтону достигает стационарного значения.  [c.279]

Обратим внимание теперь на то, что справедливо и обратное утверждение если соответствующая а = 0 кривая из пучка, представленного на рис. VI 1.2, такова, что действие по Гамильтону достигает на этой кривой стационарного значения и при а = 0 вариация действия равна нулю, то эта кривая удовлетворяет уравнению Лагранжа, т. е. является прямым путем. Действительно, если положить равной нулю вариацию действия в левой части уравнения (61) и вспомнить затем, что вариации координат б<7у независимы и могут быть выбраны произвольно, то отсюда следует, что выражения, стоящие в скобках под знаком интеграла, порознь равны нулю, т. е. что уравнения Лагранжа удовлетворяются всегда, когда в формуле (61) левая часть обращается в нуль.  [c.280]


Для построенного таким образом семейства можно рассмотреть действие по Гамильтону и вариацию действия. Для вариации действия по Гамильтону воспользуемся формулой (60). Особенность рассматриваемой задачи состоит в том, что все кривые однопараметрического семейства являются прямыми путями и, следовательно, на них тождественно выполняются уравнения Лагранжа. Поэтому интеграл, стоящий в правой части формулы (60), в данном случае тождественно обращается в нуль, и формулы для приращения функционала содержат только проинтегрированную часть  [c.295]

Обратим теперь внимание на следующую особенность интегрального инварианта Пуанкаре — Картана. Если в дифференциальных уравнениях движения —все равно в уравнениях Лагранжа или Гамильтона — время t было выделено и входило иначе, чем координаты, так как по времени велось дифференцирование, то в контурный интеграл (85) дифференциал dt входит совершенно так же, как дифференциалы dqj. Если бы мы рассматривали время как дополнительную координату <7 +i, а в качестве импульса, соответствующего зтой координате, взяли гамильтониан с обратным знаком 1), то контурный интеграл (85) можно было бы переписать так  [c.296]

В силу того, что функция S как полный интеграл уравнения (132) зависит только от < , а и t, равенства (134) определяют конечные соотношения между q, р и t, зависящие от 2п констант сб и Ру. Таким образом, равенства (134) задают в неявной форме движение в старых координатах. Они являются, следовательно, интегралами исходной системы уравнений Гамильтона )  [c.324]

Итак, мы реализовали намеченную в начале этого параграфа программу и определили движение системы, обходя интегрирование канонических уравнений Гамильтона. Правда, при этом нам понадобилось найти полный интеграл уравнения в частных производных.  [c.324]

Обратим теперь внимание на следующее обстоятельство. В координатном пространстве в каждый момент нас интересует положение лишь одной движущейся в нем точки—она определяется мгновенными значениями обобщенных координат рассматриваемой системы. Между тем полный интеграл уравнения Гамильтона — Якоби в каждый момент определяет функцию S, заданную во всем координатном пространстве и имеющую вполне определенное значение в каждой точке этого пространства. В связи с тем, что функция S зависит также и от времени, можно представить себе ее как некоторую поверхность, заданную в координатном пространстве и непрерывно деформирующуюся (или движущуюся). Каким же образом задание функции, определенной на всем пространстве и изменяющейся во времени, может определить движение той единственной точки, которая интересует нас Как связано движение этой точки с деформирующейся поверхностью  [c.324]

Уравнение Гамильтона — Якоби в классической механике используется, главным образом, в тех случаях, когда по каким-либо причинам легче найти полный интеграл этого уравнения, чем проинтегрировать канонические уравнения. Примеры такого рода будут приведены в следующем параграфе. Роль уравнения Гамильтона — Якоби для теоретической физики состоит в том, что уравнение Шредингера, являющееся основным уравнением квантовой механики, в пределе переходит в уравнение Гамильтона — Якоби классической механики. Именно через уравнение Гамильтона—Якоби устанавливается контакт между классической и квантовой механикой.  [c.325]

Мы установим сначала, какую форму принимает для таких систем интегральный инвариант Пуанкаре — Картана после этого рассмотрим, как записать для них систему уравнений, вид которой напоминает уравнения Лагранжа или уравнения Гамильтона, но порядок ниже (за счет использования интеграла энергии) далее выясним, как выглядят в этом случае вариационный принцип Гамильтона и уравнение Гамильтона — Якоби и какие возможности открываются для определения полного интеграла этого уравнения.  [c.326]

Таким образом, поставленная задача полностью решена —при исследовании консервативных и обобщенно консервативных систем выписаны уравнения типа канонических уравнений Гамильтона (или типа Лагранжа), но порядок систем этих уравнений уменьшен на два за счет использования интеграла энергии и введения независимой квадратуры (147).  [c.330]

Предположим, что каким-либо образом удалось найти полный интеграл уравнения Гамильтона — Якоби, т. е. функцию V, зависящую от всех q н от п констант, причем последней из этих констант является a = /i. Эта функция V должна удовлетворять условию  [c.333]

Чтобы закончить этот параграф, вернемся к физичесйому смыслу мирового вектора J, от которого зависит интеграл Гамильтона. Мы выразили его как  [c.656]

При этом все другие параметры, как, например, скорости, должны быть получены из этих обобщенных координат. Таким образом, принцип, оставаясь механическим по своему происхождению, охватывает другие области физики. Первостепенную роль в этом расширении сферы действия принципа играет аналогия, ибо хотя по содержанию обобщенные координаты могут существенно отличаться от координат механики х, у, z, но формы связи их между собой и скоростями их изменений совпадают с соответствующими формами механики. В сущности, значение принципа Гамильтона в классической неполевой физике сводится к весьлш простому обстоятельству. Исследуется какая-либо физическая система, о которой а priori нельзя утверждать, что она удовлетворяет уравнениям Лагранжа. Непосредственно подставлять значения соответствующих функций в эти уравнения не всегда лшжно во-первых, часто трудно подобрать соответствующий вид функции, а во-вторых, неясно, будут ли она удовлетворять этим уравнениям. Поэтому на сцену выступает принцип Гамильтона. Если удастся параметры такой системы привести к виду функции L и если эта функция обратит в нуль вариацию интеграла Гамильтона, то тогда, введя эту функцию в уравнения Лагранжа, можно динамически определить систему.  [c.871]


Рассмотрим теперь интеграл ( ) уравнения (108.5), в котором порядок действия стоящих в показателе операторов H t) определен условием хронологического упорядочения, как говорят,— Г-экспоиеиту от интеграла гамильтониана  [c.462]

Хотя интегрнрованпе уравнения Остроградского — Якоби (139.1) в общем случае не упрон 1ает решения задачи, тем не менее, как указывалось выше, во многих случаях проще найти полный интеграл уравнения (139.1), а затем и интегралы канонической системы уравнений Гамильтона (132.5).  [c.384]

Поэтому принцип Гамильтона—Остроградского может быть сформулирован еще так действительное движение консервативной механической сист мы таково, что вариация интеграла S при фиксиро-  [c.397]

Непосредственно видно, что преобразование (78) удовлетворяет условиям 1° и 2°. Лагранжиан (так же как и гамильтониан) консервативной системы не зависит явно от времени, а dt = dt, т. е. функция d jdt в данном случае равна единице. Поэтому преобразование (66) заведомо не меняет вид лагранжиана (и, разумеется, гамильтониана) и из теоремы Нётер следует, что консервативная система должна иметь первый интеграл вида (69). Но в данном случае все функции qiy в силу преобразования (78) тождественно равны qj, т. е. не зависят от а, и, следовательно, производные от них по параметру а равны нулю, а д- 1да= и формула (69) принимает вид  [c.290]

Записанный так интегральный инвариант Пуанкаре — Картана для консервативных систем отличается от интегрального И11ва-рианта в общем случае движения в потенциальном поле в трех отношениях во-первых, суммирование в первом члене ведется не от единицы до л, а от двух до п во-вторых, вместо гамильтониана Я в этом выражении стоит функция К, которая получилась, когда интеграл энергии (136) был разрешен относительно импульса Pi (см. выражение (138)) в-третьнх, роль t играет теперь <7i. Таким образом, воспользовавшись тем, что для консервативных и обобщенно консервативных систем гамильтониан не зависит явно от времени, мы исключили время из выражения интегрального инварианта Пуанкаре — Картана. Теперь совершенно так же, как в общих случаях движения систем в потенциальном поле из интегрального инварианта Пуанкаре — Картана следуют канонические уравнения Гамильтона, для консервативных и обобщенно консервативных систем из интегрального инварианта (139) следуют уравнения  [c.328]

Эти уравнения отличаются от уравнений Гамильтона в тех же отнсилениях, в каких интегральный инвариант (139) отличается от интегрального инварианта Пуанкаре — Картана роль функции Н играет функция К, вместо t стоит <7, и / меняется не от 1 до п, а от 2 до п. Полученные таким образом уравнения (140) для консервативных систем являются аналогом уравнений Гамильтона и называются уравнениями Уиттекера. Уравнений Уиттекера на два меньше, чем уравнений Гамильтона, и следовательно, использовав интеграл энергии и исключив время, нам удалось снизить порядок системы на две единицы.  [c.328]


Смотреть страницы где упоминается термин Интеграл Гамильтона : [c.223]    [c.224]    [c.421]    [c.428]    [c.565]    [c.901]    [c.580]    [c.385]    [c.235]   
Аналитическая динамика (1999) -- [ c.411 ]



ПОИСК



Восьмая лекция. Интеграл Гамильтона и вторая Лагранжева форма уравнение динамики

Гамильтон

Гамильтона —Якоби уравнение полный интеграл его

Гамильтониан нелинейной системы первого порядка. Обращение интегралов Решение алгебраических и трансцендентных уравнений. Усреднение слабонелинейных систем. Линейные сингулярно-возмущенные уравнения. Система общего вида Гамильтонова теория специальных функций

Группы монодромии гамильтоновых систем с однозначными интегралами

Действие (интеграл действия) по Гамильтону

Дифференцирование операторов по времени, скобки Пуассона. Квантовые уравнения Гамильтона. Интегралы движения Теоремы Эренфеста Задачи

Доикина правило об интегралах гамильтоновой системы

Зэк гамильтоново

Интеграл Гамильтона как решение гамильтонова уравнении с частными производными

Интеграл Гамильтона, асинхронная

Интеграл Гамильтона, асинхронная вариация

Интеграл Гамильтона, асинхронная производными

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Интегралы уравнений Гамильтона. Теорема Пуассона

Интегралы. Классы интегралов гамильтоновых сисИнвариантные соотношения

Канонические уравнения Гамильтона Первые интегралы

Ковариантность. 2. Калибровочная инвариантность Структура кинетической энергии. 4. Невырожденность Принцип наименьшего действия по Гамильтону. 6. Движение по геодезическим Понятие первого интеграла

Лагранжиан, функционал действия. Принцип Гамильтона-Остроградского (или принцип наименьшего действия) Первые интегралы. Теорема Нетер. Движение системы во внешнем поле. Лагранжиан заряженной частицы в заданном электромагнитном поле. Вектор-потенциал магнитного поля соленоида Движение относительно неинерциальных систем отсчета

Обобщенный интеграл энергии. Функция Гамильтона

Отыскание полного интеграла уравнения Гамильтона—Якоби методом разделения переменных

Первые интегралы гамильтоновых систем Теорема Якоби-Пуассона. Уравнения Уиттекера

Первые интегралы уравнений Гамильтона и интегрируемые системы

Полиномиальные интегралы гамильтоновых систем

Полиномиальные интегралы гамильтоновых систем с экспоненциальным взаимодействием

Полный интеграл Якоби уравнения Гамильтона — Якоби

Полный интеграл. Теорема Якоби. Метод разделения переменных. Переменные действие-угол. Метод характеристик. Метод Фока. Задача Коши. Классическая механика и квантовая механика. Уравнение Гамильтона-Якоби вр- представлении. Элементы гамильтоновой оптики Каноническая теория возмущений

Понижение порядка системы Гамильтона при помощи интеграла энергии

Построение главной функции Гамильтона при помощи полного интеграла Якоби

Теорема Пуанкаре о несуществовании однозначных аналитических первых интегралов гамильтоновой системы

Теорема Пуассона об интеграле гамильтоновой системы

Теорема о существовании полного интеграла уравнения Гамильтона-Якоби

Тридцать пятая лекция. Два класса интегралов, получаемых по методу Гамильтона для вадач механики, определение для них значений выражений (, ф)

Уравнения Гамильтона и их интегралы

Частный интеграл уравнений Гамильтона Якоби уравнения второго порядк

Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных

Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных соотношений



© 2025 Mash-xxl.info Реклама на сайте