Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ударная прочность методы определения

Оценка сопротивления разрушению элементов конструкций и деталей машин, как отмечалось выше, предполагает в первую очередь, анализ условий их нагружения и разрушения при эксплуатации - уровни общей и местной напряженности, температуры стенок, числа и форма циклов нагружения, наличие ударных перегрузок, характер распределения и величины остаточных напряжений, накопление коррозионных и др повреждений, источники и характер разрушения. Получаемые из этого анализа данные являются основой для выбора конструкционных материалов, методов определения их механических свойств, а также методов и критериев анализа прочности, ресурса и надежности.  [c.70]


Метод определения откольной прочности, основанный на анализе образцов после испьггания [3,4], представляется на первый взгляд наиболее наглядным. Импульсы динамической нагрузки создаются в испытуемых образцах, как правило, ударом пластины, причем для более надежной интерпретации истории нагружения ударники зачастую изготовляются из того же материала, что и образец, а толщина образца обычно берется равной двум толщинам ударника. При известной ударной сжимаемости материала амплитуда и длительность импульса сжатия в этом случае легко рассчитываются, а отраженный импульс растяжения принимается симметричным падающему импульсу сжатия.  [c.152]

В подъемно-транспортном машиностроении находит применение наиболее прогрессивный метод определения допускаемых напряжений — так называемый дифференциальный метод, основанный на установлении запаса прочности рассчитываемой детали в зависимости от степени ее ответственности и режима работы механизма в конкретных условиях его использования. При назначении величин коэффициентов, входяш их в общий запас прочности, учитывают необходимость обеспечения безопасности людей, сохранности груза и оборудования и целости машины. Части машин, повреждения которых могут вызвать падение груза, опрокидывание крана и т. п., рассчитывают с повышенным запасом прочности. Кроме того, нри определении запаса прочности учитывают специфику работы механизма грузоподъемной машины в условиях повторно-кратковременного режима с большим числом циклов в час. Изменение нагрузки и частота ее приложения приобретают особое значение при расчетах на усталость. При расчете элементов механизмов на прочность необходимо учитывать влияние ударных нагрузок, появляющихся при резких пусках и остановках, при отрыве груза от земли без предварительного натяжения каната и т. п.  [c.46]

Для определения ударной прочности конструкционных пластиков, в том числе термопластов, в нашей стране стандартизован один метод — разрушение стандартного образца при 20 °С с помощью  [c.39]

Показатели ударной прочности, определенные с помощью маятниковых копров, часто не совпадают с показателями, полученными другими методами, и главное— с поведением материала в реальных условиях эксплуатации. Более соответствуют реальным условиям нагружения материала методы падающего груза (шарика, стрелы и т. п.) [64], хотя результаты и этих испытаний, как и в маятниковом методе, зависят от геометрии образца. Одним из основных преимуществ методов падающего груза является то, что образец разрушается в наиболее слабом месте. При стандартных испытаниях с помощью маятниковых копров образцы из термопласта изготавливают литьем под давлением и материал ориентируется в направлении длины образца. Стандартные методы определения также весьма условны. Только изменение скорости нагружения, предусмотренное стандартом, с 4,5 до 120 м/мин, может изменить Т р на 15—20 °С [66].  [c.43]


Рис. IV.27. Температурная зависимость ударной прочности, определенной по методу падающего груза, полистирола, эластифицированного 5% полибутадиена в процессе механического смешения (1) и при полимеризации стирола в присутствии растворенного полибутадиена [82]. Рис. IV.27. <a href="/info/191882">Температурная зависимость</a> <a href="/info/46494">ударной прочности</a>, определенной по методу падающего груза, полистирола, эластифицированного 5% полибутадиена в <a href="/info/319413">процессе механического</a> смешения (1) и при <a href="/info/137491">полимеризации стирола</a> в присутствии растворенного полибутадиена [82].
Контроль качества лакокрасочных покрытий обеспечивается тщательной очисткой металлической поверхности, соблюдением технологии нанесения покрытия, применением материалов, соответствующих требованиям ГОСТов и ТУ. Проверка качества лакокрасочных материалов и покрытий включает определение вязкости по вискозиметру ВЗ-4 или ВЗ-1 (ГОСТ 8420—74), адгезии пленки методом отслаивания или решетчатым надрезом по ГОСТ 15140—78, ударной прочности, по прибору У-1А (ГОСТ 4765—73), эластичности пленки при изгибе, толщины пленки, продолжительности высыхания и твердости по маятниковому прибору МЭ-3 (ГОСТ 5233—67). Толщину лакокрасочных покрытий определяют магнитными измерителями толщины ИТП (диапазон измерений 10...500 мкм), МИП-10 или МТ-20н (диапазон измерений  [c.156]

Тип наплавленного металла выбирают на основе анализа условий службы рабочих поверхностей наплавляемой детали. Поэтому важнейшим свойством наплавленного металла является способность его сопротивляться определенным видам изнашивания. Однако пока не существует стандартных методов определения износостойкости материалов, подобных тем, при помощи которых определяют такие характеристики, как предел прочности, ударную вязкость, твердость и т. п. Изнашивание как процесс постепенного изменения размеров детали очень чувствителен к изменению условий внешнего воздействия, т. е. к условиям испытаний. Поэтому в литературе по вопросам износостойкости различных материалов содержится большое количество несопоставимых и противоречивых данных. Кроме того, условия службы различных деталей весьма разнообразны, часто одна и та же деталь подвергается одновременно нескольким видам изнашивания.  [c.696]

Существует много стандартных методов определения механических свойств металлов. Это испытания на растяжение, испытания гладких образцов на статический изгиб и надрезанных образцов на ударный изгиб, определение твердости металла, испытание на длительную прочность и многие другие. Основное назначение этих испытаний состоит в получении количественных характеристик металла, необходимых для выполнения инженерных расчетов. Часть методов предназначена для получения характеристик металла, которые хотя и не участвуют как количественные в расчетах на прочность, но используются для качественной оценки работоспособности изготовляемых из него деталей или для установления соответствия металла техническим условиям на его поставку.  [c.88]

Контроль качества сварного соединения с помощью образцов-свидетелей. Для контроля качества сварных соединений применяют периодические испытания контрольных технологических образцов-свидетелей. Эти образцы удобны для проведения испытаний и измерений, и их легко изготовить. При обеспечении одинаковых условий сварки образцов и сварных изделий (однородность материала, подготовка свариваемых поверхностей, режим сварки и др.) можно по измеренным характеристикам сварного соединения образцов судить о качестве сварного соединения готовых изделий. Качество сварки на контрольных образцах оценивают по результатам испытаний и измерений, проводимых соответственно требованиям, предъявляемым к сварным соединениям. Кроме механической прочности, нередко предъявляются требования особых свойств. Например, сохранение электрических свойств одного из металлов без изменения их в зоне сварного соединения или сохранение оптических свойств в сварной зоне и геометрических размеров изделий, получаемых способом ДС кварцевых элементов, и т. д. В ряде случаев к сварным соединениям не предъявляются повышенные требования по прочности. Например, для элементов электродов электролизеров, изготовленных способом ДС из пористых и сетчатых материалов, основной является электрохимическая характеристика, полученная при различных плотностях тока. Имея указанные выше данные, необходимо провести статистическую обработку результатов испытаний и измерений, используя математические методы. Основной задачей такой обработки является оценка среднего значения характеристики того или иного свойства и ошибки в определении этого среднего, а также выбор минимально необходимого количества образцов (или замеров) для оценки среднего с требуемой точностью. Эта задача является стандартной для любых измерений и подробно рассматривается во многих руководствах [8]. Следует иметь в виду, что, несмотря на одинаковые условия сварки образцов и изделий, качество соединения может быть различным по следующим причинам. При сварке деталей, имеющих значительно большие размеры по сравнению с контрольными образцами, возможны неравномерность нагрева вдоль поверхности соединения, а также неравномерность передачи давления. Образцы и изделия вообще имеют различную кривизну свариваемых поверхностей, что не обеспечивает идентичности условий формирования соединения. В ряде случаев, особенно для соединений ответственного назначения, перед разрушающими испытаниями образцов и изделий целесообразно, если это возможно, проводить неразрушающий контроль качества сварного соединения, а также другие возможные исследования для установления корреляции между различными измеряемыми характеристиками. Основные методы определения механических свойств сварного соединения и его отдельных зон устанавливает ГОСТ 6996—66. Имеются стандарты для испытаний на растяжение, ударную вязкость, коррозионную стойкость и т. д. [18]. В этих ГОСТах даны определения характеристик, оцениваемых в результате испытания, типовые формы и размеры образцов, основные требования к испытательному оборудованию, методика проведения испытания и подсчета результатов.  [c.249]


Выбор марки стали может быть признан правильным, если обеспечены прочность и надежность детали при экономичном легировании. Существующие расчётные методы выбора стали [1, 2] основаны на требовании обеспечения заданной прочности в центре сечения или на определенном расстоянии от поверхности детали (на А или Vs радиуса) в зависимости от вида и величины рабочих напряжений. Основной характеристикой, отражающей пригодность стали для данной детали, оказывается прокаливаемость. Ударная вязкость и критическая температура хрупкости не используются в расчете и участвуют лишь в общей оценке стали.  [c.114]

Вязкость разрушения при плоской деформации для многих материалов также зависит от скорости нагружения. При ударном нагружении вязкость разрушения обычно называют динамической ударной вязкостью К, Для некоторых материалов, таких, например, как конструкционная сталь малой прочности, характерно непрерывное уменьшение вязкости разрушения с увеличением скорости нагружения [15] (см. рис. 15.24(a)). Хотя методы испытаний для определения значений Ки пока еще не стандартизованы, эта величина широко используется расчетчиками. Как упоминалось в гл. 8, статическая вязкость разрушения зависит от температуры. Динамическая ударная вязкость разрушения, как показано на рис. 15.24(6), также является функцией температуры возрастает с повышением температуры.  [c.534]

Для определения допустимых режимов нагрева, температурных интервалов ковки и штамповки, степени, скорости и схемы деформации, условий охлаждения поковок, а также необходимого усилия машины следует знать зависимость механических свойств обрабатываемого материала от температуры деформирования. Механические свойства (пластичность, прочность, сопротивление деформации, ковкость и др.) определяют различными методами испытаний на растяжение, сжатие, кручение и ударный изгиб.  [c.131]

Для оценки сопротивления хрупкому разрушению конструкционных сталей разного уровня прочности используют комплекс методов испытаний, включающий построение сериальных кривых ударной вязкости с анализом вида излома, определение работы развития  [c.50]

Дефекты отливок выявляются различными методами контроля. Соответствие размеров отливок размерам чертежа устанавливают путем разметки на специальных столах с помощью различных приспособлений. Отливки периодически разрезают для определения размеров внутренних полостей, разностенности, смещений. Контроль размеров отливок позволяет своевременно предупредить массовый брак из-за износа или коробления модели и стержневых ящиков. Механические свойства отливок (предел прочности, относительное удлинение, ударная вязкость, твердость и др.) контролируют испытаниями отдельно изготовленных или прилитых образцов, а также (в отдельных случаях) образцов, вырезаемых из тела отливки.  [c.205]

К разрушающим методам относятся механические испытания, технологические пробы, металлографические исследования, химический анализ, коррозионные испытания, испытания на свариваемость. Прочность и пластичность сварных соединений проверяют при помощи механических испытаний специально изготовленных образцов. Пе ГОСТу предусмотрены следующие виды механических испытаний испытание металла шва на растяжение на образцах Гагарина (рис. 203,а) испытание сварного соединения на растяжение (рис. 203, б) испытание металла шва й зоны термического влияния на ударный изгиб (рис. 203,в) испытание сварного соединения на изгиб (рис. 203, г) определение твердости.  [c.437]

Испытания при повышенных температурах проводятся на статические растяжение, сжатие и кручение, на твердость, на ударную вязкость, а также на выносливость. Все эти испытания могут проводиться по стандартным методам, установленным для испытаний, проводимых при нормальной температуре, с определением пределов пропорциональности, текучести, прочности, выносливости и т. д.  [c.249]

К методам испытания образцов с трещинами относятся как простые методы, дающие сравнительную оценку материалов (ударный изгиб или растяжение), так и более сложные, сводящиеся к определению критических коэффициентов интенсивности напряжений. Последние предполагают возможность ориентировочной оценки прочности конструкций, имеющих трещины. Они получили довольно широкое распространение в ряде стран [4—6].  [c.94]

Прочность стекла на ударное сжатие. Для измерения прочности стекла по описанным ранее методам ввиду большого разброса получаемых значений прочности требуется значительное количество образцов сравнительно большого размера, а потому эти методы не могут быть использованы на первых стадиях разработки новых составов стекол, когда у исследователя имеется лишь небольшое количество материала для определения его механических свойств.  [c.78]

Методы механических испытаний и определяемые показатели устанавливаются ГОСТами или техническими условиями в зависимости от свойств сплавов и условий эксплуатации отливок. Наиболее распространенным для всех сплавов является испытание на растяжение с определением предела прочности и относительного удлинения, а для стального литья предела текучести и относительного сужения. Для отливок из серого чугуна обязательным методом является испытание на изгиб с определением предела прочности на изгиб и стрелы прогиба. Для отливок из стали и модифицированного серого чугуна дополнительно испытывают ударную вязкость.  [c.141]


Развитие современного машиностроения выдвигает необходимость изыскания путей повышения прочности деформируемых магниевых сплавов. Очевидно, работу по созданию более высокопрочных магниевых сплавов необходимо вести в направлении улучшения композиций и упрочнения сплавов методами обработки давлением. Повышение прочности деформированных магниевых сплавов методом усовершенствования композиций рассмотрено ниже. Упрочнение магниевых сплавов методами обработки давлением возможно, если использовать следующие закономерности изменения механических свойств в зависимости от условий деформации. Оказывается, что при деформировании поликристаллических металлов основные показатели механических свойств изменяются следующи.м образом твердость, предел прочности, предел текучести и предел упругости растут, а удлинение, сужение поперечного сечения и ударная вязкость падают. Из этих закономерностей следует, что необходимое упрочнение после холодной деформации может быть достигнуто применением определенной для данного сплава степени деформирования, а упрочнение при смешанной деформации — при соблюдении для данного сплава определенной температуры обработки давлением. И только упрочнение при горячей обработке теоретически невозможно, так как в этом случае полностью завершаются разупрочняющие процессы.  [c.192]

Существенно определять следующие свойства фрикционных материалов фрикционную теплостойкость, твердость, теплоемкость, теплопроводность, сопротивление на срез, прочность на разрыв, ударную вязкость. Эти свойства важно было бы определять в зависимости от температуры, однако это затруднительно. Наиболее существенным является определение твердости как функции температуры, так как, располагая значением твердости, можно подсчитать износ. Опишем некоторые методы.  [c.347]

Ценность испытаний на ударный изгиб состоит в том, что ударная вязкость обнаруживает такие свойства металлов, которые не могут быть выявлены обычными статическими испытаниями. Нередки случаи, когда при испытании двух сталей статические характеристики их (предел прочности, удлинение, сужение, твердость и т. д.) не давали существенного различия и только при испытании на ударную вязкость обнаруживалось резкое различие между испытуемыми сталями. Так, например, Н. Н. Давиденковым и Ф. Ф. Витманом при сопоставлении свойств крупно- и мелкозернистого железа с 0,15% С были получены результаты, приведенные в табл. 14. Данные табл. 14 показывают, что определение ударной вязкости является важнейшим методом контроля качества металлов.  [c.165]

НИИ их прочности В СВЯЗИ СО снижением темпе-г ратуры отпуска (рис. 15.2). Это делает необходимым использование как макрофрактографп-ческого (А. П. Гуляев), так и микрофрактогра-фического метода определения порога хладноломкости (для некоторых, в частности строительных сталей). Вместе с тем для высокопрочных сталей со структурой мартенсита такое определение теряет всякий смысл в связи с крайне вялым, практически неощутимым изменением как самой ударной вязкости, так и фрактографической картины разрушения.  [c.236]

Для оценки механических свойств полимеров и полимерных материалов широко используют некоторые другие методы. Одним из наиболее важных является метод определения ударной прочности — оценка сопротивления материалов разрушению при высокоскоростном нагружении. При этом измеряют энергию разрушения образцов — показатель, имеющий важное практическое значение, но трудно поддающийся теоретическому анализу и интерпретации. Наиболее распространенными методами определения ударной прочности полимеров являютсд методы, в которых используется свободно падающий груз (шар или острый наконечник [4, 5, 11]), и маятниковые методы (по Изоду [12—14] по Шарпи [12]). Высокоскоростные методы определения деформационно-прочностных свойств при растяжении [15—16] также можно рассматривать как ударные методы. Другими типами  [c.22]

В монографии систематизируются результаты исследования прочности твердых тел главным образом металлов, сжатых ударными волнами, н данные об их разрушении импульсными растягивающими напряжениями. Большое внимание уделяется вопросам создания и применения математических моделей поведения вещества под действием динамических нагрузок. Рассматриваются экспериментальные способы получения импульсных нагрузок и методы определения сдвиговой прочности и нараметров разрушающих расТяТиваюпщх импульсных напряжений.  [c.2]

Испытание Оу производится на маятниковом копре (для образцов размерами 15Х 10Х 120 мм) или приборе динстат (для образцов размерами 10X2X15 мм) в приспособлениях, представляющих собой трубчатую печь с металлическим сердечником И синхронизирующим устройством (рис. 22-25) или нагревательную камеру с зажимами для образца, закрытую съемной крышкой (рис. 22-26). Методы определения и расчеты величины предела прочности при статическом изгибе и удельной ударной вязкости приведены в 25-10, а также в ГОСТ 4648-63 и 14235-69.  [c.431]

Третьим методом испытаний ПВХ-пластикатов на холодостойкость является испытание на ударную прочность при низких температурах (по ASTM D746-57). Испытание заключается в том, что на охлажденный образец, помещенный в специальный криостат, обрушивают удар определенной силы, который образец должен выдержать без разрушения и образования трещин. Обычно это самые тяжелые условия испытания, особенно для жестких материалов, так как разрушающая нагрузка прикладывается почти мгновенно.  [c.47]

В книге изложены результаты теоретических и экспериментальных исследований статичеокой, вибрационной и ударной прочности сварных точечных и электр озаклепочных соединений, проведенных, главным образом, научными работниками Уральского политехнического института им. С. М. Кирова за последние 25 лет даны простые и достаточно точные методы расчета прочности сварных точечных соединений в зависимости от количества сварных точек з продольно.м и поперечном рядах исследованы сдвиги точечных соединений >и определен модуль сдвига этих соединений дан метод определения ударных аил и расчет предельной ударной прочности различных точечных соединений яриведены результаты статической вибрационной ПР0ЧН0СТ1И различных точечных соединений при низких температурах.  [c.2]

Леонардо да Винчи был одним из первых, кто изобрел простейшее устройство для определения механических свойств железных проволок при растяжении. Метод заключался в следующем один конец проволоки жестко закреплялся на перекладине, а ко второму концу прикреплялось ведерко, в которое засыпалась дробь. Метод квазистатического растяжения проволоки путем увеличения количества дроби позволил установить, что короткие проволоки прочнее длинных. Этот принцип испытания, введенный более 500 лет назад, был положен впоследствии для определения механический свойств металла при квазистатическом нагружении. Современные испытательные машины доведены до совершенства, так как оснащены компьютерами и позволяют не только задавать необходимый режим нагружения, но и рассчитывать прочность на разрыв, пластичность и другие свойства деформируемого образца. Для учета реакции металла на внешнее воздействие, зависящей от способа пршгожения нагрузки, были выделены кроме квазистатических испытаний на разрыв, также испытания на удар (ударная вязкость), циклическое нагружение (усталость), статические нагружение (ползучесть) и другие виды.  [c.229]


В практике машиностроения применяются проектировочный (определительный) и поверочный методы расчета. Проектировочный расчет дает возможность определить форму, размеры и материал деталей по заданным величинам внешних сил и видам упругих деформаций. Поверочный йсче/7г служит для определения действительных напряжений, испытываемых деталями, с учетом формы размеров, материала детали, а также величины действительных внешних сил и вида упругих деформаций. Однако независимо от способа расчета его основной целью является установление запаса прочности п. При этом должны наиболее полно учитываться конструктивные и технологические факторы, влияющие на прочность, а также режим нагрузки (статический, переменный, ударный, длительный при повышенных или пониженных температурах детали).  [c.244]

Схемы и описания установок даны в [183, 184]. Для всех методов испытаний был выбран единый цилиндрический образец. В работах Г. М. Сорокина показано, что механизм разрушения при ударно-абразивном изнашивании определяется большим количеством факторов энергией удара, физико-механическими характеристиками абразива, составом и свойствами испытуемого материала, степенью закрепленности абразивных частиц и т. д. [183—185]. Общепринятые характеристики прочности и пластичности (предел текучести, предел прочности, твердость, относительное удлинение, относительное сужение, ударная вязкость) неоднозначно влияют на износостойкость при ударно-абразивном изнашивании. Повышение прочности или пластичности сказывается благоприятно только до определенного порогового уровня. Дальнейшее увеличение этих характеристик приводцт к возрастанию износа, но причины понижения износостойкости различны. Если рост прочности сопровождается повышен115м вязкохрупкого перехода, то износ увеличивается за счет интенсификации хрупкого выкрашивания. Значительное повышение пластич-. ности приводит к падению износостойкости из-за активного пластического течения и сопутствующего наклепа. По-видимому, максимальной износостойкостью обладают сплавы, находящиеся На границе хрупкого и вязкого разрушения.  [c.109]

Приведенные экспериментальные данные, полученные по результатам квазистатических испытаний с высокими скоростями, по амплитуде упругого предвестника и скоростной зависимости откольной прочности металлов близки к значениям вязкости, определенным из анализа закономерностей распространения малых возмущений па фронте ударных волн [92, 242, 172, 173, 234]. Однако они значительно ниже значений, полученных в работе [101] в результате анализа смещения слоев металла при соударении плит под углом. В последнем случае для определения коэффициента вязкости использована параболическая зависимость продольного смещения слоя от его глубины, справедливая только для глубины больше 61 (61 — толщина более тонкой пластины). На этой глубине скорость деформации значительно ниже, чем вблизи точки соударения, что может повлиять на величину коэффициента вязкости. В табл. 4 приведены коэффициенты вязкости для некоторых металлов, определенные различными методами по результатам обработки скоростной зависимости сопротивления деформации, скоростной зависимости откольной прочности, затуханию упругого предвестника, результатам изучения закономерностей распространения малых возмущений на фронте ударной волны и из анализа процесса ква-зиустановившегося течения материала в области контакта пластин, соударяющихся под углом.  [c.135]

Определение механических свойств металлокерамических материалов связано со следующими особенностями. Пористость металлокерамических изделий затрудняет определение и оценку механических свойств. Небольшой размер и неоднородная плотность затрудняют вырезку из них образцов для испытаний. Кроме того, при вырезке обычно ослабляется прочность пористого металла. Измерения твёрдости можно производить непосредственно на изделиях без обработки резанием. Испытания на разрыв можно осуществлять непосредственно на изделиях и даже обломках изделий методом давления клиньев (по Люд-вику) [5]. Методику испытания см. т. 3. Испытания на разрыв и сжатие обычно производятся на образцах, отпрессованных из тех же порошков в специальных прессформах и спечённых в тех же условиях, что и исследуемая партия изделий. Испытания на ударную вязкость производятся на образцах без надрезов.  [c.548]

Для оценки свойств биметаллов применяют комплекс испытаний, регламентированных ГОСТ 10885-85 и соответствующими техническими условиями так, свойства металла основы для горячекатаной коррозионно-стойкой двухслойной стали определяют испытаниями на растнжеине но ГОСТ 1497-84, ударную вязкость — по ГОСТ 9454-78 и др. Прочность соединения определяют при испытания.х на изгиб образцов с расположением плакирующего слоя внутрь и наружу, на срез — с определением сопротивления срезу по плоскости соприкосновения основного и плакирующего слоев (табл. 8.43). Плакирующий коррозионно-стойкий слон испытывают на межкристаллитную коррозию. Биметаллические листы подвергаются неразрушающим методам контроля.  [c.299]

Железо и стали. Железо и стали различных марок достаточно широко экспериментально исследованы. В качестве типичных представителей этих материалов рассмотрим армко-железо, низкоуглеродистую сталь Ст.З, легированные сталь 40Х и сталь 12Х18Н10Т. Откольная. прочность стали Ст.З, определенная в [4] методом емкостного датчика измерения скорости в опытах при нагружении цилиндрических образцов плоской детонационной волной, составила 1.66 ГПа (амплитуда ударной волны в стали 16 ГПа, характерное время нагружения с). Там же показано достаточно  [c.153]

Для стали 20 в [55] методом измерения главных напряжений определена сдвиговая прочность Гд = 0.8 ГПа при 01 = 1.1 ГПа и Уд = 1.7 ГПа при 01 = 4.5 ГПа. Приведенные в [34] данць1е для той же марки стали противоречат этим результатам, так как не зарегистрировано увеличения сдвиговой прочности стали 20 до напряжений 01 > 9.0 ГПа при 0 > Оне значение Уд = 0.67 ГПа, что почти в 3 раза меньше величины Уд при О1 = 5.5 ГПа в [55]. Возможным источником расхождения результатов определения Уд стали 20, полученных одним и тем же методом измерения главных напряжений, по мнению [55], могут служить, как и для сплава В95, погрешности измерения импульсных напряжений диэлектрическим датчиком в случае многократного ударно-волнового нагружения.  [c.211]

Надежность работы в значительной мере зависит от соответствия примененных материалов и их качества требованиям нормативнотехнологической документации. Действующие нормы и правила предусматривают механические испытания и металлографический анализ основного металла и сварных соединений котлов, трубопроводов пара и горячей воды и сосудов, работающих под давлением. Объемы и методы механических испытаний и металлографических исследований строго регламентированы [23, 24, 25]. Механические испытания ставят своей задачей определение механических свойств при комнатной и рабочей температуре, без знания которых нельзя правильно выбрать материал для изготовления детали и оценить состояние металла в процессе эксплуатации. Основными видами механических испытаний являются испытания на растяжение, твердость и на ударный изгиб (динамические испытания). Технологические испытания на загиб, раздачу и свариваемость служат для оценки возможности проведения технологических операций, необходимых для изготовления и монтажа оборудования (сварки, гибки, вальцовки и т. п.). Такие важнейшие для котельных материалов испытания, как испытания на ползучесть, длительную прочность, сопротивление усталости, релаксацию напряжений, не предусматриваются действующими правилами котлонадзора в качестве контрольных и служат в основном для выбора допускаемых напряжений и установления ресурса работы элементов, изготовленных из различных сталей.  [c.8]

Все трубы главных паропроводов, паропроводов промперегрева, паропроводные трубы и коллекторы в пределах котла из сталей марок 12Х1МФ и 15Х1М1Ф для рабочей среды с температурой 520 °С и выше подвергают контролю микроструктуры металла неразрушающим методом. Для контроля мегалла 5 % труб главного паропровода проводят карбидный анализ, кратковременные механические испытания с определением характеристик прочности, пластичности и ударной вязкости. Для этих испытаний механическим путем отрезают кольцевые заготовки шириной 15 мм. Компенсацию длин вырезанных образцов проводят за счет монтажных припусков или вставкой. При обнаружении хотя бы одной трубы с недопустимыми механическими свойствами контролируют все остальные трубы той же плавки. Трубы с отступлениями по механическим свойствам подлежат замене.  [c.208]


Испытания по определению температуры остановки хрупкой трещины приводят к выявлению условий, в которых возможно или невозможно динамическое нестабильное развитие хрупкой трещины. Так, при испытании сталей 14ХМНДФР и 17Г1С в термически обработанном состоянии при напряжении 200 МПа температура остановки хрупкой трещины соответственно равна —20 и —15 С, в то время как по результатам испытаний на ударную вязкость при низких тем-пфатурах различий в деформационной способности этих сталей не обнаружено. Таким образом, мы считаем, что описанный метод оценки хрупкой прочности сталей должен найти широкое применение в исследовательской практике, так как он дает важную информацию о деформационной способности высокопрочных сталей и сплавов при низкотемпературном нагружении.  [c.126]

Задачи, стоящие перед ТЦО, разноплановы. Стали и другие сплавы, подвергаемые ТЦО, существенно отличаются по химическому составу и физике процессов упрочнения. Разнообразны способы нагревов и охлаждений. Все это усложняет предварительную отработку технологического процесса ТЦО деталей. В целях ускорения и обеспечения достаточно высокой степени достоверности получаемого результата при разработке режимов ТЦО целесообразно использовать метод планирования экспериментов. В каждом конкретном случае ставится задача достижения определенного уровня тех или иных свойств, например наибольшей ударной вязкости или наибольшей прочности при заданном значении характеристик пластичности. Как показано в предыдущих главах, формирование свойств и структуры сплавов при ТЦО определяется выбранными режимами. Исследование влияния отдельных параметров обработки дает необходимые сведения для дальнейшей оптимизации процесса в целом. При этом определено, что механические свойства сплавов существенно зависят от таких параметров режима ТЦО, как скорости нагревов и охлаждений, максимальная и минимальная температуры в циклах, число циклов и др. Кроме того, такие стандартные  [c.210]


Смотреть страницы где упоминается термин Ударная прочность методы определения : [c.190]    [c.195]    [c.38]    [c.58]    [c.231]    [c.52]    [c.4]    [c.299]    [c.106]   
Механические свойства полимеров и полимерных композиций (1978) -- [ c.22 , c.23 , c.184 ]



ПОИСК



Прочность Определение

Прочность ударная



© 2025 Mash-xxl.info Реклама на сайте