Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства металлов и методы их определения

Механические свойства металлов и методы их определения  [c.287]

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ  [c.73]

Механические и другие свойства металлов и методы их определения. Используемые для изготовления различных изделий материалы прежде всего должны иметь определенный запас механических свойств, обеспечивающих неразрушение изделий эксплуатационными нагрузками.  [c.14]

Механические и технологические свойства металлов и методы их определения  [c.46]


Механические характеристики металла элементов конструкций и методы их определения описаны в большом объеме научно-технической литературы и нормативных документов. Однако конструктивные элементы аппаратов имеют некоторые особенности, которые вытекают из условий эксплуатаций и которые накладывают специальные требования к методам определения механических свойств.  [c.277]

В ней рассмотрены структура, физические, химические, механические и технологические свойства металлов и изложены методы их определения описаны неметаллические материалы (пластмассы, абразивные материалы) приведены сведения о металлургии черных и цветных металлов, литейном производстве, обработке металлов давлением, о сварке металлов, резании, термической обработке.  [c.2]

Стандарт устанавливает методы определения механических свойств металла шва и сварного соединения, свариваемых всеми видами сварки, из всех свариваемых металлов и их сплавов и распространяется на испытания, проводимые при определении качества продукции, присадочных материалов и при установлении квалификации сварщиков  [c.537]

Свойства металлов И сплавов зависят от состава и структуры. Их определяют различными методами, которые нужно разделить на механические, физические, технологические, химические и специальные (определение жаропрочности, коррозионной стойкости и т. д.).  [c.81]

Работоспособность конструктивных элементов оборудования представляет собой очень широкое и комплексное понятие, охватывающее возможность выполнять свои рабочие функции без разрушений и аварий в течение длительного, но определенного и ограниченного времени. При этом должна быть обеспечена безопасность и надежность эксплуатации, соответствующая объектам такого ответственного назначения, как сосуды и аппараты, работающие под внутренним давлением. При оценке работоспособности конструктивных элементов аппаратов необходимо опираться на данные о реальной их дефектности и данные о реальных механических характеристиках металла с учетом эффектов старения. Диагностическое оборудование должно давать возможность производить измерения всех основных параметров повреждаемости, определяющих работоспособность элементов. Необходимо иметь методы, позволяющие оценивать работоспособность по данным о дефектах, свойствах металла в процессе эксплуатации, параметрах нагруженности с учетом перепадов давления, состояния коррозионной защиты и др.  [c.277]


Для определения твердости покрытия можно пользоваться лишь методом царапания с применением склерометра типа Мартенса или методом затухающих колебаний на маятниковом приборе Кузнецова. Все другие известные методы испытания твердости (методы вдавливания и методы упругого отскакивания бойка) не пригодны для испытания твердости покрытий, так как при их применении на получающиеся результаты оказывают влияние механические свойства основного металла. Объясняется это незначительностью толщины слоя покрытий, наносимых на детали. Исключить влияние основного металла можно, лишь увеличивая толщину слоя покрытая на испытываемых образцах.  [c.546]

Легирование является наиболее распространенным методом повышения механических свойств металлических материалов. Увеличение прочностных характеристик материалов происходит благодаря влиянию легируюш,их элементов на исходное состояние сплава и на его изменение в процессе пластической деформации и проявляется в повышении предела текучести и возникновении более интенсивного деформационного упрочнения. Известно, что при деформировании в металлах и сплавах происходит образование дислокаций и формирование определенной для каждого материала и условий дислокационной структуры. В связи с этим становится ясным, что в основе повышения прочности металлов и сплавов лежит взаимодействие дислокаций с барьерами, которыми могут быть различные дефекты, границы, растворимые атомы, включения или дисперсные частицы.  [c.76]

В технике используются механические колебания в очень широком интервале частот — от нескольких герц до 200 МГц, или от инфразвука до ультразвука. Широкий интервал применяемых частот обусловлен тем, что характер их распространения и поглощения зависит от частоты. Ею определяются контролируемая зона, минимальная измеряемая толщина, степень поглощения и характер возбужденных волн. В ультразвуковой дефектоскопии используется целая гамма различных видов волн, которые отличаются друг от друга как направлениями распространения колебаний, так и характером колебаний. Механические колебания используются для выявления нарушения сплошности и измерения толщины. Свойство их поглощения при прохождении через контролируемую среду используется для нахождения мелких рассеянных инородных включений и пустот, оценки неоднородности зерна, структуры, определения плотности массы, внутренних напряжений, коэффициента вязкости, межкристаллитной коррозии, зоны поверхностного распространения. Большим достоинством методов и средств неразрушающего ультразвукового контроля является их универсальность — возможность применения как для металлов и сплавов, так и для керамики, полупроводников, пластических масс, бетона, фарфора, стекла, ферритов, твердых сплавов, т. е. таких синтетических материалов, которые находят все большее применение в технике.  [c.548]

Сварные соединения. Методы определения механических свойств. Стандарт содержит виды испытаний и область применения, отбор образцов, условия проведения испытаний и оценки их результатов, испытание металла различных участков сварного соединения и наплавленного металла на статическое (кратковременное) растяжение, на ударный изгиб (на надрезанных образцах), на стойкость против механического старения, измерение твердости различных участков металла сварного соединения, испытание сварного соединения на статическое растяжение, на статический изгиб, на ударный разрыв.  [c.501]

К специальным методам контроля относятся также определение механических свойств сварного соединения, металлографические исследования структуры сварного соединения, анализ химического состава металла шва или наплавленного металла, определение коррозионной стойкости сварного соединения в определенной среде. Необходимость их применения устанавливается ТУ на изготовление и приемку конструкций.  [c.131]


Контроль качества сварного соединения с помощью образцов-свидетелей. Для контроля качества сварных соединений применяют периодические испытания контрольных технологических образцов-свидетелей. Эти образцы удобны для проведения испытаний и измерений, и их легко изготовить. При обеспечении одинаковых условий сварки образцов и сварных изделий (однородность материала, подготовка свариваемых поверхностей, режим сварки и др.) можно по измеренным характеристикам сварного соединения образцов судить о качестве сварного соединения готовых изделий. Качество сварки на контрольных образцах оценивают по результатам испытаний и измерений, проводимых соответственно требованиям, предъявляемым к сварным соединениям. Кроме механической прочности, нередко предъявляются требования особых свойств. Например, сохранение электрических свойств одного из металлов без изменения их в зоне сварного соединения или сохранение оптических свойств в сварной зоне и геометрических размеров изделий, получаемых способом ДС кварцевых элементов, и т. д. В ряде случаев к сварным соединениям не предъявляются повышенные требования по прочности. Например, для элементов электродов электролизеров, изготовленных способом ДС из пористых и сетчатых материалов, основной является электрохимическая характеристика, полученная при различных плотностях тока. Имея указанные выше данные, необходимо провести статистическую обработку результатов испытаний и измерений, используя математические методы. Основной задачей такой обработки является оценка среднего значения характеристики того или иного свойства и ошибки в определении этого среднего, а также выбор минимально необходимого количества образцов (или замеров) для оценки среднего с требуемой точностью. Эта задача является стандартной для любых измерений и подробно рассматривается во многих руководствах [8]. Следует иметь в виду, что, несмотря на одинаковые условия сварки образцов и изделий, качество соединения может быть различным по следующим причинам. При сварке деталей, имеющих значительно большие размеры по сравнению с контрольными образцами, возможны неравномерность нагрева вдоль поверхности соединения, а также неравномерность передачи давления. Образцы и изделия вообще имеют различную кривизну свариваемых поверхностей, что не обеспечивает идентичности условий формирования соединения. В ряде случаев, особенно для соединений ответственного назначения, перед разрушающими испытаниями образцов и изделий целесообразно, если это возможно, проводить неразрушающий контроль качества сварного соединения, а также другие возможные исследования для установления корреляции между различными измеряемыми характеристиками. Основные методы определения механических свойств сварного соединения и его отдельных зон устанавливает ГОСТ 6996—66. Имеются стандарты для испытаний на растяжение, ударную вязкость, коррозионную стойкость и т. д. [18]. В этих ГОСТах даны определения характеристик, оцениваемых в результате испытания, типовые формы и размеры образцов, основные требования к испытательному оборудованию, методика проведения испытания и подсчета результатов.  [c.249]

Следовало бы различать понятия прочности сцепления, как результата физико-химического взаимодействия защитного покрытия с металлом, выражающей действительную связь между ними, и прочности покрытия к различным видам механического воздействия, нарушающим эту связь. Однако отсутствие доступных методов определения действительных сил связи, равно как силы, необходимой для их преодоления, приводит к необходимости пользоваться относительными способами определения столь важной характеристики, как прочность сцепления защитного покрытия с металлом, пренебрегая отличием свойств самого покрытия на испытуемых образцах и относя полученные результаты измерений всецело к рассматриваемой характеристике.  [c.42]

Авторы предлагаемой книги предприняли попытку систематизировать и обобщить основные методы и методики научно-технического прогнозирования, применяемые в отечественной и зарубежной практике. Оценка приведенных методов дается с позиции возможности их использования при прогнозировании развития конструкционных материалов для машиностроения. Приводится целый ряд конкретных примеров, сформулированы основные принципы построения автоматизированной системы прогнозирования материалов. Известное ленинское выражение металл — это хлеб промышленности ярко характеризует тот факт, что технический прогресс любой отрасли народного хозяйства связан с производством материалов, обладающих определенным комплексом физических, механических, специальных свойств.  [c.3]

Несмотря на прогрессивные методы получения изделий из этих материалов, такие, как намотка, прессование, определенный (порой весьма существенный) объем механической обработки остается. Механическая обработка необходима для получения высокой точности и требуемой, иногда весьма сложной, формы изделий. В то же время из-за специфических свойств этих материалов их механическая обработка отличается от существующих способов обработки металлов.  [c.3]

Прибор автоматически молсет регистрировать диаграмму вдавливания в координатах Р, h, а также в координатах Pjh, h. При подсчете Н по методу Бриыелля через глубину невосстановленного отпечатка, т. е. Н = Р1(кОк), отношение P/h связано с Н постоянным для данного шара коэффициентом 1/(я 1), что позволяет просто оценить значение Н в любой точке диаграммы. Совершенствование приборов для автоматической записи диаграммы вдавливания, детальное исследование диаграмм и их связи с диаграммами растяисения представляют основную задачу при дальнейшей разработке безобразцовых методов определения механических свойств металлов по характеристикам твердости.  [c.348]


Отсутствие совершенных средств контроля зарождения и развития повреждений металла, общепринятых принципов назначения новых сроков службы оборудования и трубопроводов с учетом их фактического состояния и условий работы не позволяют осуществлять высокоточное прогнозирование момента отказа конструкции. Оценку показателей надежности и определение остаточного ресурса оборудования и трубопроводов по зафиксированным параметрам их технического состояния проводят согласно научно-технической документации [57, 62-65] и методикам [30, 64, 66-81, 89 91]. Оценку фактической нагруженности оборудования и трубопроводов выполняют расчетными методами с учетом фактической геометрии и размеров конструкций, вида и величины выявленных дефектов и вызываемой ими концентрации напряжений, а также результатов экспериментальных исследований напряженно-деформированного состояния металла и изменения его физико-механических свойств. За исключением трещин механического или коррозионного происхождения развитие остальных повреждений трубопроводов прогнозируют по результатам внутритруб-ной или наружной дефектоскопии и контроля коррозии.  [c.139]

Общую и локальную виды коррозии контролируют не реже 2 раз в месяц по зондам электросопротивления или аналогичным, но другого типа по всей технологической линии в жидких фазах, газовой фазе и по возможности на границах раздела, а также не менее 1 раза в год по образцам-свидетелям и замерам толщины стенок ультразвуковым или другим дефектоскопом. За сероводородным растрескиванием ведется наблюдение косвенным методом по степени водородпроницаемости водородных зондов на первой стадии (в течение года) не реже 1 раза в неделю и на последующей—1 раза в квартал по напряженным образцам и образцам для гиба-перегиба — не реже 1 раза в год. По мере проведения ремонтных работ необходимы вырезка образцов металла и полный анализ их состояния определение механических свойств, содержания водорода, стойкости к сероводородному растрескиванию, а также металлографические исследования. Кроме того, периодически проводится визуальный осмотр внешнего состояния и не реже 1 раза в год — внутренний осмотр сосудов с проведением соответствующих замеров и техническим освидетельствованием их.  [c.176]

Можно сформулировать несколько требований к методам интенсивной пластической деформации, которые следует учитывать при их развитии для получения наноструктур в объемных образцах и заготовках. Это, во-первых, важность получения ультра-мелкозернистых структур, имеющих преимущественно большеугловые границы зерен, поскольку именно в этом случае происходит качественное изменение свойств материалов (гл. 4,5). Во-вторых, формирование наноструктур, однородных по всему объему образца, что необходимо для обеспечения стабильности свойств полученных материалов. В-третьих, образцы не должны иметь механических повреждений или разрущений несмотря на их интенсивное деформирование. Эти требования не могут быть реализованы путем использования обычных методов обработки металлов давлением, таких как прокатка, вытяжка или экструзия. Для формирования наноструктур в объемных образцах необходимым является использование специальных механических схем деформирования, позволяющих достичь больших деформаций материалов при относительно низких температурах, а также определение оптимальных режимов обработки материалов. К настоящему времени большинство результатов получено с использованием двух методов ИПД — кручения под высоким давлением и РКУ-прессования. Имеются также работы по получению нано- и субмикрокристаллических структур в ряде металлов и сплавов путем использования всесторонней ковки [16, 17 и др.], РКУ-вытяжки [18], метода песочных часов [19].  [c.9]

Безобразцовый метод основан на инденторшлх испытаниях материалов, в результате которых определяют специальные характеристики твердости и пересчитывают их на показатели других механических свойств. Главное его достоинство заключается в возможности ускоренной оценки механических характеристик металла готовых изделий, не выводя их из строя и не вырезая из них образцов. Поэтому этот метод получил название безобразцового метода определения механических свойств.  [c.49]

Применение двух- и многослойных сталей и сплавов, обладающих взаимодополняющими физико-механическими свойствами, позволяет значительно снизить металлоемкость элементов конструкций. Проблема проектирования, создания и эксплуатации биметаллических конструкций повышенного ресурса, в частности высоконагру-женного оборудования АЭС, делает весьма актуальными экспериментальные исследования, направленные на разработку методов оценки несущей способности таких конструкций не только по интегральным характеристикам прочности, но и с учетом наличия трещиноподобных дефектов на стадиях инициации разрущения, а также распространения и остановки трещин. Развитие методов определения критериев сопротивления разрушению и их анализ необходимы для оптимизации свойств биметалла путем правильного выбора сочетания разнородных составляющих соединения, назначения технологического способа его изготовления и определения рационального соотношения толщин основного металла и плакирующего слоя. Кроме того, это необходимо при проведении расчетов на прочность и оценке ресурса биметаллических элементов конструкций, определении допускаемых размеров дефектов, выборе методов и средств дефектоскопии.  [c.107]

Предлагаемый читателю первый том справочника Металловедение и термическая обработка стали посвящен изложению методик изучения тонкого строения и структуры сталей и определению их разнообразных свойств (механических, физических, эксплуатационных). Такое построение многотомного справочника представляется правильным, если иметь в виду преимущественно экспериментальный характер науки о металлах. В этом томе, наряду с традиционными методами изучения структуры и свойств (макро- и микроанализ, рентгеновская дифракто-метрия, электронная микроскопия, определение механических свойств при растяжении, ударе, циклическом нагружении и т.п.), рассмотрены развитые в последние годы тонкие методы структурых исследований (спектроскопические, резонансные, микроспектральные и др.) и методы определения сопротивления разрушению в различных условиях нагружения (параметры вязкости разрушения, кавитационное разрушение, износостойкость, сопротивление газовой коррозии) в сочетании с подробным изложением методик фрактографического анализа. Все эти новые разделы отличают настоящее издание от предыдущих.  [c.8]

На многих машиностроительных предприятиях, потребителях металлопродукции, испытания механических свойств не проводят, вопрос о выборе наиболее эффективного направления использования поступающего металла решают по результатам входного контроля химического состава. При отсутствии надежных методов испытаний некоторых свойств на металлургических предприятиях определение этих свойств также заменяется установлением содержания влияющих на качество металла элементов и т.д. Таким образом, в общем комплексе взаимосвязанных проблем повышения технико-экономической эффективности выплавки черных металлов и их качественных показателей важная роль принадлежит мероприятиям, гарантирующим получение надежной измерительной информации о химическом составе шихтовых материалов, полуфабрикатов и готовой продукции. Не меньшее значение имеет основанная на измерениях химического состава информация о стабильности технологических процессов, обеспечивающая возможность их регулирования. Отмеченными причинами объясняется повышенное внимание, которое уделнется в промышленно раз-  [c.12]


Надежность работы в значительной мере зависит от соответствия примененных материалов и их качества требованиям нормативнотехнологической документации. Действующие нормы и правила предусматривают механические испытания и металлографический анализ основного металла и сварных соединений котлов, трубопроводов пара и горячей воды и сосудов, работающих под давлением. Объемы и методы механических испытаний и металлографических исследований строго регламентированы [23, 24, 25]. Механические испытания ставят своей задачей определение механических свойств при комнатной и рабочей температуре, без знания которых нельзя правильно выбрать материал для изготовления детали и оценить состояние металла в процессе эксплуатации. Основными видами механических испытаний являются испытания на растяжение, твердость и на ударный изгиб (динамические испытания). Технологические испытания на загиб, раздачу и свариваемость служат для оценки возможности проведения технологических операций, необходимых для изготовления и монтажа оборудования (сварки, гибки, вальцовки и т. п.). Такие важнейшие для котельных материалов испытания, как испытания на ползучесть, длительную прочность, сопротивление усталости, релаксацию напряжений, не предусматриваются действующими правилами котлонадзора в качестве контрольных и служат в основном для выбора допускаемых напряжений и установления ресурса работы элементов, изготовленных из различных сталей.  [c.8]

При участии автора книги в СССР были разработаны РД 50.344— 82 "Методические указания. Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Определение характеристик вязкости разрушения (трещиностойкости) при циклическом нагружении", являющиеся первым межотраслевым нормативно-методическим документом по испытаниям металлов на трещиностойкость. Определяемые в соответствии с этими методическими указаниями характе 1стики могут быть использованы (наряду с другими характеристиками механических свойств) для суждения о сопротивлении материала развитию трещины и определения влияния на него различных металлургических, технологических и эксплуатационных факторов сопоставления материалов при обосновании их выбора для машин и конструкций контроля качества материалов оценки долговечности элементов конструкций на основании данных об их дефектности и напряженном состоянии установления Критерия неразрушающего контроля и анализа причин разрушения конструкций.  [c.49]

Современные методы расчёта (см. гл. П — X зтого тома) отражают влияние динамичности нагрузок, формы и жёсткости деталей, типа напряжённого состояния, пластичности, усталости, ползучести и ряда других факторов на несущую способность, поддающихся расчётному или экспериментальпо.му определению. Ряд факторов не поддаётся таким определениям, и их влияние должпо быть отражено в запасе прочности на основании наблюдений за работой деталей и узлов, статистического анализа данных эксплоатации и испытания машин. И. С. Стрелецким [47] и А. Р. Ржаницыным [21] на основании статистических кривых распределения возникающих усилий и отклонений механических свойств, а также анализа основных факторов отклонения между действительными и расчётными усилиями, обоснована каноническая структура запаса прочности п в виде произведения минимального числа сомножителей п = 1- г,2- Щ, каждый из которых отражает важнейшие факторы отклонения между рассчитываемой и фактической несущей способностью детали или конструкции [31]. К одной группе факторов относятся а) разница в величине нагрузок, вводимых Б расчёт, и нагрузок действительных (определение последних в ряде случаев затруднительно, например, нагрузки, развиваемые при горячей и холодной обработке металлов, нагрузки на ходовую часть автомобилей, динамические усилия на лопатки турбин и т. д.) б) разница в величине уси-  [c.383]

В отличие от предложенных ранее безобразцовых способов данный метод базируется на определении твердости (ГОСТ 18661-73) и учитывает индивидуальные особенности материала. Разработанный метод определения механических свойств позволяет осуществлять контроль качества металла 100% изделий без нарушения их целостности. Время на проведение испытаний сокращается более чем в 10 раз. Экономия металла за счет отказа от вырезки образцов составляет около 4 кг на каждую трубу паропровода диаметром 273X20 мм.  [c.284]

При дуговой сварке никеля и его сплавов пет необходимости всегда стремиться к получению металла пша, обладаюгцего таким же химическим составом и структурой, как свариваемый материал. Например, технически чистый никель не удается сварить без пор, трещип, с достаточно высокими показателями механических и коррозионных свойств шва, если его химический состав и структура будут индептичными основному металлу. Для получения сварных швов, удовлетворяющих разнообразным требованиям, часто приходится прибегать к комплексному легированию их элементами, не содержащимися в основном металле, и одновременно препятствовать обогащению шва вредными примесями. В зависимости от метода сварки никеля могут быть применены различные способы легирования металла шва. Наиболее надежно легирование электродной проволокой определенного состава в сочегашш с пассивным нелегирующим электродным покрытием, флюсом плп защитой инертным газом. При этом должны быть обеспечены условия, обеспечивающие полное усвоение сварочной ванной легирующих элементов, содержащихся в основном и присадочном металлах. Во время ручной сварки легирование шва может осуществляться через электродное покрытие, в состав которого вводятся соответствующие порошки металлов пли ферросплавов. При сварке под обычными плавлеными флюсами легирование металла шва является следствием физико-химических процессов между окислами флюса и никелем.  [c.181]

Часто различные образцы металлов и сплавов испытывают на сжатие, кручение, срез, изгиб, удар и т. д. Испытания образцов материала на растяжение, кручение и т. д. и построение при этом диаграмм деформация— напряжение обязательно связано с разрушением образцов. Очень часто образцы нельзя разрушать испытанием, так как нужно определить механические свойства заготовок или готовых изделий. В этом случае и, кроме того, для ускорения прочностных испытаний можно получить представление о механических свойствах материалов путем определения их сопротивляемости местной деформации, которые принято называть твердостью материалов. Такая деформация создается вдавливанием в испытуемый образец практически недефор-мируемого тела определенной формы, обычно шарика или алмазной пирамиды под определенной нагрузкой. Испытания на твердость проводятся быстро и не требуют изготовления сложных образцов. Наиболее распространенный метод измерения твердости — способ ее определения по площади отпечатка, который остается после вдавливания в испытуемый материал закаленного стального шарика диаметром от 2,5 до 10 мм при определенной нагрузке (от 62,5 кг до 3000 кг). Этот метод определения твердости называется методом Бринеля.  [c.138]

ХРУПКОСТЬ МЕТАЛЛОВ, свойство металла при статической нагрузке рваться, ломаться или разрушаться без заметной остаточной деформации. Если металл перед разрывом обнару- кивает пластич. деформации (см. Деформация пластическая), а остаточных деформаций не получается только при ударной нагрузке, то это свойство называется ударной хрупкостью. X. м. при низких и обыкновенных иногда называется холодноломко-с т ь ю, а X. м. в раскаленном состоянии—к р а с-н о л о м к о с т ь ю. Хрупкость зависит от целого ряда факторов от структуры металла, ориентации кристаллитов, от примесей, от самого метода испытания и т. д. Один и тот же слиток металла в одном направлении м. б. хрупким, а в другом пластичным. Начиная приблизительно с 1920 года, металловедение сделало большие успехи благодаря тому, что был открыт ряд способов получения металлич. монокристаллов, т. е. одиночных кристаллов, в виде стержней. Детальные исследования механических свойств этих монокристаллов, произведенные нем. физиками (Полани, Э. Шмид, Закс и их сотрудники) и англ. металловедами (Тейлор, Карпентер, мисс Элам и др.), дали весьма ценные ре-. ультаты для понимания механизма хрупкости и пластичности (см.). Эти исследования показали, что в металлич. монокристаллах существуют вполне определенные кристаллографич. плоскости—плоскости с наиболее плотной упаковкой атомов, по к-рым начинается трансляция, или скольжение, одних слоев относительно других. Это явление начинается тогда, когда с двигающее, или скалывающее, напряжение в данной плоскости и по вполне определенному направлению достигает некоторого критич. значения 5. Кристаллографич. направление в плоскости скольжения, по которому атомы расположены наиболее близко друг к другу, является направлением скольжения.  [c.319]


Вторая особенность определения хладостойкости сварных соединений состоит в оптимизации условий сварки. Ориентируясь на наименее хладостойкую зону, варьируют режимы сварки, чаще всего погонную энергию, добиваясь наилучших показателей по ударной вязкости. Существуют методы испытаний, использующие образцы, по форме и размерам близкие к натуральным сварным соединениям или даже узлам. Они позволяют оценить агрегатную сопротивляемость соединения или сварного узла. При испытании таких образцов определяют вторую критическую температуру Гкр , при которой Оср.р = ао,2- Следует заметить, что в лабораторных условиях сварные узлы обычно дают более низкие критические температуры из-за малого числа испытываемых образцов. Рассеяние свойств металлов, режимов сварки, форм концентраторов, а главное, их радиусов приводит на практике к тому, что отдельные экземпляры изделий имеют более высокую критическую температуру хрупкости. Чтобы выявить свойства сварных узлов при температуре выше Ткрг, определяют пластичность как при низких, так и при более высоких температурах. Значения температуры, при которых регистрируются стабильные высокие результаты по пластичности, обеспечивают максимально возможные механические свойства. При наличии отдельных выпадов низкой пластичности данная температура не может рассматриваться как исключающая хрупкие разрушения.  [c.172]

В 50—70-х годах XIX в. в самостоятельную дисциплину, тесно связанную с инструментоведением, оформляется теория оптических инструментов, с помощью которой на основе достижений в расчетах оптических систем, разработке теории аберраций и технологии оптического стекла стали успешно решать задачу установления оптимальных условий для получения правильного изображения наблюдаемого объекта, подобного ему по геометрическому виду и по распределению яркости. Именно в этот период немецкий ученый К. Ф. Гаусс, отказавшись от понятия идеальной оптической системы, разработал методику расчета оптических систем с учетом толщины оптических деталей, положенную в основу современных оптических расчетов. Именно в этот период были разработаны и внедрены в производство прогрессивные методы варки оптического стекла с заданными свойствами. В значительной степени быстрому развитию точного приборостроения способствовало создание ряда оптических инструментов, предназначенных для сборки, юстировки и контроля точных приборов в процессе их изготовления и эксплуатации. Новая отрасль — металлография позволила применять при изготовлении приборов металлы, удовлетворяющие определенным механическим (повышенная твердость, незначительный износ), физическим (малый коэффициент расширения, иногда отсут-  [c.360]


Смотреть страницы где упоминается термин Механические свойства металлов и методы их определения : [c.198]    [c.636]    [c.36]    [c.337]    [c.273]    [c.179]   
Смотреть главы в:

Авиационный технический справочник  -> Механические свойства металлов и методы их определения

Технология металлов  -> Механические свойства металлов и методы их определения

Материалы и технология машиностроения Издание 2  -> Механические свойства металлов и методы их определения

Технология металлов Издание 2  -> Механические свойства металлов и методы их определения

Токарная обработка Изд5  -> Механические свойства металлов и методы их определения



ПОИСК



Металлов Свойства

Металлы Механические свойства

Метод механический

Методы определения механических свойств

Методы определения механических свойств металлов во взаимодействии со средой Определение склонности сплавов к коррозионному растрескиванию Ажогин)

Механические и технологические свойства металлов и методы их определения

Механические свойства и методы определения механических свойств

Механические свойства металлов и методы их определения Процессы, происходящие при нагружении и деформировании металлов

Микромеханические методы определения механических свойств Микромеханические испытания металлов (В. Л. Конопленко, Фридман)

Неразрушающий (безобразцовый) контроль механических свойств металла по характеристикам твердоТвердость и основные методы ее определения

Определение свойств металлов

Основные методы определения механических свойств металлов и i сплавов

Свойства металлов и методы их определения



© 2025 Mash-xxl.info Реклама на сайте