Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модуль сдвига 160 - Определение

В то же время модуль сдвига, определенный для Земли в целом по кратковременным воздействиям (землетрясения, приливы и перемещения масс в атмосфере и др.) составляет около 15-10 ° H м- . Таким образом, земной шар является вязкоупругим телом с периодом релаксации т 10 с.  [c.1180]

Определение модуля сдвига в плоскости пластины по формулам (2.26) и (2.27) в случае неоднородной структуры материала по толщине не всегда корректно. Например, в случае слоистого ортотропного композиционного материала с раздельною укладкой монослоев под различными углами модули сдвига, определенные по зависимости (2.26) либо (2.27), будут фиктивными. Однако через их значения с учетом геометрической структуры укладки можно экспериментально определить модули сдвига монослоев Тогда расчет эффективного модуля сдвига композиционного материала в плоскости укладки не представляет труда и выполняется по известной методике усреднения [25].  [c.43]


Значения модулей сдвига, определенные этими методами, оказались весьма близкими.  [c.161]

Пойнтинг в дополнение отметил, что известное значение модуля сдвига, определенное на основании крутильных колебаний, может уменьшиться примерно на 0,1% при осевой нагрузке, соответствующей осевым деформациям порядка 2-10 . Он пояснил далее продольное движение, пропорциональное е , которого следовало  [c.362]

При крутящем нагружении в противоположность другим колебательным нагружениям не происходит изменения объема. Поэтому изотермический модуль кручения (модуль сдвига) можно приравнять модулю сдвига, определенному адиабатически на приборе для измерения собственных частот. Адиабатический модуль упругости, напротив, всегда больше, чем изотермический модуль, например определенный при испытании на растяжение. Причина заключается в том, что из-за упругого нагружения колебаниями при растяжении и изгибе в детали возникают уплотненные и увеличенные участки, и температурные изменения, протекающие с этими периодическими изменениями объема, из-за быстроты не могут быть выравнены в течение одного периода колебания. В литературе адиабатический модуль ад называют также динамическим модулем, а изотермический модуль — статическим.  [c.219]

Число витков п определяют расчетом деформации пружины. При определении полного прогиба f пружины будем исходить из равенства элементарных работ от действия внешней силы Р и внутреннего крутящего момента Т. Тогда Рб/= ТАо, где с1/ — элементарное перемещение по оси пружины d f = Гс1//(ОУр) элементарный угол деформации при кручении й1 — элементарный отрезок витка пружины О—модуль сдвига — полярный момент инерции. Получаем  [c.357]

Модель сферического включения развивалась в направлении, в котором конкретизировались упругие свойства включения и матрицы. При этом задавались значения постоянных упругости, например %, ц, о, , (сжимаемости, модуля сдвига и коэффициента Пуассона) матрицы и р, включения, а также радиусы Г и (см. рис. 9, а). Тогда из условия равновесия безграничной матрицы с включением (условия минимума суммарной упругой энергии матрицы и включения) получается формула для определения Го (см. (4,8)), которую приближенно можно переписать в виде  [c.60]

Для ортотропных материалов с известными направлениями главных осей упругой симметрии модуль сдвига можно вычислять по значениям 45 и V45. Этот метод обычно используют для определения модуля сдвига в плоскости укладки арматуры. Применение его для оценки значений межслойных модулей сдвига ограничено вследствие необходимости изготовления плит большой толщины, из которых получают образцы.  [c.45]


Несмотря на то, что разброс значений модулей упругости и коэффициентов Пуассона для композиционных материалов обычно мал и чувствительность этих характеристик к изменению геометрических размеров образца относительно невелика, разброс значений модулей сдвига, определяемых этим методом, значительно выше, чем в случае определения их из опытов на кручение пластинок.  [c.45]

Задача определения модулей межслойного сдвига окончательно не решена до настоящего времени. Сложность ее решения обусловлена тем, что межслойные модули сдвига, как правило, определяются на стержнях, где трудно реализовать условия чистого сдвига. Обычно для этой цели используется изгиб коротких балок или кручение стержней с различным отношением параметров их поперечного сечения. Первый способ прост в реализации, но не позволяет получать достоверных сведений вследствие сложного напряженного состояния в образце при малом отношении //Л (см. с. 41). Приближенные зависимости, которые исполь-  [c.45]

Между рассмотренными вариантами армирования имеется принципиальное различие в их целевом предназначении. Для создаваемых на их основе композиционных материалов проектируется либо повышение жесткости на растяжение, либо улучшение сдвиговых свойств в определенной плоскости, либо их совместное увеличение во всем объеме. Так, у материалов, армированных в трех ортогональных направлениях согласно варианту 1, следует ожидать наибольшие значения модулей упругости в этих направлениях но сравнению со всеми остальными вариантами пространственного армирования. Такое же утверждение относительно модулей сдвига в трех главных плоскостях упругой симметрии следует для композиционного материала, армированного по варианту 3 с шестью направлениями армирования.  [c.88]

Определение модуля сдвига Q. Модуль сдвига G определяют из следующего равенства  [c.72]

Группу Определение механических свойств покрытий составляют методы оценки упругих, прочностных и пластических свойств. Из четырех известных констант упругости для покрытий обычно определяются модуль Юнга и коэффициент Пуассона. Публикаций об экспериментальном исследовании других констант упругости покрытий — модуле объемной упругости и модуле сдвига, по-видимому, нет. Неясным остается вопрос о влиянии пористости на модуль упругости. Одной из самых распространенных и наиболее легко оцениваемых характеристик покрытий является микротвердость. Методика определения микротвердости, обладая несомненными достоинствами (неразрушающее испытание, оперативность измерения, простота и доступность оборудования и т. д.), в то же время дает большое количество информации. Когезионная прочность покрытий (чаще всего, предел прочности) исследуется в продольном и поперечном направлении. Слоистая структура покрытий и резко выраженная анизотропия свойств обусловливают большой разброс результатов измерений прочности. Пластические свойства, по-видимому, могут быть определены только для металлических низкопрочных покрытий.  [c.17]

Модели, предлагаемые для определения коэффициентов концентрации средних напряжений и деформаций, а следовательно, и эффективных модулей волокнистых композитов, по существу, таковы же, как для гранулированных композитов. Однако анализ таких композитов сложнее, ибо они имеют большее число эффективных упругих модулей (предполагается трансверсальная анизотропия). Поэтому здесь приводятся только окончательные результаты исследований. Ради удобства эффективные модули снабжаются индексами L и Т. Индекс L относится к модулю Юнга вдоль волокон, а индекс Т к модулю поперек волокон. Индексы модуля сдвига р, определяют плоскость, в которой происходит сдвиг. Например, — эффективный модуль сдвига для деформаций в плоскости, перпендикулярной волокнам. Величина отрицательное отношение поперечной деформации к продольной при растяжении в продольном (поперечном) направлении. (Некоторые авторы дают разные определения величины v. p, поэтому читателю надо быть осторожным.) Коэффициенты Пуассона модули Юнга связаны соотношением  [c.79]


Метод конечных элементов применял и Адамс [1] он использовал метод модуля сдвига для определения напряженного состояния композита при поперечном растяжении. Рассматривались напряжения, отвечающие интервалу от предела упругости до разрушения одной из составляющих композита, при квадратном и прямоугольном расположениях волокон предполагалось, что разрушение матрицы происходит тогда, когда напряжения в композите достигают предела прочности материала матрицы. По оценке Адамса, в композите А1—34% В с прямоугольным расположением волокон первой должна разрушаться матрица на участках минимального расстояния между волокнами. Разрушение по расчету должно происходить при поперечном нагружении композита напряжением 17,2 кГ/мм (что много меньше предела прочности материала матрицы, составляющего более 23,1 кГ/мм ). Однако в эксперименте композит разрушался путем расщепления волокон. Предсказать такой характер разрушения не представлялось возможным, так как, хотя напряжения на поверхности раздела и в волокнах были рассчитаны, прочность этих элементов при поперечном растяжении неизвестна. Автор совершенствует эту модель с целью описать процессы распространения трещины и полного разрушения композита. Вообще говоря, если известны механические свойства поверхности раздела матрицы и волокон, эта модель позволяет предсказать как разрушение по поверхности раздела, так и другие типы разрушения.  [c.193]

Зависящее от времени осевое напряжение в волокне, требующееся для определения зависящей от времени неэффективной длины б t), можно получить из упругого решения (уравнение (4)) при помощи принципа соответствия. Вязкоупругое решение в пространстве изображений, соответствующем преобразованию Лапласа, получается, если вместо упругого модуля сдвига матрицы подставить умноженное на р преобразование Лапласа от релаксационного модуля сдвига матрицы и если применить преобразование Лапласа к начальному условию в уравнении (4), представляю-  [c.289]

Определенное нами, таким образом, понятие поверхностного натяжения распространяется на однородные и неоднородные фазы с ненулевым модулем сдвига.  [c.21]

Из сказанного следует, что такая постановка может быть корректной только в случае вещества с нулевым модулем сдвига в объемной фазе (например, жидкости), где о хх = Оуу = О, и дополнительные симметричные тангенциальные напряжения = = — Р возникают лишь вследствие неоднородности поверхностного слоя фазы вдоль направления г, а в объеме фазы имеет место равенство = о г = Р, как и отмечается в работе [15]. Для этого частного случая уравнение (50) соответствует определению а, данному в работе [15] h  [c.20]

Имеются также работы [20], посвященные определению модуля сдвига по косвенным параметрам, например, по значению коэффициента теплопроводности. Экспериментально было установлено, что между модулем межслоевого сдвига стеклопластика имеется устойчивая связь с коэффициентом теплопроводности, при этом коэффициент корреляции равен 0,967, т. е. предлагается производить определение модуля сдвига не по параметрам скорости сдвиговых волн, а по значениям коэффициента теплопроводности. По-видимому, трудно согласиться с автором этого предложения в эффективности такой замены, так как точность определения коэффициента теплопроводности особенно в изделиях еще низка.  [c.78]

Комплексное изучение механических характеристик при 4 К включает определение свойств при испытании на растяжение и на усталость. Во многих случаях [1] важнейшей расчетной характеристикой является модуль упругости. Поэтому предусматривается определение всех упругих констант (модуля Юнга, модуля сдвига, модуля всестороннего сжатия и коэффициента Пуассона) конструкционных  [c.30]

Значение модуля сдвига боропластика согласуется с опубликованными данными для комнатной температуры [9], а боралюминия — существенно ниже. Было показано, что модуль сдвига, рассчитанный по диаграммам растяжения 45°-ных образцов, согласуется с модулем, определенным более точными методами для угле- и стеклопластиков [6]. Однако в случае сплава 6061 F, упрочненного борным волокном диаметром 0,1 мм, нелинейный характер диаграммы растяжения не позволяет применять упрощенный метод испытания 45°-ных образцов, значения модуля сдвига занижаются [10]. Поэтому данные, полученные в настоящей работе, занижены, что обусловлено ограниченностью этого метода.  [c.369]

Метод определения модуля Юнга и модуля сдвига обладает следующими преимуществами  [c.382]

Модуль упругости. В графите модуль упругости может быть определен как статическими методами при растяжении, сжатии и изгибе, так и динамическими (динамический модуль упругости и динамический модуль сдвига).  [c.52]

Фиг. 5.31. Схема установки для определения комплексного модуля сдвига. Фиг. 5.31. Схема установки для определения <a href="/info/146678">комплексного модуля</a> сдвига.
Схема установки для определения модуля сдвига (касательной упругости) G в динамическом режиме испытаний показана на рис. 9.  [c.138]

Лабораторные работы. Желательно выполнить работу на определение модуля сдвига при испытании на кручение (см. ра(5оту 2.9 в пособии [27]). Определенный интерес представляет работа по испытанию стального и чугунного образцов на кручение с доведением их до разрушения. Но эта работа имеет смысл только в случае, если учащимся будут сообщены данные о напряженном состоянии в точках скручиваемого бруса, о главных напряжениях при кручении, так как в противном случае результат работы будет воспринят чисто формально и проку от нее будет мало.  [c.108]


Складывая Д и Д, находим, что первая, основная часть прогиба увеличивается пропорционально кубу длины, тогда как / . зависит от длины в первой степени. Отсюда следует, что, испытывая на изгиб балки разной длины, можно выделить величину Д и, следовательно, найти модуль межслойного сдвига ц. Фактически для стеклопластиков получить таким способом надежные результаты не удалось, мелкие экспериментальные ошибки неизбежным образом накладываются и вносят большую погрешность. Пока что, как нам представляется, единственный надежный способ определения ц состоит в испытании на кручение двух стержней прямоугольного сечения с разными отношениями сторон. Способ обработки, описанный в 9.12, позволяет определить по отдельности модуль сдвига в плоскости листа и модуль межслойного сдвига. Так, для однонаправленного углепластика было найдено, что модуль межслойного сдвига равняется 230 кгс/мм тогда как модуль сдвига в плоскости слоя 570 кгс/мм  [c.707]

Пример 84. Для определения модуля сдвига G материала испытывают на кручение образец круглого поперечного сечения и производят с помощью зеркальных приборов измерения углов поворота двух его сечений. Вычислить модуль упругости, если приращению кpyтящe o момента Мк= 160 И М соответствуют углы  [c.140]

Трудности испытания полимерных композиционных материалов на сдвиг заключаются в том, что в образцах трудно обеспечить состояние чистого сдвига. Все известные методы испытания на сдвиг отличаются в основном способом и степенью минимизации побочных деформаций и напряжений, вследствие чего всем методам св014ственны некоторые физические и геометрические ограничения. Исключение составляет испытание трубчатых образцов, не вызывающее особых трудностей и позволяющее получать надежные характеристики предела прочности при сдвиге и модуля сдвига в плоскости укладки арматуры. Методика определения указанных характеристик при испытании трубчатых образцов изложена достаточно подробно в работе [78]. Испытание на сдвиг плоских образцов—более трудная задача в части создания необходимых устройств для нагружения. Современные композиционные материалы имеют, как правило, относительно небольшую толщину (1—3 мм). Нагружение на сдвиг пластинок или стержней такой толщины возможно только на установках малой мощности, но обладающих достаточной точностью.  [c.42]

Наибольшее число методов создано для определения модуля сдвига в плоскости укладки арматуры, значительно меньше методов — для изучения межслойного сдвига. Наиболее хорошо отработан метод определения на плоских образцах модуля сдвига в плоскости пластины Оху Определять О у можно различными способами из опытов на растяжение или сжатие полосок, при испытании пластин в шарнирном че-тырехзвеннике, нагружении квадратных пластинок на чистое кручение. Самым простым и надежным способом является испытание на кручение квадратных пластинок. Этот способ позво-  [c.42]

Другим, более трудоемким методом определения модулей сдвига является испытание на растяжение или сжатие образцов, вырезанных нз одной плоскости в двух ортогональных направлениях и под углом 45° к ним. Для э4ого на указанных образцах при заданных напряжениях измеряют продольные и поперечные деформации, исходя из которых определяют модули упругости и коэффициенты Пуассона. Модуль сдвига для материалов с общей анизотропией  [c.45]

Установлено, материалу 5ерсагЬ-40 свойственно проявление масштабного эффекта, что имеет место не только при изучении разрушения материала 40, но и при определении деформационных характеристик значение модуля сдвига в главной плоскости упругости симметрии (6о), определяемое из опытов на кручение, зависело от диаметра и длины образца (табл. 6.24). Данные табл. 6.24 свидетельствуют о том, что модуль сдвига материала 40, определенный на коротких образцах с малым диаметром, существенно меньше его значения для материала с длинными непрерывными волокнами. Повышенное реальное значение Оо для материала 5ерсагЬ-40 указывает на ограничение снизу, полученное из анализа соотношений (6.1)— (6,3) при = 0,5, которое устанавливает, чтоЗОо > т. е, (Зо > 15,27 ГПа.  [c.198]

Общие соедения. Цель работы состоит в определении осадки пружины и модуля сдвига материала. Испытание выполняют так.  [c.78]

Изложим теперь некоторые доводы в пользу эквивалентности определений эффективных модулей, основанных на условиях (1), (2) и (7), (8). Рассмотрим в качестве примера модули растяжения тела двоякопериодической структуры, типичный элемент которого изображен на рис. 2 (аналогичное исследование модулей сдвига не вызывает затруднений). Представим себе протяженное призматическое тело с параллельными осям Х ребрами, армированное идеально правильной двоякопериодиче-ской системой волокон, параллельных оси Хз. Согласно peiue-нию, определяемому условиями (7) и (8), напряжение аи на боковой грани Xi = onst является периодическим с периодом 2а (рис. 2). Если заданы условия (2), то на той же грани поверхностная нагрузка (обозначим ее через ст ) посгоянна. Теперь положим значение стц, определяемое первой из формул (10), равным а, а затем проведем ту же процедуру для остальных боковых граней. Таким образом, поверхностные нагрузки в двух рассмотренных задачах статически эквивалентны на каждом интервале длины 2а. Из принципа Сен-Венана следует, что соответствующие поля различаются только в узких областях ширины порядка 2а вблизи границ. При усреднении по объему это различие для больших тел становится незначительным.  [c.20]

Для резины, армированной жесткими нитями, модуль упругости при растяжении вдоль волокон определяется в основном модулем упругости волокон, в то время как модуль сдвига материала имеет тот же порядок, что и модуль сдвига неармиро-ванной резины. Таким образом, сопротивление материала деформации сдвига мало по сравнению с его сопротивлением растяжению в направлении нитей. Поэтому в задачах, в которых допускается определенный тип деформации сдвига, можио пренебречь растяжением нитей, рассматривая их как материальные кривые, длина которых не меняется при любой деформации. При таком предположении сложные соотношения между напряжениями и деформациями заменяются ограничениями геометрического характера, что значительно упрощает теорию.  [c.288]

Для обоснования того, что эта интерпретация является законной в некотором вполне определенном смысле, а также для получения оценок толщин слоев концентрации напряжений Эверстайн и Пипкин [12] проанализировали некоторые точные решения теории упругих трансверсально изотропных материалов. Предполагалось, что модуль Юнга Е вдоль волокон много больше модуля сдвига G. Коэффициент Пуассона v, определяющий уменьшение поперечных размеров в направлении, перпендикулярном волокнам, при приложении растягивающей нагрузки, также перпендикулярной волокнам, выбирался близким к единице. Оказалось, что теория упругости действительно предсказывает существование тонких слоев с высокой концентрацией напряжений там, где они должны быть согласно идеализированной теории. Было найдено, что толщина слоев концентрации напряжений вдоль волокон имеет порядок (G/ ) / L, где L — характерная длина слоя. Было установлено также, что толщина слоев концентрации напряжений вдоль нормальных линий, существование которых обусловлено малой сжимаемостью материала, имеет порядок (1—v) i L. В обоих случаях было показано, что максимум растягивающих напряжений с удовлетворительной точностью определяется делением результирующей силы, найденной по идеализированной теории, на, приближенное значение толщины.  [c.298]


Для исследования напряженного состояния на поверхности раздела были разработаны аналитические методы. К ним относятся методы механики материалов, классической теории упругости и метод конечных элементов. Метод конечных элементов является наиболее универсальным и охватывает разнообразные граничные условия. Предполагаемая величина концентрации напряжений определяется условиями на поверхности раздела. Теоретические данные показывают, что концентрация касательных напряжений на концах волокон зависит от объемной доли волокна и геометрии его конца. Из этих данных также следует, что радиальное напряжение на поверхности раздела изменяется по окружности волокна и может быть растягивающим или сжимающим в зависимости от характера термических напряжений, а также от вида и направления приложенной механической нагрузки. Следовательно, в обеспечении требуемой адгезионной прочности, соответствующей конкретным конструкциям, существует определенная степень свободы. Наличие пор и влаги на поверхности раздела, так же как и повышение температуры, ослабляют адгезионную прочность, в результате чего снижаются жесткость и прочность композитов. Циклическое нагружение почти не сказывается на онижении адгезионной прочности. Показатель расслоения является критерием увеличения локальных сдвиговых деформаций в матрице и модуля сдвига композита. Этот параметр может быть использован при выборе компонентов материалов с заданной адгезионной прочностью на поверхности раздела, И наконец, следует отметить, что состояние данной области материаловедения  [c.83]

Верхняя обшивка. Выбран композиционный материал бор — алюминий (В—А1) ввиду высоких показателей прочности при сжатии и удельного модуля сдвига, особенно при температурах 150—200° С. Материал получен диффузионной сваркой монослоев, содерН ащих борные волокна диаметром 140 мкм (47% по объему) в матрице из алюминиевого сплава 6061 и приварен к титановым закоицовкам корня (комля) для передачи нагрузок. Обшивка представляет собой трехслойную конструкцию с листами из бор-алюминия и алюминиевым заполнителем. Внутренняя поверхность выполнена плоской с тем, чтобы упростить проблему крепления. Принятая ориентация волокон 0 45 - с добавлением слоев, ориептгт-рованных под углом 90°, для локального усиления болтовых соединений при наложении действующих по хорде усилий от закрылков и предкрылков. Для крепления листов внешней облицовки к титану необходимы трехступенчатые соединения (см. рис. 13). Вследствие меньших действующих нагрузок для крепления внутренних листов требуется только двухступенчатое соединение. Нагрузка в соединениях по внешней поверхности составляет 3567 кгс/см. Для расчета отверстий болтовых соединений был использован зкспериментальпо определенный коэффициент концентрации напряжений. Отверстие для отбора проб топлива диаметром 76 мм усилено дополнительными слоями, ориентированными в направлениях 0 и 45°.  [c.151]

Стоимость многих перспективных армирующих материалов составляет сотни долларов за килограмм. Можно представить, что цена на графитовые волокна будет быстро снижаться от 245 долларов, за кг (при закупке небольших партий) до 55 дол-лар/кг, затед на протяжении нескольких лет будет медленно снижаться, достигнув 22—33 долларов за кг. Возможно, что стоимость углеродных волокон (отличающихся от графитовых) будет еще ниже в течение последующих пяти лет. Углеродные волокна имеют более низкий модуль сдвига, чем графитовые. Тем не менее возможность использования графитовых волокон в качестве армирующего наполнителя в определенных областях представляется заманчивой. Графитовые волокна, обла-  [c.361]

Перед тем как проводить нелинейный анализ, необходимо выполнить ряд вычислений на основании линейного подхода для определения как начальных характеристик жесткости композита, так и его предела текучести. Эта процедура осуществлена при помощи метода конечных элементов для повторяющегося сегмента структуры однонаправленного композита. Таким образом определены модули упругости в направлении армирования и в поперечном направлении, модуль сдвига и соответствующие коэффициенты Пуассона однонаправленного слоя. Эти константы позволяют рассчитать упругие свойства композита. Далее из начальных линейных зависимостей о(е) композита можно определить линейные приближения для деформаций композита, соответствующих любым конкретным нагрузкам в плоскости. Затем вычисляются деформации каждого слоя в предположении о том, что нормали к поверхности недеформированного композита остаююя прямыми и перпендикулярными после нагружения. Осредненные напряжения в каждом слое определяются через уже известные соотношения о(е) для слоя.  [c.276]

Комплексный модуль можно определить экспериментально на образце, совершающ ем синусоидальные колебания. Измеряя одновременно напряжение и деформацию, можно непосредственно найти абсолютную величину модуля и разность фаз. Устройство, применяемое для определения модуля сдвига, показано на фиг. 5.31. Два призматических образца из хизола 4485 с размерами 3,8 X 12,7 X 1,0 jm приклеены к металлической вилке и к центральному стержню так, что при движении вилки относительно стержня образцы нагружаются простым сдвигом. Центральный стержень соединен через нагрузочный элемент с большой плавающей массой с противоударной изоляцией, которую можно считать практически жесткой. Вилка соединена с движущимся элементом вибратора, совершающим синусоидальные колебания (подробнее см. [15]).  [c.167]


Смотреть страницы где упоминается термин Модуль сдвига 160 - Определение : [c.411]    [c.17]    [c.42]    [c.176]    [c.14]    [c.149]    [c.60]    [c.220]   
Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.164 ]



ПОИСК



Модули сдвига

Модуль сдвига при сдвиге

Сдвиг определение



© 2025 Mash-xxl.info Реклама на сайте