Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория сплошной среды линейная

В теории сплошной среды при анализе процессов релаксации и ползучести широко используется линейная формула, связывающая напряжение и деформацию, вида  [c.18]

Установившееся резание есть процесс непрерывного контактирования материала обрабатываемой детали и режущего инструмента. Вследствие непрерывности процесса резания, при малых колебаниях режущей кромки все просветы между ней и деталью непрерывно заполняются металлом, поэтому для определения сил резания полезна модель твердого тела, используемая в теории сплошной среды. Ползучесть или демпфирование в линейной модели твердого тела описываются уравнением о = е + е, а релаксация — уравнением а + п<г = Ее. Уравнение, объединяющее 88. ,  [c.88]


Поэтому классическая теория сплошной среды —не очень хорошая математическая модель для приближенного описания физических явлений в области АУ < АУ. Примерами прекрасных континуальных моделей, очень хорошо согласующихся с экспериментальными данными, могут служить классические линейная и нелинейная теории упругости в кристаллических веществах (характерные длины много больше промежутков между атомами и постоянной решетки), гидроаэродинамика (для очень коротких средних длин свободного пробега молекул, что исключает случай очень разреженных газов), а также другие более сложные теории, как, например, теория деформируемых намагничивающихся тел, в которой магнитомеханические взаимодействия достаточно строго исследуются в рамках континуального описания.  [c.79]

Обобщенный Закон Гука для упругих сплошных сред тоже получают как линейную зависимость между тензором напряжений П и тензором деформаций 5, компоненты которого выражаются по формулам (36), только вместо вектора скорости и используется вектор смещения и, характеризующий деформацию сплошной среды. Тензор деформаций и обобщенный закон Гука для упругих сплошных сред подробно рассматриваются в теории упругости и курсах сопротивления материалов с элементами теории упругости. Здесь ограничимся только краткими сведениями, относящимся к обобщенно.му закону Гука.  [c.556]

Формулы (146), (147), (151) имеют важное значение в теории упругости, гидродинамике и других разделах механики сплошных сред. В теории упругости тензор напряжений Р заменяется линейной функцией тензора деформаций [обобщенный закон Гука (1635—1703)], в гидродинамике вязкой жидкости — также линейной функцией тензора скоростей деформаций (обобщенный закон Ньютона). Покажем это на простом примере вязкой несжимаемой жидкости.  [c.255]

Основные гипотезы и принципы механики сплошной среды и линейной теории упругости  [c.5]

С е р г е е в М. В. К решению граничных задач линейной теории ползучести для тела с изменяющейся границей.— В кн. Механика стержневых систем и сплошных сред.— Л. ЛИСИ, 1980, вып. 13, с. 158— 162.  [c.327]


Предварительные замечания. В настоящем параграфе дается более точное определение геометрических соотношений, имеющих место при деформации тела, нежели приведенные выше. Такое уточнение позволяет оценить характер ранее полученных зависимостей и ограничить область возможного их применения, т. е. область возможного применения классической (линейной) теории сплошной деформируемой среды (в частности, классической теории упругости).  [c.479]

Классическая (линейная) теория. Если углы поворота малы и можно пренебречь как их произведениями, так и квадратами по сравнению с. .., то уравнения нелинейной теории переходят в уравнения классической механики сплошной среды  [c.491]

Линейная теория вязкоупругости и термовязкоупругости как одна из моделей механики сплошной среды возникла давно, однако большое значение она приобрела в последнее время, главным образом в связи с созданием разнообразных полимерных материалов и пластмасс и их применением в различных областях народного хозяйства. Широкое развитие получили различные теоретические и экспериментальные исследования в области вязкоупругости, в том числе линейная и нелинейная теории деформирования вязкоупругих материалов.  [c.3]

В настоящей главе кратко приводятся основные сведения определяющие соотношения и уравнения, описывающие динамику поведения сплошных сред на основе линейной теории вязкоупругости и термовязкоупругости, при этом главное внимание уделяется средам, проявляющим мгновенную упругость, т. е. средам, относящимся к твердым деформируемым телам, а не к вязким жидкостям.  [c.4]

При выводе основных уравнений и соотношений, описывающих динамику поведения вязкоупругих сред, предполагались изотермические условия деформирования. Отказ от изотермических условий деформирования сплошных сред приводит к построению теории термовязкоупругости, в частности, линейной теории термовязкоупругости.  [c.15]

Ниже приводятся основные уравнения и соотношения, описывающие динамику поведения сплошных сред на основе линейной теории термовязкоупругости, строгий вывод которых можно найти в монографиях [11, 18]. Для простоты в дальнейшем ограничимся рассмотрением изотропных сред.  [c.15]

При решении динамических задач в линейных вязкоупругих средах, изложенных в предыдущих главах, деформирование среды предполагалось изотермическим, т. е. с постоянной температурой. В последние годы интенсивно развивались теории, учитывающие влияние изменения температуры на деформированное состояние сплошной среды и влияние деформируемости среды на распределение в ней температуры. При этом развивались как несвязанная теория термовязкоупругости, т. е. без учета влияния деформируемости среды на распределение в ней температуры, так и связная теория термовязкоупругости, когда температура среды и ее деформируемость взаимно влияют друг на друга.  [c.146]

Поэтому при выводе приближенных, или инженерных уравнений колебаний вырожденных вязкоупругих систем мы также будем исходить из трехмерной линейной теории вязкоупругости применительно к сплошным средам, проявляющим мгновенную упругость, при этом зависимость компонентов тензора напряжений от компонентов тензора деформаций будем принимать в виде больцманов-ских соотношений типа (1.20) или (1.21).  [c.227]

В основе М. лежат три закона Ньютона. Первые два справедливы по отношению к т, н. инерциальной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим — для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются закона, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таковы Дука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, к-рым подчиняются др. среды, см. в ст. Пластичности теория. Реология.  [c.127]

НЕЛИНЕЙНЫЕ УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ- ур-ния, не обладающие свойством линейности применяются в физике как матем. модели нелинейных явлений в разл. сплошных средах. Н. у. м. ф.— важная часть матем. аппарата, используемого в фундам. физ. теориях теории тяготения и квантовой теории поля.  [c.314]


Уравнение (1), дающее основной инвариантный параметр теории трещин, легко обобщается на конечные деформации, а также на любые точечные, линейные и поверхностные сингулярности в любых сплошных средах, например упругопластических, вязкоупругих и др. [1 — 12]. В частном случае статического упругого тела, когда Г = О, Я = О, W = U, где U — упругий потенциал единицы объема, получаем Г = /, где / — не зависящий от пути интеграл Эшелби — Райса.  [c.353]

В дальнейшем для сокращения речи применяются термины у-метрика и У-метрика в зависимости от того, какое определение квадрата линейного элемента — (1.1.9) или (1.1.10)—принято в данном рассмотрении. Конечно, обе метрики евклидовы ( з)-Замечания. 1. Строгое различение начального и конечного состояний необходимо при рассмотрении конечных деформаций сплошной среды. В линейной теории упругости эта необходимость, как правило, отпадает.  [c.15]

ЗАКОН СОСТОЯНИЯ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ 1. Изотропная сплошная среда  [c.100]

В линейной теории равновесия сплошной среды отпадает также необходимость в различении тензоров деформации Коши— Грина и Альманзи — Гамеля Ш. Как следует из (3.6.5) и (4.3.5) гл. II, тот и другой тензоры должны быть по (1.1.1) и  [c.101]

Гольденвейзер А. Л., О двумерных уравнениях общей линейной теории тонких упругих оболочек, В кн. Проблемы гидродинамики и механики сплошной среды, Наука ,  [c.506]

Модель физически нелинейной среды, очевидно, более соответствует действительности, чем линейной. Есть сведения, что при переходе к неупругому телу особенность напряженного состояния в устье трещины подавляется, решение становится регулярным. В частности, для идеально пластического материала на основе простейшей схемы в зависимости от длины трещины, номинального напряжения и значения а, определяется поправка г (поправка Ирвина) на длину трещины (/ + г,). Решение теории уц ругости справедливо, если отступить от края трещины на расстояние 2/-,. При этом, однако, не устраняется противоречие, присущее всем моделям локального уровня, свойства которых не зависят от градиентов. В соответствии с этой независимостью геометрически подобные конструкции при подобных нагрузках имеют одинаковые (в относительных пространственных координатах) поля напряжений. Тем самым они должны быть и одинаково прочны, поскольку за разрушение считаются ответственными не внешние силы, а внутренние (напряжения). Понятие масштабного эффекта чуждо локальным моделям сплошной среды.  [c.240]

Изучение элементов теории линейных пространств, отображений, формулировка основных зависимостей механики сплошных сред в матричной форме позволят перейти к практическому построению алгоритмов таких тонких методов современной вычислительной математики, как проекционно-разностные методы и метод конечных разностей, а в дальнейшем — реализовать на их основе математические модели процессов пластической деформации металлов.  [c.15]

Рассмотрим. условие совместности деформаций в классической теории упругости, поскольку подобные соотношения б удут играть существенную роль в дальнейшем изложении. Вопрос заключается в определении вектора перемещений по заданному линейному тензору деформации е, согласно (2), поскольку компоненты е. имеют простой физический смысл и могут быть определены опытным путем. Имея шесть уравнений (2) относительно трех неизвестных функций Mi, задачу можно решить наложением определенных условий на величины е . Разделим тело на элементарные объемы (кубики) и сообщим каждому из них деформацию (локальная деформация полагается однородной внутри кубика). Деформированные кубики можно сложить в сплошную среду только при определенной согласованности деформации отдельных кубиков. В обычном случае для вектора перемещений в точке ri можно записать  [c.100]

Дано описание двух классов пространственных движений жидкости и газа, обладающих большим функциональным произволом и характеризуемых свойством линейности основных параметров течений по части пространственных координат. Построенные классы решений позволяют учесть такие свойства сплошной среды, как теплопроводность и электропроводность для газа, вязкость и электропроводность для жидкости в приближении Буссинеска. Для невязкого газа исследована связь описанных течений с теорией бегущих волн ранга три — тройных волн. Получены в качестве спецификаций исходных классов течений определенные системы уравнений, описывающие новые типы вихревых тройных волн, обладающих функциональным произволом. Построены серии точных решений.  [c.197]

Обсуждаемая область знаний стала экспериментальной наукой в современном смысле этого слова вместе с исследованиям главной в XIX столетии фигуры в экспериментальной механике сплошных сред, Вертгейма, вклад которого на протяжении очень небольшого числа лет включил в себя первые обширные серии опытов о хорошо определенными металлами и бинарными сплавами первые исследования постоянных упругости как функций температуры, а так же параметров электрического и магнитного полей первое исследование постоянных упругости анизотропных тел первое экспериментальное исследование постоянных упругости различных видов стекла первое количественное исследование фотоупругости, которое привело к закону, связывающему напряжения и оптические свойства тел с двойным преломлением, позднее известному как закон Вертгейма , первое измерение сжимаемости тел, скоростей продольных волн в проволоке и скорости звука в столбе воды и обнаружение того экспериментального факта, что линейная теория упругости изотропных тел требует определения двух постоянных упругости вопреки почти общепринятой в то время привлекательной атомистической теории, использующей одну постоянную упругости.  [c.535]


Основу механики тел, содержащих трещины, обычно образуют два допущения трещину представляют в виде математического разреза в однородной сплошной среде среду полагают линейно упругой вплоть до разрушения. Это направление теории называют также линейной механикой разрушения (в отличие от нелинейной механики разрушения, где учитывают нелинейные свойства материала, в частности, пластические деформации у фронта трещин). Название линейная механика разрушения не вполне точно передает содержание ее предмета, поскольку все задачи механики разрушения, по существу, нелинейные (нахождение полей упругих напряжений вблизи трещин —предмет теории упругости, а не механики разрушения). В связи с этим употребляем, как правило, термины механика хрупкого разрушения и механика квазихрупкого разрушения в зависимости от того, считаем материал линейно упругим вплоть до разрушения или нет.  [c.105]

Вполне естественно, что принципиальную роль в разработке теории трехслойных оболочек сыграли исследования по теории и расчету однородных оболочек, попытка использования уравнений трехмерной теории сплошных сред не принесла успеха. Трехслой-ность конструкции не только вызывает неоднородность структуры оболочки по толщине, но и требует учета работы слоя заполнителя при поперечном сдвиге и поперечном сжатии, а также приводит к необходимости в том или ином виде проводить сопряжение слоев. Если исключить случай местной потери устойчивости внешних слоев, то оказывается, что, вводя гипотезу о линейном распределении касательных перемещений по высоте пакета и условие несжимаемости пакета, можно построить рациональную теорию трехслойных тонкостенных конструкций. В отличие от гипотезы Кирхгоффа — Лява при этом нормаль к исходной поверхности не остается нормалью к деформированной поверхности, а за счет поперечного сдвига заполнителя поворачивается на некоторый угол.  [c.3]

Теории механического поведения сплошных сред строятся на базисе понятий пространства. Линейным (обозначается L) пространством называется множество элементов любой природы, в которое введены операции сложения и умножения на число, подчиняющееся обычным распределительному, переместительному и сочетательному законам [11] — [14]. В линейном векторном пространстве элементы называются векторами (обозначаются латинскими буквами—жирный шрифт).  [c.308]

Как мы видели, трещина в деформируемом теле создает очаг возмущения напряженного состояния, характерный сильной концентрацией напряжений у ее острия. На первый взгляд любая малая трещина благодаря стремлению напряжений к неограниченному росту с приближением к кончику трещины должна была бы породить прогрессирующий процесс разрушения. Однако такой теоретический результат следует из модели идеально упругой сплошной среды и не соответствует реальным физическим свойствам материала. Дискретная структура реального материала и нелинейность механических соотношений для него в сильной степени изменяют картину фиаико-меха-нического состояния, следующую из линейной теории упругости. В результате, как показывает опыт, в одних условиях трещина может устойчиво существовать, не проявляя как-либо себя, а в других — происходит взрывоподобный рост треш ины, приводящий к внезапному разрушению тела. Существуют попытки проанализировать это явление на атомном уровне методами физики твердого тела. Они представляют определенное перспективное направление в этой проблеме, но, к сожалению, до сих пор полученные здесь результаты далеки от уровня прикладных инженерных запросов.  [c.383]

Иначе говоря, в теории упругости (линейной и нелинейной) и вообще в механике сплошной среды задачи исследования деформаций решаются с помощью феноменологических понятий и законов, т. е. осредненных п достаточно большим объемам параметров динамического и кинематического характера и связей между ними, подтверждаемых макроопытом. Взаимоотношения механики сплошной среды и физической теории строения вещества есть взаимоотношения между макро- и микрофизикой.  [c.5]

Необходимо подчеркнуть, что теорема единственности доказана нами для геометрически линейной постановки задачи теории упругости. Если условие (8.4.8) не выполнено, единственности может не существовать. Это может означать одно из двух о либо принятая модель сплошной среды некорректна, либо материал неустойчив. При- Рис. 8.4.1 мером такого неустойчивого материала служит материал с падающей диаграммой растяжения, подобной изображенной на рис. 8.4.1. Видно непосредственно, что одному п тому же значению напряжения на этой диаграмме соответствуют два разных значения деформации. Вопрос о действительном существовании таких неустойчивых упругих материалов остается открытым диаграммы вида изображенной на рис. 8.4.1 наблюдаются при описании пластического поведения и представляют зависшюсть условного напряжения, т. е. растягивающей силы от деформации. Пример неустойчивости такого рода был рассмотрен в 4.13. Для геометрически нелинейных систем теорема единственности несправедлива нарушение единственности соответствует потере устойчивости упругого тела. Рассмотрению подобного рода задач в элементарной постановке была посвящена вся четвертая глава.  [c.247]

Здесь г ) — непрерывная функция, удовлетворяющая уравнению Пуассона. Задача состоит в определении вектора и смещения в неограниченнол упругом теле таким образом, чтобы при обходе по любому контуру, окруягающе-му трубку дислокации, этот вектор получал приращение, равное постоянному вектору Бюргерса Ъ. Трубкой дислокации мы будем называть тор(>-идальную полость, окружающую замкнутую линию дислокации Г и такую, что вне этой полости кристалл может считаться хорошим. В переводе на язык механики сплошной среды это значит, что путь обхода не должен приближаться к линии Г настолько, чтобы уравнения линейной теории упругости потеряли силу.  [c.457]

Идея представления сплошной среды в виде системы элементов конечных размеров восходит еще к Пуассону ). Однако лишь появление ЭВМ позволило построить на ее основе эффективные методы расчета конструкций ). К настояшему времени с помощью метода конечных элементов оказалось возможным решать многие трехмерные задачи для линейно-уиругих конструкций и упругопластические задачи для двумерных конструкций. Ниже мы дадим подробное описание метода конечных элементов для плоской задачи теории упругости, а также изложим основы более сложных методов.  [c.552]

Макроскопическая трещина — предмет изучения собственно механики — имеет размеры, превышающие на несколько норяд-ков размер наибольшего структурного элемента, содержащего в себе достаточное количество кристаллических зерен для того, чтобы свойства его не отличались от свойства любого другого элемента тех я е размеров, который можно выделить из материала. Именно это условие позволяет решать задачу о трещине в рамках механики сплошной среды. Сформулированное условие относится к идеальной для применимости теории ситуации, в действительности это требование может быть смягчено, что приводит к известным натяжкам, но не делает теорию беспредметной. Но считая материал сплошным, однородным, упругим и пользуясь аппаратом классической линейной теории упругости, мы приходим неизбежным образом к парадоксальному выводу о том, что напряжения по мере приближения к концу трещины растут неограниченно. Этот парадокс служит расплатой за простоту, свя-заиную с распространением линейной теории упругости на область, где она заведомо неверна.  [c.9]


Так называемая линейная механика разрушения приписывает физически невозможной сингулярности реальный смысл. Подобная ситуация для механики сплошной среды не столь уж необычна, достаточно вспомнить, например, вихревые нити с нулевым поперечным сечением п конечной циркуляцией. Как оказывается, работа продвижения трещины, которая совершается либо в результате увеличения внешних сил, либо за счет уменьшения упругой энергип тела при увеличении размера трещины, непосредственно выражается через коэффициент при сингулярном члене в формуле для напряжений. Этот коэффициент называется коэффициентом интенсивности и играет для всей теории фундаментальную роль. Работа продвижения трещины может быть связана с преодолением сил поверхностного натяжения (концепция Гриффитса), с работой пластической деформации в малой области, примыкающей к концу трещины, либо с чем-нибудь еще. Важно при этом одно размеры той области, где соотношения линейной теории упругости так или иначе нарушаются, должна быть весьма малой. Тогда способность трещины к дальнейшему продвижению определяется единственной характеристикой — ра-бс.той на единицу длины пути, илп критическим коэффициентом интенсивности.  [c.9]

X а р л а б В. Д. К линейной теории ползучести наращиваемого тела.— В кн. Маханика стержневых систем и сплошных сред. Вып. 13.— Л. ЛИСИ, 1980, с. 149-157.  [c.330]

Как уже упоминалось в гл. VIII, в разреженных газах условие прилипания газа к твердой стенке не имеет места в этих условиях наблюдается скольжение газа по стенке, которое можно считать пропорциональным производной по нормали к поверхности обтекаемого тела от касательной составляющей скорости. Не приходится и говорить о том, что условие прилипания совершенно теряет свою силу в сильно разреженных газах, когда длина свободного пробега молекулы становится сравнимой с линейными размерами тела. В этом случае газ уже нельзя рассматривать как сплошную среду. Такого рода движения газа выходят за рамки механики в узком смысле слова и составляют предмет изучения кинетической теории газов. Заметим, что вопросы обтекания тел разреженными газами приобретают в последнее время практическое значение в связи с полетами ракетных снарядов на больших высотах.  [c.639]

Академик Ю. Н. Работнов отмечает, что хотя нельзя всю механику разрушения сводить только к теории трещин, однако изучение тех условий, при которых в среде распространяется трещина или система трещин, несомненно, является чрезвычайно важной и интересной стороной проблемы разрушения. В математической теории разрушения можно выделить два основных направления. Одно направление состоит в изучении различных непрерывных распределений поврежденной среды. Это изучение осуществляется посредством введения функций, определяющих степень повреж-денности. Указанные функции добавляются к традиционным характеристикам сплошной среды. Другое научное направление, к которому и относится настоящее псследование, заключается в изучении напряженно-деформированного состояния среды в окрестности изолированных особых точек. Следует, однако, отметить, что строгое решение краевых задач при наличии в области нерегулярных точек связано с определенными математическими трудностями. В линейной постановке существует решение модельной задачи  [c.5]

Изучение методов математического моделирования процессов обработки металлов давлением предусматривает приобретение комплекса знаний и практических навыков в таких разделах прикладной математики и механики, как линейная алгебра, теория отображений, теория аппроксимаций, термодинамика и механика деформируемого твердого тела, обладающего сложными реологическими свойствами. Этот материал включен в лекционный цикл, читаемый проф. Г. Я. Гуном в Московском институте стали и сплавов с 1965 г. В указанный цикл входят лекции по курсам Дополнительные главы высшей математики , Механика сплошных сред , Теория обработки металлов давлением . К основной особенности этих лекций следует отнести последовательное и достаточно строгое изложение механикоматематических основ специальности, сочетание корректных методов постановки и решения на ЭВМ краевых задач пластического течения с инженерным подходом к указанным задачам. ,  [c.5]

В конце XIX века устрашающие предсказания Баха, Мемке и других по поводу продолжавшегося использования линейной теории упругости в технике не смогли остановить тех, кто принимал участие в фантастическом росте огромного промышленного комплекса XX века, от использования линейного приближения в инженерных расчетах, соответствовавших малым деформациям. С точки зрения экспериментальной физики сплошной среды, однако, точно так же как и с позиций усилий по согласованию микроскопических и макроскопических концепций в терминах атомной физики, а, возможно, также и с точки зрения техники XXI века сохранение нелинейности вплоть до нулевого напряжения имеет немаловажное значение. Баху принадлежит, по-видимому, единственное изложение сопротивления материалов для инженеров, основанное на нелинейной зависимости между напряжением и деформацией. Его Упругость и прочность (Ba h [1902,1]), выдержавшая шесть изданий между 1889 и 19J1 гг., содержала большой раздел, основанный на его степенном законе ).  [c.164]


Смотреть страницы где упоминается термин Теория сплошной среды линейная : [c.102]    [c.140]    [c.19]    [c.288]    [c.547]    [c.104]    [c.387]   
Теория упругости (1970) -- [ c.102 ]



ПОИСК



Линейная теория

Среда сплошная



© 2025 Mash-xxl.info Реклама на сайте