Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тяготение теория Эйнштейна

Соотношения (IV. 169) удовлетворяют условиям (IV. 167). Они называются уравнениями тяготения А. Эйнштейна. Десять уравнений (IV. 169) определяют десять компонент метрического тензора или десять гравитационных потенциалов, вместо одного в теории ньютоновского потенциала.  [c.531]

Поэтому потребовалось развить теорию тяготения, которая находилась бы в согласии с указанным выше положением теории относительности. Эту теорию тяготения (релятивистскую теорию тяготения) создал Эйнштейн. Однако изложение этой теории требует специального математического аппарата (тензорного исчисления). Поэтому, не излагая общей теории относительности, мы все же рассмотрим те, пока немногие, факты, которые подтверждают эту теорию. Это нам нужно потому, что представления о силах инерции нуждаются в освещении с точки зрения общей теории относительности но это будет поучительно только при условии, что читатель представляет себе, на каких фактах основывается эта теория.  [c.384]


В 1916 г. А. Эйнштейн предложил теорию тяготения (общую теорию относительности), фундаментальное значение для которой имеет равенство инертной и гравитационной масс тела, причем считается, что явления инерции и тяготения имеют одну и ту же природу. Это утверждение получило название принципа эквивалентности инерции и гравитации. Тяготение в теории Эйнштейна объясняется проявлением геометрических свойств пространства, рассматриваемого в тесной взаимосвязи с временем, т. е. геометрическими свойствами четырехмерного пространства — времени.  [c.107]

При построении теории тяготения, названной Эйнштейном общей теорией относительности (ОТО), он всецело исходил из принципа эквивалентности гравитационного поля нужным образом ускоренных систем отсчета. А так как разным системам отсчета соответствует разная метрика пространства-времени, то Эйнштейн принял за гравитационное поле метрический тензор gpv риманова пространства-времени. Так принцип эквивалентности привел к отождествлению метрики и гравитации компоненты метрического тензора в ОТО являются в то же время потенциалами тяготения.  [c.158]

Закон Галилея под названием принципа эквивалентности вошел в фундамент общей теории всемирного тяготения (гравитации), которая была создана А. Эйнштейном в начале нашего века. Эту теорию Эйнштейн назвал общей теорией относительности.  [c.82]

Вопреки значительному прогрессу в экспериментальных исследованиях, достигнутому в последнее десятилетие, прямых проверок ОТО все еще очень мало. Здесь уместно напомнить, что общая теория относительности является не только естественным, но и убедительным обобщением хорошо подтвержденной экспериментально специальной теории относительности. Кроме того, поскольку теория Эйнштейна содержит теорию тяготения Ньютона в качестве первого приближения, все многочисленные астрономические наблюдения, согласующиеся, конечно, с теорией Ньютона, в некотором смысле мы можем рассматривать уже как косвенное доказательство справедливости общей теории относительности. Тот факт, что различия между этими двумя теориями выступают лишь как малые поправки в физике Солнечной системы, говорит о хорошей применимости теории Ньютона в этой области. Однако в космологических вопросах, когда рассматривается структура и движение больших частей Вселенной, мы встретимся уже со значительными расхождениями между ними и выбор между теориями станет более необходимым. Учитывая, однако, внутреннюю согласованность и общность исходных постулатов теории Эйнштейна, следует ожидать, что она является более надежной базой в решении трудных космологических проблем.  [c.361]


Точно так же могут быть проверены и другие гипотезы теории Эйнштейна, например изменение постоянной тяготения в зависимости от распределения масс (Меркурий). Вполне возможно, что в мировом пространстве будут обнаружены такие явления, о которых мы совершенно не подозреваем  [c.18]

Многочисленными опытами установлено, что весомая масса и инертная масса тела совпадают. Это весьма важное и, на первый взгляд, очевидное положение носит название принципа эквивалентности и является одним из основных положений общей теории относительности А. Эйнштейна, из которой вытекает созданная им теория тяготения.  [c.170]

Все движения механических объектов, изученные в настоящей книге, рассматривались в пространстве, свойства которого е зависят от масс, распределенных в нем. Однако из наблюдений следует, что огромные массы таких космических тел, как звезды, искривляют и изменяют свойства окружающего пространства. Теоретическое рассмотрение механических движений с учетом этого обстоятельства относится к области знания, которую открыл Эйнштейн. Она называется Общая теория относительности или Теория тяготения . В ней оказалось возможным ио новому трактовать вопросы тяготения п инерции. Это область развивающихся современных знаний.  [c.300]

Глубокая аналогия между силами инерции и силами тяготения послужила отправным пунктом при построении Эйнштейном общей теории относительности, или релятивистской теории гравитации.  [c.53]

А. Эйнштейн показал, что, переходя в физическом пространстве от геометрии Евклида ( абстрактной геометрии ) к физической геометрии, которой, согласно теории относительности, является геометрия Римана, мы получаем возможность исключить поле сил всемирного тяготения. Конечно, при этом система координат, в которой определяется положение материальной точки, не может быть прямолинейной системой декартовых координат.  [c.444]

В ряде замечательных, изящных статей Эйнштейн (1917) изложил теорию тяготения и геометрии мирового пространства, названную общей теорией относительности. Эта теория дает двум описанным явлениям объяснение, количественно согласующееся с результатами наблюдений. Эти явления представляют собой пока единственные прямые подтверждения геометрических выводов общей теории относительности. Несмотря на такое малое количество подтверждений, общая теория относительности широко признана из-за своей принципиальной простоты.  [c.31]

Эти два постулата Эйнштейна — принцип относительности и принцип постоянства скорости света — легли в основу специальной (частной) теории относительности (физической теории пространства и времени), описывающей только инерциальные системы. Объединение принципа относительности с конечностью скорости распространения света принято называть принципом относительности Эйнштейна. В 1915 г. Эйнштейном были созданы основы так называемой общей теории относительности, которая является обобщением теории для неинерциальных систем отсчета и представляет собой современную теорию тяготения.  [c.211]

Уравнения Эйнштейна (92) представляют собой систему из десяти нелинейных дифференциальных уравнений в частных производных второго порядка. (В теории тяготения Ньютона содержится, как известно, одно дифференциальное уравнение второго порядка.) Общего решения этих уравнений при произвольных начальных условиях нет.  [c.142]

Вселенная стационарна, что ее свойства не зависят от времени. Конечно, планеты и звезды движутся, звезды рождаются и гибнут, но в целом во всей Вселенной число частиц постоянно, а ее границы, как полагал Эйнштейн, не зависят от времени. Эйнштейн попытался найти решения уравнений поля тяготения в приложении к такому статическому пространству. Однако результаты расчетов обескуражили самого творца теории — статическое пространство не являлось решением уравнений (92). Эйнштейн попытался исправить положение введением поправок в созданные им уравнения, а именно предположил существование силы отталкивания, которая растет с расстоянием  [c.144]


В процессе развития физики несколько раз менялись, уточнялись, приобретали новый смысл некоторые принципиальные понятия науки. Существующие раздельно друг от друга абсолютные пространство и время Ньютона оказались связанными в специальной теории относительности Эйнштейна в новую физическую сущность — единое пространство-время. В теории тяготения было установлено, что его свойства (геометрия пространст-200  [c.200]

Оказывается, что по теории тяготения Эйнштейна именно такого типа силы действительно должны возникать при ускоренном движении масс. Вот что говорит теория тяготения Эйнштейна об эффектах, возникающих при ускоренном движении массивных тел.  [c.389]

Основанная на уравнениях Гильберта — Эйнштейна теория тяготения (ОТО) иногда может привести к результатам, прекрасно совпадающим с экспериментом. Так, по данным наблюдений, перигелий Меркурия поворачивается на 43 угл. с в столетие по теории тяготения Ньютона и по другим теориям, использующим измененный ньютонов потенциал, этот поворот раза в три меньше наблюдаемого, по ОТО поворот равен 42,98 угл. с, т. е. в точности совпадает с действительным Аналогично, как было установлено во время полного солнечного затмения 29 мая 1919 г., близкие к наблюдаемым дает ОТО и результаты для отклонения лучей света, проходящих вблизи Солнца (1,75 угл. с).  [c.159]

При равномерно ускоренном движении точки подвеса вверх с ускорением - -g действие силы тяжести как бы удваивается, а при движении вниз с ускорением —g ее действие как бы уничтожается. Это означает эквивалентность тяжести и ускорения, которая, наряду с равенством тяжелой и инертной масс (стр. 32), явилась основой теории тяготения Эйнштейна.  [c.345]

Орбиты планет в теории тяготения Эйнштейна 373  [c.373]

В подавляющем большинстве мыслимых процессов во Вселенной и в лаб. условиях квантовые эффекты гравитации чрезвычайно слабы, и можно пользоваться неквантовой теорией Эйнштейна. Однако квантовые эффекты должны стать весьма существенными вблизи сингулярностей поля Т., где искривления пространства-времени очень велики. Теория размерностей указывает, что квантовые эффекты в гравитации становятся определяющими, когда радиус кривизны пространства-времени (расстояние, на к-ром проявляются существенные отклонения от геометрии Евклида чем меньше этот радиус, тем больше кривизна) становится равным величине = Ghj . Расстояние Гпл наз. планковской длиной оно ничтожно мало Гпл< 10 см. В таких условиях теория тяготения Эйнштейна неприменима.  [c.192]

Т. о., все имеющиеся эксперим. данные подтверждают правильность как положений, лежащих в основе теории тяготения Эйнштейна, так и её наблюдат. предсказаний. Следует отметить, что пока эксперим. данные относятся почти исключительно к сравнительно слабым полям Т. с ср с . Неоднократно делались попытки построить теорию Т., обобщающую теорию Ньютона на случай сильных полей, но отличную от общей теории относительности, В нек-рых из этих теорий все поправки к ньютоновой теории, к-рые проверены экспериментально, совпадают с поправками, предсказываемыми теорией Эйнштейна, и, т, о., эти данные ещё не указывают однозначно на безусловную справедливость общей теории относительности. Попытки построения др. теорий Т. выявили ряд важных особенностей теории Эйнштейна. Существуют  [c.193]

Во 2-м десятилетии 20 в. классич. теория тяготения была революц. образом преобразована Эйнштейном. Новая теория тяготения была создана путём логич. развития принципа относительности применительно к гравитац. взаимодействиям она была названа общей теорией относительности. Эйнштейн по-новому интерпретировал установленный Талилеем факт равенства гравитац. и инертной масс (см. Масса) это равенство означает, что тяготение одинаковым образом искривляет пути всех тел. Поэтому тяготение можно рассматривать как искривление самого пространства-времени. Теория Эйнштейна вскрыла глубокую связь между геометрией пространства-времени и распределением и движением масс. Компоненты т. н. метрич. тензора, характеризующие метрику пространства-време-ни, одновременно являются потенциалами гравитац. поля, т.е, определяют состояние гравитац. поля. Эволюция состояния описывается нелинейными ур-ниями Эйнштейна для гравитац. поля, В общем виде ур-ния тяготения Эйнштейна не решены. В приближении слабых полей из них вытекает существование гравитац. волн (прямые эксперименты по их обнаружению пока не увенчались успехом).  [c.316]

Единая теория поля. Геометрич. теория тяготения, созданная Эйнштейном, не претендует на раскрытие механизма гравитационных сил или их истинной природы она дает лишь математич. теорию явлений, и роль геометрических представлений заключается только в том, что они позволяют сделать математику сравнительно простой и наглядной. Но у этой теории есть один важный недостаток электромагнитным явлениям не нашлось места в ее геометрич. схеме электромагнитное поле не получило геометрич. истолкования. Эйнштейн, Эддингтон и Вейль задались целью устранить этот недостаток и построить такую теорию, в которой электромагнитное поле, наравне с полем тяготения, является одним из геометрических свойств пространства. В этом и заключается проблема единой теории поля. Калуза (1921 г.), Клейн и Мандель (1926 г.) показали, что этой цели можно достигнуть при помощи пятимерной геометрии. Величина ds для пятимерного пространства получится, если к четырехмерной сумме giJ dXi dx прибавить  [c.182]

Возникновение совр. К. связано с созданием релятив. теории тяготения (А. Эйнштейн, 1916) и зарождением внегалактич. астрономии (20-е гг.). На первом этапе развития релятив. К. главное внимание уделялось геометрии  [c.315]

Инертная игравитационная массы. Для экспериментального определения массы данного тела можно исходить из закона (1), куда масса входит как мера инертности и называется поэтому инертной массой. Но можно исходить и из закона (5), куда масса входит как мера гравитационных свойств тела и называется соответственно гравитационной (или тяжелой) массой. В принципе ИИ откуда не следует, что инертная и гравитационная массы представляют собой одну и ту же величину. Однако целым рядом экспериментов установлено, что значения обеих масс совпадают с очень высокой степенью точности (по опытам, проделанным советскими физиками (1971 г.),— с точностью до 10 ). Этот экспериментально установленный факт называют принципом эквивалентности. Эйнштейн положил его в основу своей общей теории относительности (теории тяготения).  [c.186]


В начале XX века Альберт Эйнштейн (1879—1955) создал теорик> относительности, которая представляет собой после Ньютона следующий крупный шаг в развитии механики. Основанная на теории относительности релятивная механика вкладывает совершенно новое содержание в основные понятия механики о пространстве, времени, материи и в своих уравнениях учитывает взаимосвязь этих понятий классическая ньютоновская механика является ее частным случаем и в пределе, при малых скоростях и на больших расстояниях от масс, совпадает с релятивной. Кроме того, А. Эйнштейн, введя совершенно новое представление о пространстве, создал теорию тяготения — явления, ранее не поддавшегося объяснению.  [c.15]

Авогадро Na и Больцмана к), элементарному электрическому заряду е, скорости света с, постоянной Планка h, константам физики элементарных частиц (массы покоя электрона т протона nif, и нейтрона т , константы сильного и слабого аяг взаимодействий). Понимание физического содержания и роли отдельных постоянных, входящих в качестве характеристических параметров в структуры различных физических теорий, невозможно без краткого изложения существа данной теории. Например, исторически первая константа физики—постоянная тяготения G— вводит нас в круг проблем теории гравитащш, крупнейшей и до сих пор еще не решенной проблемы современной физики. Изучение различных граней такой важнейшей физической постоянной, как скорость света с, нельзя представить без изложения основных идей специальной и общей теорий относительности А. Эйнштейна. Постоянная Планка А открывает нуть к познанию физики микромира. Физика элементарных частиц требует обсуждения современных теорий объединения различных взаимодействий. При этом на авансцену выходят связанные с классическими размерными физическими постоянными новые фундаментальные безразмерные величины— константы сильного а электромагнитного а слабого а г и гравитационного взаимодействий, размерность физического пространства N. Решение проблемы фундаментальных постоянных в целом требует анализа последних достижений физики элементарных частиц и космологии, синтеза успехов этих наук. Изучение физических постоянных с необходимостью превращается в связанный единым сюжетом рассказ о путях развития и проблемах физики. Сюжет весьма волнующ— возникновение и эволюция Вселенной, происхождение жизни и разума. Мировоззренческий аспект подобного рассмотрения проблемы постоянных очевиден.  [c.7]

Космология по Ньютону . Выше уже отмечалось, что силы тяготения определяют движения планет и Галактик, эволюцию Вселенной в целом. Нельзя ли, используя законы Ньютона, попытаться построить хотя бы приближенную модель дш1амики Вселенной Это представляется возможным, но на это впервые указали английские астрофизики Э. Милн и В. Маккри всего лишь в 1934 г., т. е. спустя почти 250 лет после Ньютона. Парадоксально, но модель динамики Вселенной могла быть построена еще Ньютоном. Вероятнее всего, это не было сделано в силу прочно укоренившегося еще со времен Древней Греции представления о неизменности, стационарности Вселенной. О динамике Вселенной долгое время никто даже и не догадывался. Поэтому излагаемая ниже космология по Ньютону появилась уже после создания А. Эйнштейном в 1917 г. общей теории относительности, после теоретического предсказания А. Фридманом в 1922 г. расширения Вселенной, после экспериментального подтверждения этого явления в 1929 г. американским астрономом Э. Хабблом. Ньютоновская космологическая модель дает первый набросок эволюции Вселенной, раскрывает новые грани в раскрытии физической сущности гравитационной постоянной.  [c.58]

Гравитация и относительность. Теперь можно снова вернуться к рассмотрению проблем, связанных с гравитационной постоянной. Напомним, что начатое в I исследование осталось неоконченным— теория тяготения Ньютона не могла вскрыть причины явления. Расчеты по закону всемирного тяготения Ц) не согласовывались с результата] ш наблюдений вращения перигелия Меркурия. Создателю пeLдаaльнoй теории относительности А. Эйнштейну, вьшвившел1у фундаментальное значение скорости света как максимально возможной скорости распространения любых взаимодействий в природе, был ясен и другой принципиальный недостаток ньютоновской теории. Ведь в ней скорость распространения гравитационного взаимодействия считалась бесконеч-  [c.139]

Теория получает признание тогда, когда на ее основе находят объяснение непонятные факты или подтверждаются предсказываемые ею новые явления. Так было и с общей теорией относительности. Решая уравнения (92), Эйнштейн получил значение смещения перигелия Меркурия, точно соответствующее многовековым наблюдениям. Наиболее убедительным доказательством справедливости теории явилось экспериментальное подтверждение предсказанного Эйнштейном искривления световых лучей в сильном поле тяготения Солнца. Поскольку фотоны также обладают массой [см. (91)], они должны притягиваться Солнцем, что приводит к изменению кажущегося положения звезд, наблюдаемых вблизи Солнца во время солнечного затмения (рис. 38). В 1919 г. ученые выполнили измерения смещения положения звезд во время солнечного затмения. Этот же участок неба был сфотографирован тогда, когда Солнце упшо далеко от него. Наложение снимков четко 142  [c.142]

Новый вид закона тяготения. В теории тяготения Эйнштейна закон тяготения (1) не вьшолняется. Сила притяжения двух тел определяется теперь вьгражением  [c.143]

Первостепенной задачей теории является нахождение единой причины существующих частных явлений или законов и уменьшение числа независимых исходных положений. Этот процесс давно уже идет в физике. Достаточно вспомнить объединение земного и космического тяготений в законе всемирного тяготения Ньютона, объединение электричества и магнетизма в электродинамике Максвелла, установление связи между микро- и макропараметрами систем Больцманом, связь геометрии физического пространства с теорией гравитации в общей теории относительности Эйнштейна и т. п. Удивительнейший пример единства природы открывает связь явлений, происходящих в микромире и Вселенной, о чем идет речь в этой части книги. Многие свойства Вселенной определяются характеристиками фундаментальных взаимодействий, происходящих в микромире. И, напротив, происходящие во Вселенной процессы дают много для понимания свойств элементарных частиц и необходимы для построения правильной теории. Но все же впереди очень и очень шого работы.  [c.200]

Большие надежды на создание единой теории поля породил успех общей теории относительности Эйнштейна. Введение четвертого измерения позволило единообразно описать механические и электромагнитные явления, а с помощью геометрических свойств четырехмерного пространства (его кривизны) — тяготение. Громадные усилия были затрачены А. Эйнштейном на попытки создания единой геометрической теории поля. Исходным пунктом его поисков было то, что подлинно физическое значение имеют только два макроскопических поля — гравита-210  [c.210]

Второе из следствий общей теории относительности, которое находится в удовлетворительном согласии с наблюдениями, касается движения орбиты планеты Меркурий. По законам классической механики планеты должны двигаться по эллиптическим орбитам, которые покоятся в коперниковой системе отсчета. Однако уже специальная теория относительности вводит поправку в эти законы. Как показано в конце 75, вследствие зависимости массы от скорости орбиты планет дол жны поворачиваться в том же направлении, в котором планета движется вокруг Солнца. Но исходя из обгцей теории относигельпости, необходимо ввести поправку и в закон тяготения (заменить теорию тяготения Ньютона теорией тяготения Эйнштейна). Те отклонения в характере движения планешых орбит, которые должны наблюдаться при замене теории тяготения Ньютона теорией тяготения Эйии]тейна, качественно оказываются такими же, как отклонения, получающиеся при учете зависимости массы от скорости, но количественно эти отклонения больше. В то время как учет зависимости массы от скорости дает угловую скорость вращения орбиты Меркурия около 7" в столетие, замена теории тяготения Ньютона теорией тяготения Эйнштейна приводит к увеличению скорости вращения орбиты Меркурия до 45 в столетие. Приблизительно такие же результаты дают наблюдения. Все же точность этих наблюдений не столь высока, чтобы можно было считать, что OHI надежно подтверждают общую теорию относительности. Но во всяком случае можно считать, что эти результаты находятся в удовлетворительном согласии с выводами общей теории относительности.  [c.386]


Однако первое из двух указанных особых сгойств сил инерции таково, что связанное с ним отличие сил инерции от обычных сил yuie T-вует только в классической механике. В теории относительности, наоборот, существует принцип эквивалентности, из которого следует, что между силой инерции и одной из наиболее распространенных в природе обычных сил — силой тяготения — не должно существовать различий. И действительно, если мы вернемся к тем соображениям, на основании которых Эйнштейн пришел к формулировке принципа эквивалентности, то мы сразу увидим, что в механике общей теории относительности эти силы появляются на совершенно равных правах.  [c.387]

Таким образом, общая теория относительности утверждает, что ускоренное движение системы отсчета К относительно сферы небесных тел (или, что то же самое, ускоренное движение сферы небесных тел относительно системы К ) является причиной возникновения сил, которые качественно совпадают с наблюдаемыми на опыте силами инерции. Правда, количественная проверка этого утверждения невозможна вследствие того, что масса всех небесных тел нам неизвестна, а лабораторные опыты с ограниченными массами, с которыми такие опыты возможно производить, не могут дать сколько-нибудь заметных э зфектов. Но все-таки нельзя не согласиться с тем, что теория тяготения Эйнштейна дает правдоподобный ответ на вопрос о происхождении сил инерции.  [c.390]

В настоящее время вопрос о тепловой смерти Вселенной стоит иначе, чем во времена Клаузиуса—Больцмана и недавнего прошлого. В соответствии с современными данными наблюдений Метагалактика представляет собой расширяющуюся систему и, следовательно, является нестационарной. Поэтому вопрос о тепловой смерти Вселенной нельзя даже ставить. Действительно, учет особенности Вселенной как гравитирующей системы в теории тяготения Эйнштейна приводит к тому, что для Вселенной не существует состояния максимальной энтропии. Поэтому энтропия Вселенной в каждой ее области может возрастать неограниченно без того, чтобы Вселенная приближалась к состоянию с максимальной энтропией, т. е. к тепловой смерти .  [c.73]

В соответствии с общей теорией относительности А. Эйнштейн четырехмерное пространство — время, в котором действуют силы тяготения, подчиняется соогноше-  [c.178]

Значительно более точное экспериментальное доказательство этого равенства дал Этвёш с помощью своих крутильных весов. Позднее соотношение (3.12) дало первый толчок к теории тяготения Эйнштейна.  [c.33]

Как в теории тяготения Ньютона, так и в общей теории относительности (ОТО) Эйнштейна Г. п. рассматривается как универсальная константа природы, не меняющаяся в пространстве и времени и независящая от физ. и хим. свойств среды и гравитирующих масс. Существуют варианты теории гравитации, предсказывающие переменность Г. п. (напр., теория Дирака, скалярно-тензорные теории гравитации). Нек-рые модели расширенной супергравитации (квантового обобщения ОТО) также предсказывают зависимость Г. п. от расстояния между взаимодействуюпдами массами. Однако имеющиеся в настоящее время наблюдательные данные, а также специально поставленные лабораторные эксперименты пока не позволяют обнаружить изменения Г. п.  [c.523]


Смотреть страницы где упоминается термин Тяготение теория Эйнштейна : [c.370]    [c.477]    [c.140]    [c.141]    [c.141]    [c.143]    [c.372]    [c.531]    [c.584]   
Физические основы механики (1971) -- [ c.384 , c.389 ]



ПОИСК



Орбиты планет в теории тяготения Эйнштейна

Тяготение

Эйнштейн

Эйнштейний



© 2025 Mash-xxl.info Реклама на сайте