Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплав бинарный

Преобладание каждой из этих реакций в зависимости от времени, температуры, состава сплава и дефектов структуры наиболее хорошо представить в форме диаграмм образования зародышей. Такие диаграммы имеются в литературе для сплавов бинарной системы А1—Си [119]. Диаграммы образования зародышей для промышленных сплавов отсутствуют, хотя они были бы очень полезны при анализе процессов термической обработки, структуры и сопротивления коррозии. Для установления количественных связей между термической обработкой, микроструктурой и сопротивлением КР высокопрочных алюминиевых сплавов необходимо знать о характере их взаимоотношения. Должны быть проанализированы метастабильные и стабильные диаграммы, а также диаграммы образования зародышей и кривые V—К для каждого сплава в условиях различной термообработки. Из следующих разделов будет ясно, что наши знания в настоящее время об этих взаимоотношениях являются в лучшем случае отрывочными.  [c.236]


Сплавы бинарной системы Ni— f обычно содержат 30—50 % Сг и про-  [c.388]

В противоположность аморфным сплавам, бинарные кристаллические сплавы железо — молибден в 1 п. водном растворе НС1 не пассивируются даже при высоких потенциалах. Это происходит потому, что кристаллические сплавы железа, в отличие от аморфных сплавов железо — металлоид, не обладают высокой скоростью активного растворения, достаточной для накопления молибдена в пленке из химических продуктов коррозии. Это накопление молибдена протекает очень трудно, а поскольку кристаллические сплавы в химическом отношении существенно неоднородны и имеют много участков, облегчающих коррозию, они слабо защищены химическими продуктами коррозии.  [c.273]

Для изображения диаграмм состояния четырехкомпонентных сплавов требуется пространство четырех измерений. В этом случае ограничиваются построением пространственной диаграммы для трех основных компонентов при постоянном содержании четвертого. Диаграммы состояния тройных сплавов, подобно сплавам бинарным, могут быть нескольких основных типов.  [c.130]

В последние годы опубликовано много данных об анодном поведении никелевых сплавов. Исследовано поведение как сплавов бинарных систем, в которых никель является главным компонентом, так и более сложных промышленных никелевых сплавов. Достаточно большое число данных позволяет провести рациональную и довольно полную интерпретацию многих коррозионных свойств никелевых сплавов на основе нх анодного поведения.  [c.140]

Сплав бинарный 41, 353 --расположение атомов 33  [c.585]

При ультразвуковой обработке сплавов бинарной системы алюминий-марганец наблюдалось измельчение зерна твердого раствора во всех исследованных сплавах. В тех случаях, когда содержание марганца выше эвтектического и в сплаве при затвердевании в первую очередь начинает  [c.483]

В двойной системе по мере приближения концентрационной точки к началу координат, например к точке А, лежащей на стороне АВ, содержание компонента А увеличивается, а В уменьшается. В тройной системе по мере приближения точки, расположенной внутри треугольника, к вершине А отрезок а увеличивается, а отрезки Ь и с уменьшаются. Когда такая точка окажется на стороне АВ, сплав будет бинарным (А+В), отрезок с станет равным нулю. Когда точка сольется с вершиной треугольника, имеем чистый  [c.146]

Эта и следующие диаграммы (рис. 274—278) приводятся на основе критического анализа многочисленных экспериментальных работ по изучению бинарных сплавов железа и даются несколько упрощенно.  [c.343]

Окисление бинарных сплавов железа имеет ряд особенностей  [c.97]


В случае бинарных сплавов коэффициент роста отдельных слоев определяется разностью граничных концентраций ( q — с6) и коэффициента диффузии йд не двух, а трех компонентов — двух компонентов сплава и кислорода. Зто выражается в том, что коэффициент роста того или иного слоя является суммой не двух, а трех слагаемых.  [c.100]

Для выражения скорости диффузии компонентов через гетерогенные слои сложного строения, образующиеся при окислении бинарных сплавов, можно применять уравнение, по форме аналогичное уравнению (97), но в котором вместо значения коэффициента диффузии Ад будет стоять величина эффективного коэффициента диффузии ( д)э. Значение этого коэффициента является сложной функцией истинных коэффициентов диффузии и величин, определяющих структуру слоя. Таким образом, уравнение для скорости диффузии компонентов через слои окалины сложного строения будет иметь вид  [c.100]

ПОТЕНЦИАЛЫ БИНАРНЫХ СПЛАВОВ  [c.297]

Потенциал каждого исходного компонента сплава в электролите Vx, и Vx, определяется кинетикой протекающих на нем анодного и катодного процессов и может быть найден при помощи соответствующих диаграмм коррозии этих металлов (см. с. 272). В сплаве эти металлы образуют или твердый раствор, или гетерогенную смесь, или интерметаллические соединения, что усложняет и без того сложную систему. При этом более электроотрицательный металл (Vx, < Vx,), в первую очередь его анодные участки, играет в сплаве роль анода, а более электроположительный металл (Vx, Vx,), в первую очередь его катодные участки, — роль катода. Состав бинарного сплава лучше всего характеризовать объемными процентами компонентов сплава, так как соотношение площадей анодной (SJ и катодной (S.J составляющих на поверхности сплава будет такое же, что и соотношение объемов компонентов в сплаве.  [c.297]

Бинарный сплав как короткозамкнутая, многоэлектродная система может быть рассчитан при помощи соответствующей диаграммы коррозии этой системы (см. с. 287). Теоретический анализ подобного рода диаграмм для сплавов приводит к возможным кривым изменения потенциала бинарного сплава в зависимости от его состава (рис. 199).  [c.297]

Рис. 199. Возможные кривые изменения потенциала бинарного сплава в зависимости от его состава Рис. 199. Возможные кривые изменения <a href="/info/469367">потенциала бинарного сплава</a> в зависимости от его состава
Для трехкомпонентной (тернарной) системы диаграммы плавкости будет уже объемной вместо оси составов, на которой можно задать состав двухкомпонентной системы, состав будет определяться треугольником Гиббса (рис. 9.35). Стороны правильного треугольника будут представлять собой оси составов бинарных сплавов, а медианы, совпадающие с биссектрисами и высотами, будут показывать содержания данного компонента в тернарном сплаве. Оси температур — перпендикуляры, восставленные из вершин треугольника. Общий схематический вид диаграммы плавкости системы СаО — АЬОз — 5Юг приведен на рис. 9.36 в виде волнистой поверхности с глубокими впадинами эвтектик.  [c.356]

Таблица 3.59. Упругие свойства аморфных бинарных сплавов [33—39,41] Таблица 3.59. <a href="/info/128397">Упругие свойства</a> аморфных бинарных сплавов [33—39,41]
Термодинамические функции (теплоемкость, энтропия и энтальпия) индивидуальных веществ (элементов и химических соединений) при температуре 298,15 К приведены в [I]. В [2] приведены термодинамические функции индивидуальных веществ (преимущественно в газообразном состоянии) в широкой области температур. Теплоемкости элементов и бинарных сплавов в широком интервале температур содержатся в [3, 15]. Теплоемкости элементов, неорганических и органических соединений приведены в [4]. Теплоемкости материалов при температурах ниже 300 К содержатся в [5].  [c.198]


Таблица 27.7. Удельный магнитный момент насыщения и температура Кюри бинарных сплавов железа [30] Таблица 27.7. <a href="/info/326663">Удельный магнитный</a> момент насыщения и <a href="/info/16477">температура Кюри</a> бинарных сплавов железа [30]
Одним из широко распространенных и хорошо изученных фазовых переходов является упорядочение атомов в сплавах. Характер структурных изменений для бинарного сплава состава АВ при этом переходе отчетливо виден из рис. 11.5. Если выше температуры перехода в области неупорядоченной фазы все узлы решетки заселены атомами разного сорта равномерно, то ниже этой температуры возникает неравномерное заселение узлов атомами А и В. Одни из них сосредоточиваются в центрах, а другие — в вершинах кубической ячейки. При этом меняется и симметрия решетки. Для рассматриваемого случая в области неупорядоченной азы сплав обладает ОЦК решеткой, а ниже — простой кубической с базисом, поскольку в вершинах и центре ячейки распо- лагаются атомы различного сорта. Возникающее при упорядочении расположение атомов обычно называют сверхструктурой.  [c.262]

ДИАГРАММЫ СОСТОЯНИЯ БИНАРНЫХ СПЛАВОВ  [c.268]

Рассмотрим бинарный сплав состава А—В при заданных теМ" пературе и давлении. Пусть сплав содержит N атомов, из кото-  [c.268]

Очевидно, что усложнение сплавов, переход от бинарных к многокомпонентным, неизбежный для поиска материалов с новыми свойствами, приводит к необходимости не только строить экспериментально диаграммы состояния, но и изыскивать современные пути их расчета на базе теории твердого тела. По-видимому, в дальнейшем наиболее перспективным окажется комплексный метод изучения диаграмм состояния, сочетающий различные экспериментальные и теоретические методы построения диаграмм.  [c.273]

Если для одного элемента равновесная структура представляет лишь функцию температуры, то в случае сплава появляется новая термодинамическая перемен ная — состав или концентрация. В этом случае равновесная структура будет зависеть от температуры и состава. Области существования данной структуры изображают с помощью диаграммы состояния, в которой одной переменной является температура, а другой — состав сплава. Диаграммы состояния или равновесия являются чертежом, показывающим, какая фаза (или фазы) находятся в термодинамическом равновесии при различных сочетаниях переменных величин (температура, давление, состав). При атмосферном давлении 0,1 Мн/м (1 кгс/см ) небольшие изменения давления не отражаются на фазовых диаграммах с твердыми реагентами и паровой фазой можно пренебречь, поэтому диаграммы строятся в координатах температура — концентрация при 0,1 Мн/м (1 кгс/см ). В зависимости от числа компонентов, образующих сплав, диаграммы состояния бывают бинарные (два компонента), тройные (три компонента) и многокомпонентные.  [c.95]

Добавка магния в сплавы системы А1—Си ускоряет и интенси фицирует дисперсионное твердение. Поэтому некоторые промышленные сплавы содержат до 1,8% Mg, например сплав 2024. В таких тройных сплавах со значительным содержанием меди (4% Си) могут одновременно протекать два превращения [97]. Первое было рассмотрено выше для сплавов бинарной системы А1—Си, хотя на его кинетику влияют присутствующие в сплаве добавки. Другую последовательность выделений можно представить в виде ряда  [c.236]

Эта теория относится к области концентраций 1 и 2. Рассматривается упрощенная модель окисления бинарного сплава Me Mt с содержанием металлов в нем с и (1 —с) соответственно, образующих непрерывный ряд твердых растворов при всех значениях с. При окислении сплава образуется окисел Ме О или Mtfim, в кристаллической решетке которого на местах атомов  [c.88]

Скорость диффузии компонентов при окислении бинарных сплавов также не всегда может быть выражена с помощыо уравнения (97)  [c.100]

В практике часто приходится измерять электродные потенциалы гетерогенных металлических сплавов. Пpo тeйuп м случаем является бинарный сплав, состоящий из двух металлов. Так как каждый из этих двух металлов в свою очередь является как минимум двухэлектродной системой, бинарный сплав следует рассматривать в простейшем случае уже как четырехэлектродную микрогальваническую систему, которая в большинстве практических случаев коррозии является системой короткозамкнутой.  [c.297]

Такое установление потенциалов бинарных сплавов несколько упрощенно, в частности анодность и катодность компонентов сплава в какой-то мере условны, так как компоненты сплава — металлы — в свою очередь двухэлектродны.  [c.298]

На рис. 4.23, а показана небольщая часть фазовой диаграммы бинарного сплава А—В, обогащенного компонентом А. Основы фазовых диаграмм рассмотрены в работе [33]. Вместо плавления и затвердевания при единственной температуре Та сплав, содержащий примесь б в Л и имеющий концентрацию В, в идеальном случае плавится в интервале температур от Ту до 7з. Диаграмма на рис. 4.23, а составлена для растворенного вещества В, которое понижает точку плавления вещества А. Заметим, что обе температуры Ту н Тз лежат ниже точки плавления чистого металла А. При охлаждении сплава состава Ву из области жидкости и при условии, что переохлаждение отсутствует, зарождение твердой фазы начинается при температуре Гь Твердая фаза, появившаяся при этой температуре, имеет состав б] и оставляет жидкость состава Ьу. При дальнейшем охлаждении осаждается большее количество твердой фазы, имеющей состав, который изменяется вдоль линии солидуса. Состав оставшейся жидкости изменяется по линии ликвидуса. При температуре Т твердая фаза имеет состав бз, жидкая — Ьз, а при температуре Тз твердая фаза состава бз находится в равновесии с жидкостью состава бз. До сих пор считалось, что скорость охлаждения бесконечно мала, так что всегда поддерживается равновесный состав. Другими словами, твердая фаза состава б], появившаяся первой, успела диффузионно перейти в состав бз, пока температура падала до Тз. Поскольку диффузия в твердом состоянии всегда медленна, а скорость охлаждения не может быть бесконечно мала, концентрационное равновесие никогда не достигается, в результате чего при температуре ниже Тз состав твердой фазы оказывается между 61 и 63, а жидкость с избытком В не затвердеет окончательно, пока температура не достигнет Т .  [c.170]


Рис. 4.23. а—-схема части диаграммы фазового равновесия разбавленных бинарных сплавов б — кривая затвердевания, в — кривая плавления простого бинарного сплава. 1/5з — идеальные ликвидус/солидус для сплава 61 L S — идеальные ликвидус/со-лидус для сплава В при наличии расслоения / — идеальные растворы 2 — реальные растворы.  [c.171]

Сведения о влиянии различных примесей на точки плавления и затвердевания упоминавщихся выше металлов можно найти в работах по фазовым диаграммам бинарных сплавов [32, 71]. Этими фазовыми диаграммами для очень малых концентраций следует пользоваться с осторожностью, поскольку экспериментальные сведения для сильно разбавленных твердых растворов ненадежны [26]. Солидус и ликвидус обычно просто экстраполируются до пересечения в точке плавления основного компонента. Этот наклон может оказаться ошибочным, если ближайшие экспериментальные точки получены при концентрации дополнительного компонента, равной, например, 5%-  [c.173]

Так как бинарные никелево-молибденовые сплавы имеют плохие физико-механические свойства (низкая пластичность, плохая обрабатываемость), то в них вводят Другие элементы, например железо, для создания тройных или многокомпонентных сплавов. Они тоже довольно трудно обрабатываются, но все же заметно легче, чем двухкомпонентные. В соляной и серной кислотах стойкость этих сплавов выше, чем никеля, однако в окислительных средах (например, в азотной кислоте) повышения стойкости не отмечается. Коррозионный потенциал сплавов Ni—Мо—Fe лежит в акт11вной области, поэтому на них образуется питтинг в сильнокислых средах, в которых эти сплавы обычно исполЬ зуют на практике.  [c.362]

Для равновесных условий кристаллизации акад. А. А. Дочвар связывает вероятность образования горячих трещин с эффективным интервалом кристаллизации Гэф, определяемым как интервал температур, заключенный между температурой образования кристаллического каркаса внутри расплава и температурой соли-дуса. На рис. 12.44 изображен участок бинарной диаграммы состояния. По вертикальной оси отложены температура Г, линейная усадка сплава е и критическая скорость определяющая уровень технологической прочности сплава.  [c.480]

Здесь мы рассмотрим только Гс-диаграммы (р = onst) бинарных сплавов, выясним основные типы этих диаграмм и поясним принцип их построения. Заметим, что ввиду важности этих диаграмм существует обширная литература, содержащая и конкретные методы их построения по экспериментальным данным, и конкретные данные о диаграммах состояния двойных сплавов металлов и некоторых неметаллов, и ряда трех- и даже многокомпонентных систем [42, 52, 58] .  [c.268]

Результируклщая диаграмма состояния приведена на рис. 11.9, е, она имеет вид сигары. Такие диаграммы состояния характерны при неограниченной растворимости компонент. Верхнюю из ограничивающих двуфазную область азывают линией ликвидуса (L), нижнюю — солидуса (S). Характерная черта диаграммы состояния бинарного сплава — наличие не одной точки плавления, а целого интервала температур плавления.  [c.272]

Коэффициент степени ликвации К (отношение концентрации элемента в межосном участке к концентрации у оси дендрита) составляет 2,3—4 для легирующих элементов в сплавах Ni-f-3% Ti, Ni+2,1 % Si, Ni+4% Sn, Ni+5%Sb. Бинарные сплавы Fe- -(13—45) % r, Fe+  [c.501]

Для изготовления мощных контактов применяют следующие системы из тугоплавких и электропроводных металлов, не сплавляющихся между собой 1) серебро с кобальтом, никелем, хромом, молибденом, вольфрамом, танталом, 2) медь с фольфрамом и молибденом, 3) золото с вольфрамом и молибденом. Бинарные и более сложные композиции содержат в основном указанные композиции металлов. В некоторых случаях состав сплавов усложняется специальными примесями, но принцип выбора основных компонентов для композиций соблюдается всегда. Вследствие несплавляемости компонентов композиции готовят спеканием смеси металлических порошков и пропиткой компонента В расплавленным компонентом Л. В результате получается смесь компонентов А и В, причем стремятся, чтобы оба компонента представляли собой непрерывно взаимно- переплетающиеся скелетные структуры. При такой микроструктуре и при правильно подобранных гранулометрических составах порошков достигается наиболее выгодное сочетание электропроводности и термической устойчивости композиций.  [c.253]

Условию Эренфеста удовлетворяют все фазовые переходы первого рода, а также фазовый переход второго рода в сверхпроводниках. Другие фазовые переходы, не удовлетворяют этому ус.аовию это связано с тем, что для некоторых из этих переходов (в частности для фазового перехода в ферромагнетиках в точке Кюри, фазового перехода, связанного с упорядочением в бинарных сплавах, Л-перехода в жидком гелии) теплоемкость, а следовательно, и вторая производная в точке фазового  [c.138]


Смотреть страницы где упоминается термин Сплав бинарный : [c.404]    [c.555]    [c.99]    [c.100]    [c.459]    [c.800]    [c.558]    [c.41]   
Модели беспорядка Теоретическая физика однородно-неупорядоченных систем (1982) -- [ c.41 , c.353 ]



ПОИСК



Бинарные сплавы - Диаграммы плавкости

Границы спектра в модели бинарного сплава

Диаграммы состояния бинарных сплавов

Есин Ю. О., Баев., В. М., Морозов С. Н. Энтальпии образования жидких бинарных сплавов никеля с оловом

Зоны в бинарном сплаве

КОРРОЗИОННОСТОЙКИЕ БИНАРНЫЕ СПЛАВЫ

Модели СПУ-структур бинарных аморфных сплавов

Модель бинарного сплава

Потенциалы бинарных сплавов

Распределение внутренних атомов по междоузлиям бинарного упорядоченного сплава

Спектр неупорядоченного бинарного сплава

Сплав бинарный расположение атомов

Сплавы антифрикционные бинарные — Электрические свойства

Сплавы бинарные - Электрические свойства

Сплавы двойные (бинарные)

Статистическая сумма бинарного сплава

Структурные факторы компонентов бинарных сплавов



© 2025 Mash-xxl.info Реклама на сайте