Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь-алюминиевые покрытия

Следует отметить, что в ряде случаев малейшее изменение содержания элементов сказывается на коррозионной стойкости. Это видно из характерных примеров влияния изменения состава среды при получении тусклых, полублестящих и блестящих никелевых покрытий методом электроосаждения и наличия примесей меди в напыляемых алюминиевых покрытиях (см. гл. 3).  [c.135]

Алюминиевые покрытия не рекомендуется применять в атмосфере, содержащей взрывчатые смеси, а также в контакте с медью и ее сплавами.  [c.86]


Для металлизации используют алюминий, цинк, медь и нихром в виде порошка или проволоки (табл. 3.28). Адгезионная прочность алюминиевых покрытий, полученных электродуговым напылением, выше, чем полученных газопламенным. Выбор металла для металлизационного покрытия определяется условиями эксплуатации оборудования, в первую очередь — агрессивностью среды. Цинк нельзя использовать при длительном воздействии горячей (от 55 до 100 °С) воды. Алюминиевые покрытия уступают цинковым при наличии паров азотной кислоты, а цинковые покрытия не стойки при воздействии паров соляной кислоты, оксидов серы и хлора.  [c.232]

К зарекомендовавшим себя металлическим покрытиям относятся полученное погружением в расплавленный металл цинковое покрытие, покрытие сплавом до 70% РЬ и 30% 8п, алюминиевое покрытие толщиной не менее 100 мк, наносимое распылением. В ряде случаев стойкими являются гальванические многослойные покрытия медь — никель — хром при суммарной толщине слоя до 200 мк, а также никель — хром для меди и медных сплавов. Покрытие свинцом пригодно при толщине слоя порядка 50 мк. Серебряные покрытия толщиной до 20 мк допустимы, если изделия не соприкасаются с серой или сернистыми соединениями.  [c.277]

К зарекомендовавшим себя металлическим покрытиям относятся цинковое, полученное горячим способом, покрытие сплавом 70%РЬ и 30% 5п, алюминиевое покрытие толщиной не менее 100 М , наносимое распылением. В ряде случаев стойкими являются гальванические многослойные покрытия медь + никель-Ь -Ь хром при суммарной. толщине слоя до 200 Ц, а также покрытия никель -Ь хром особенно для меди и медных сплавов. Свинец как покрытие пригоден при толщине слоя порядка 50 М. Серебряные покрытия допустимы, если изделия не соприкасаются с серой или сернистыми соединениями толщина слоя до 20 М.  [c.306]

Расчет необходимой мощности электронно-лучевого испарительного устройства достаточно прост. Например, при скорости движения 5 м/с и ширине стальной полосы 1 м для нанесения алюминиевого покрытия толщиной 1 мкм с каждой стороны необходимо испарять 120 кг/ч алюминия (с учетом потерь паров). Удельная энергия испарения алюминия составляет 3,5 (кВт-ч)/кг. При к. п. д. испарителя 30% необходимая мощность составит 1400 кВт (по 700 кВт на каждую сторону полосы). Для сравнения приведем скорости испарения некоторых металлов при мощности испарителя 1400 кВт меди — 260 кг/ч, никеля — 210 кг/ч, титана — 150 кг/ч [148].  [c.213]


Лучшие результаты получаются при нанесении на сталь комбинированного медно-цинкового или никель-медь-цинкового покрытия. Отличительной чертой техники выполнения стыковых и нахлесточных сталеалюминиевых соединений является необходимость точного ведения дуги в течение всего процесса сварки по кромке алюминиевого листа на расстоянии приблизительно 1—2 мм от линии стыка. Присадочную алюминиевую проволоку подают либо по линии стыка, либо немного смещенной в ванночку. При смещении дуги в сторону стали возрастает опасность оплавления последней. При избыточном смещении дуги в противоположную сторону возможно несплавление соединяемых металлов. В сущности, описанное соединение стали с алюминием является сваркой-пайкой. Для алюминия оно является сваркой, а для стали — пайкой.  [c.682]

Местами предпочтительного образования питтингов могут быть поверхностные дефекты, инородные включения (особенно нежелательно присутствие меди), границы зерен. В композиции сталь - алюминиевое покрытие такими зонами являются, вероятно, глубокие впадины на поверхности, выходящие наружу поры, рыхлые границы между частицами, случайно попавшие инородные частицы и т. д.  [c.222]

Внешний вид, цвет, яркость являются важными характеристиками в декоративном отношении. Медь, цинк, кадмий, никель, серебро и золото часто используют в качестве блестящих покрытий, в то время как обычное покрытие оловом является тусклым, однако его можно сделать менее тусклым путем быстрого оплавления после электроосаждения. Алюминий н свинец всегда образуют тусклые покрытия, однако зеркальные алюминиевые покрытия можно получить путем валкового плакирования, используя валки с высокой чистотой поверхности. Цвет может меняться от светло-голубого (хромовое покрытие) до желтого (золотое или латунное покрытие) или красного (бронзовое покрытие). Зеркальный блеск после полировки также изменяется в зависимости от металла покрытия очень высокий для серебра и родия, он постепенно уменьшается для следующих металлов алюминия, палладия, олова, цинка, золота, железа и свинца.  [c.397]

В промышленной атмосфере наиболее устойчивыми против коррозии оказались свинец, свинцовые сплавы, оловянистая и алюминиевая бронза, медь и вообще богатые медью сплавы, технический алюминий, дюралюминий с алюминиевым покрытием и алюминиево-марганцевый сплав. Материалами, малоустойчивыми по отношению к коррозии, являются никель, различные сплавы технического цинка и дюралюминий. Прочие металлы латунь 70/30, марганцовистая бронза, сплав никель-медь показывают сопротивление коррозии, среднее между этими двумя группами.  [c.200]

В морской атмосфере наиболее устойчивыми к коррозии оказались свинец, свинцовые сплавы, никель, сплавы никель-медь, бронзы, сплавы, богатые медью, и техническая медь. Малоустойчивыми к коррозии являются различные сорта цинка, олово, марганцовистая бронза, дюралюминий, технический алюминий и сплав алюминий-магний-кремний. Латуни, дюралюминий с алюминиевым покрытием и алюминиево-марганцевый сплав несколько более устойчивы к коррозии, чем предыдущая группа.  [c.200]

Медь. Медные покрытия не могут иметь широкого применения для защиты алюминиевых изделий, вследствие большой разности потенциалов между медью и алюминием.Однако в некоторых частных случаях применение медных покрытий вполне себя оправдывает, например для пайки алюминиевых проводов или других изделий.  [c.71]

Плотные, пластичные и обладающие хорошим сцеплением покрытия хрома на молибдене были получены селективным высаживанием хрома из переохлажденного расплава хрома с медью или оловом [81]. Наиболее удачные условия процесса достигались при использовании расплава олова с 2% хрома с медленным охлаждением. При этом получались пластичные, беспористые хромовые покрытия толщиной до 0,1 мм, обладающие хорошей сцепляемостью с основой. Этот способ нанесения покрытий применим к любой системе, в которой осаждаемый и основной металлы изоморфны, не образуют интерметаллидов и в которой наносимый металл растворим в легкоплавком металлическом растворителе. Таким способом наносили алюминиевые покрытия из раствора в расплавленном кальции,  [c.224]


Для газовой сварки сталей присадочную проволоку выбирают в зависимости от состава сплава свариваемого металла. Для сварки чугуна применяют специальные литые чугунные стержни для наплавки износостойких покрытий — литые стержни из твердых сплавов. Для сварки цветных металлов и некоторых специальных сплавов используют флюсы, которые могут быть в виде порошков н паст для сварки меди и ее сплавов — кислые флюсы (буру, буру с борной кислотой) для сварки алюминиевых сплавов — бескислородные флюсы на основе фтористых, хлористых солей лития, калия, натрия и кальция. Роль флюса состоит в растворении оксидов и образования шлаков, легко всплывающих на поверхность сварочной ванны. Во флюсы можно вводить элементы, раскисляющие и легирующие наплавленный металл.  [c.207]

Никелевые покрытия имеют толщину от 5 до 40 мкм. Для декоративных покрытий используют никель или сочетание никель-f-хром в зависимости от состава основного металла (стали, цинкового сплава, меди или медных сплавов, алюминия или алюминиевых сплавов, пластмассы) и условий окружающей среды. С более толстослойным покрытием изготовляют химическое оборудование или изделия, применяемые в гальванопластике.  [c.97]

Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде.  [c.109]

Эвтектическая диффузионная пайка боралюминия. Для соединения деталей из боралюминия между собой или с элементами конструкций из алюминиевых сплавов возможно использование способа эвтектической диффузионной пайки, заключающегося в нанесении тонкого слоя второго металла, образующего в результате взаимной диффузии эвтектику с металлом матрицы. В зависимости от состава матричного алюминиевого сплава могут быть использованы следующие металлы, образующие эвтектику серебро, медь, магний, германий, цинк, имеющие температуры образования эвтектик с алюминием 566, 547, 438, 424 и 382° С соответственно. В результате дальнейшей диффузии металла покрытия в основной металл концентрация его снижается, и температура плавления в зоне соединения постепенно повышается, приближаясь к температуре плавления матрицы. Таким образом, паяные соединения способны работать при температурах, превышающих температуру пайки. Однако необходимость строгого регламентирования толщины покрытия, а также чистоты покрытия и покрываемой поверхности, использование для получения таких покрытий метода вакуумного напыления делают этот процесс экономически нецелесообразным.  [c.192]

Погружаемые в морскую воду алюминиевые конструкции окрашивают в основном с целью предотвращения обрастания. Безопасны и эффективно предохраняют алюминий от биологического обрастания составы на основе оловоорганических соединений. Не следует применять краски, содержащие соединения меди, так как выделившиеся из краски и осевшие на открытых участках поверхности алюминия ионы меди могут вызывать ускоренный питтинг. Нанесение предварительного антикоррозийного покрытия позволяет в какой-то мере уменьшить такую опасность, однако с появлением оловоорганических составов применение более сложных систем, содержащих соединения меди, нельзя считать оправданным. Ни в коем случае нельзя также использовать для получения необрастающих покрытий краски, содержащие соединения ртути. Ртуть образует с алюминием амальгамы и делает его склонным к растрескиванию при наличии растягивающих напряжений.  [c.156]

При обработке отливок следует обратить внимание на следующие способы, дающие при соответствующих условиях повышение надежности и наибольший технико-экономический эффект дробеструйная обработка стальных деталей, работающих с переменными нагрузками покрытие алюминием стальных и чугунных отливок для повышения стойкости против окисления при высоких температурах диффузионное хромирование стальных отливок с целью увеличения коррозионной стойкости поверхностная закалка (газовая или индукционная) стальных или чугунных отливок, подвергающихся истиранию или ударам пористое хромирование рабочих поверхностей отливок из алюминиевых сплавов, подвергающихся износу электролизное антикоррозионное оксидирование отливок из сплавов алюминия металлизация распылением (цинком, алюминием, латунью, медью, сталью и т. д.), увеличивающая коррозионную стойкость и износостойкость.  [c.369]

В обычной атмосфере наиболее неблагоприятным для коррозии алюминиевых сплавов является контакт их с медью и медными сплавами, с никелем, никелевыми сплавами и никелевыми покрытиями, с серебром.  [c.74]


В условиях погружения в морскую или пресную воду не допустим контакт с медью и медными сплавами, титаном и титановыми сплавами, нержавеющей сталью, никелем и никелевыми покрытиями, оловом и оловянными покрытиями, свинцом, серебром, магнием и магниевыми сплавами. В этих же условиях допустим контакт с алюминиевыми сплавами различного состава, цинком и цинковыми покрытиями, кадмием и кадмиевыми покрытиями.  [c.74]

Наиболее широкое и успешное применение находят сплавы, содержаш,ие 20% олова и 1—3% меди. Эти сплавы по своему поведению при разрывах масляной пленки наиболее приближаются к баббитам, имея перед ними преимущество по усталостной прочности в 2—3 раза. Подшипники, изготовленные из таких сплавов, обладают высокой несущей способностью. Алюминиевый сплав с большим содержанием олова можно применять для подшипников коленчатых валов, изготовленных из мягкой стали. Кроме того, так как этот сплав сравнительно мягок, он обладает способностью поглощать загрязнения в большей степени, чем более твердый медно-свинцовый сплав или свинцовистая бронза и другие алюминиевые сплавы. Таким образом, стальные вкладыши, покрытые сплавом алюминия с оловом и получившие название сетчатого сплава, в значительной степени разрешили проблему совмещения большой несущей способности с хорошими качествами поверхности подшипника.  [c.125]

В обычных условиях для алюминия иногда необходим ин-дукционный период, прежде чем он проявит анодный характер. Из-за этого на поверхности алюминиевых покрытий, нанесенных на сталь и подвергающихся атмосферному воздействию, образуются пятна ржавчины, вызванные коррозией стали. Через небольшой промежуток времени коррозия исчезает благодаря возникновению на алюминии сплошной окисной пленки, предотвращающей образование ржавчины. Окисная пленка на алюминии имеет большую проводимость электронов, если на кристаллическую решетку окислов поступают другие ионы, особенно ионы меди. Вода со следами растворенной меди может вызвать образование язв на поверхности алюминия.  [c.42]

Покрытие наносят в герметически закрытом контейнере. Очи-щенные металлические изделия погружают в порошок, содержащий металл покрытия. В течение нескольких часов контейнер нагревается при температуре, близкой (но меньшей) точке плавления металла. Цинковые покрытия, нанесенные на сталь, называются шерадизационными. Диффузионный слой представляет собой сплав, содержащий 8—9% железа в цинке. Алюминиевые покрытия на стали или меди называют алитиро-ванными. На них образуется окись алюминия во всех поверхностных слоях с содержанием алюминия более 8%. Эта окисная пленка обеспечивает высокую сопротивляемость действию коррозии, но сильно охрупчивает поверхностные слои, поэтому после алитирования необходимо подвергнуть изделие отжигу.  [c.105]

На глубине экспонировали образцы сталей, покрытые цинком, алюминием. напыленпым алюминием, титаном-кадмием, кадмием, медью и никелем. Цинковое покрытие (0.304 г/м ) на глубине 750 м защищало сталь в течение 3—4 месяцев пребывания в морской море н в течение примерно 7 месяцев при частичном погружении в донные осадки. Алюминиевое покрытие (0.304 г/м ) защищало сталь (при той же глубине экспозиции) в течение по крайней мере 13 месяцев в морской воде и в условиях частичного погружения в донные осадки.  [c.246]

В работе [38] исследовали различные технологические способы получения композиционных материалов с металлической матрицей, армированной углеродными волокнами, — горячее прессование волокон, предварительно покрытых матричным или вспомогательным металлом или сплавом, электроформование, горячую экструзию смеси волокон с порошком матричного сплава и жидкофазную пропитку. Хорошие результаты получены при электролитическом осаждении на углеродные волокна таких металлов, как медь, никель, свинец и олово отмечаются значительные трудности при нанесении"алюминиевого покрытия. В работе сделана попытка совместного осаждения алюминия и коротких углеродных волокон из эфирных растворов в инертной атмосфере. Углеродные волокна предварительно измельчались до длин порядка 1 мм (использовали волокна с предварительной поверхностной обработкой и без нее, а также с медным покрытием толщиной 2 мкм) и затем вводились в электролит. Главной трудностью при реализации процесса было комкование волокон, приводящее к закорачиванию электрической цепи. Избежать этого явления можно лишь при уменьшении концентрации волокон в электролите, в связи с чем оказалось невозможным получение образцов композиции с содержанием армирующих волокон более  [c.368]

Подобные алюминиевые покрытия эффективны для защиты крепежных изделий из высокопрочной стали, титана и алюминиевых сплавов, эксплуатируемых в морской воде. Для защиты подшипников из углеродистой стали от коррозии были применены ионные покрытия из нержавеющей стали 304, а алюминиевых— из нержавеющей стали 310 [70]. Покрытия из алюминия, золота и нержавеющей стали наносят на крепежные изделия и другие мелкие детали для защиты их от коррозии и улучшения механических свойств. Особенности технологии нанесения ионных покрытий на мелкие детали рассмотрены в работе [71]. Для защиты от коррозии отдельных узлов установок газификации угля предложено наносить покрытия толщиной 10—100 мкм из А12О3. На тонкое покрытие, нанесенное методом ионного осаждения, можно наносить толстое покрытие гальваническим методом. Например, можно сочетать процесс ионного осаждения медного покрытия толщиной 25 мкм на титан с последующим осаждением толстого (500 мкм) слоя меди в обычной гальванической ванне (чисто гальваническим методом медное покрытие на титан осаждать не удается) [70]. Особенно перспективен метод ионного осаждения при нанесении покрытий на непроводящие детали (карбид вольфрама, пластмассы, керамику и др.), т. е. на детали, на которые другими методами осадить металлические покрытия сложно или вообще нельзя.  [c.129]

Сплавы на основе никеля и меди неприменимы, а высокая стойкость алюминия мсжет быть использована — на сталь износятся алюминиевые покрытия, получаемые горячим погружением или термодиффузионным способом.  [c.107]

Лучшим пигментом для грунта по стали является свинцовый сурик, применяемый при грунтовке подводных частей судов и портовых сооружений, железнодорожных мостов и т. п. Не-дефицитным и недорогим пигментом для грунтовки стали является железный сурик. В грунтовочном материале для алюминиевых и магниевых сплавов пигментом является цинковый крон при грунтовке цинка и оцинкованного железа применяют окись цинка. Алюминиевый порошок, затертый на масляном лаке, относится к хорошим грунтовочным материалам для меди. При покрытии нитролаками (нитроэмалями) грунтом служит масляный лак и смесь пигментов. В последнее время широко применяют цинковые — протекторные грунты, надежно предохраняюшие сталь от коррозии в атмосферных условиях, пресной воде и в закрытых помещениях. Эти грунты создают катодную защиту стали в морской воде. Такой грунт состоит из эмульсионного полистирола, растворенного в ксилоле и скипидаре, и цинкового порошка.  [c.265]


Алюминиевые покрытия (технический алюминий 99,5%-ной чистоты) имеют высокую коррозионную стойкость в морских условиях, в промышленной атмосфере, слабых кислотах и т. д. расслаивающая коррозия термообработанного алюминия может быть полностью прекращена путем нанесения горячего металлизацион-яого алюминиевого покрытия (в котором его основной загрязняющей примесью не должна быть медь) на поверхность алюминия.  [c.311]

Избирательность действия жидких металлических покрытий Я. М. Потак связывает с особенностями кристаллической структуры и механических свойств твердых металлов, допуская, что жидкий металл во всех случаях является сильно поверхностно-активным веш,еством. Жидкие покрытия, согласно Потаку, действуют только тогда, когда под их влиянием величина хрупкой прочности оказывается ниже предела текучести металла в случае низко отпуш енных сталей, меди, алюминиевого бплава АМц, кадмия, и свинца, вследствие их высокой пластичности, даже при действии расплавленных покрытий предел текучести оказывается ниже предела прочности, и эффект отсутствует. Фактор, указываемый Потаком, несомненно, играет важную роль действительно, трещ ины разрушения развиваются лишь при достижении определенного уровня напряжений [9, 10, 151]. Однако для объяснения характера действия тех или иных расплавов на различные металлы необходим также учет физико-химической специфики взаимодействия металла с расплавом, выражаюпцейся в различной адсорбционной активности жидких металлических сред по отношению к деформируемым металлам, т. е. в различно степени понижения свободной поверхности энергии [107, 117, 140].  [c.144]

С помощью оптического микроскопа были проведены наблюдения характера разломов, образующихся при вытягивании штифтов. Замечено, что для алюминиевых покрытий, полученных в режиме к 1, на подложках из ЛС-59, Д16Т и меди характерным является когезионный отрыв покрытия. Типичные микрофотографии, соответствующие этому случаю, приведены на рис. 4.8,а, б, из которых хорошо виден объемный характер структуры разлома напыленного слоя. Для этих же покрытий на стальных подложках в основном наблюдается адгезионный или смешанный (адгезионно-когезионный) отрыв, показанный на рис. 4.8,в. При ки в основном наблюдается адгезионный отрыв.  [c.198]

В промышленных условиях скорость коррозии алюминия составляет только одну треть скорости коррозии цинка и затухает во времени благодаря хорошей адгезии продуктов коррозии. Наряду с этим покрытие может часто действовать как аиодиое для стали и для менее коррозиоиностойких алюминиевых сплавов. Хадсон [20] показал, что срок службы алюминиевого покрытия, нанесенного способом напыления иа стали, в условиях очень агрессивной промышленной атмосферы Шеффилда составит 4,5 года при толщине покрытия 38 мкм и более 11,5 лет при толщине 75 мкм. Алюминиевое покрытие, полученное напылением толщиной 125 мкм, также обеспечивает полную защиту против расслаивающей коррозии и коррозионного растрескивания алюминиевых сплавов системы алюминий — медь —магний (НЕ15) и алюминий — цинк—магний (ДТД 683) при испытаниях до 10 лет в промышленной и морской атмосфере [25, 26].  [c.398]

Азотнортутная соль, действие на сплавы меди с оловом 223 Азотносеребряная соль, действие на сплавы меди с оловом 223 на сплавы никеля 269—271, 289 на цирконий 389 Активность электролитов см. Ионная активность Алитирование 667—668 Алклед, коррозия в атмосфере 128— 129 в морской воде 431, 437— 438,445 в почве 126—127 в пресных водах 116, 125 применение 125—126, 131, 133—134 состав и механические свойства 112—114 см. также Сплавы алюминия Алюминиевые покрытия как способ борьбы с коррозионной усталостью 618  [c.1225]

Например, алюминиевое покрытие (99,8 % А1) позволяет получить слой, обладающий стойкостью к высокотемпературному окислению, к общей коррозии, молибденовое — хорошую адгезию с черными металлами в качестве подслоя, а также для повышения износостойкости коррозионной стойкости в соляной кислоте Медь применяют для создания электропроводящих контактов, а ее сплавы — для повышения коррозионной стойкости (алюминиевые бронзы), износостойкости и антифрикционных свойств (фосфористые и свинцовистые бронзы), коррозионной стойкости в морской воде (латуии). Никель и его сплавы (нихром и др.) применяют для защиты от эрозионного воздействия, окисления при высоких температурах, воздействия некоторых кислот и щелочей, а также для нанесения промежуточного слоя.  [c.472]

Безоловянные бронзы могут быть в зависимости от основного компонента (кроме меди) алюминиевыми, свинцовыми и другими бронзами. Такие бронзы по механическим, коррозионным и антифрикционным свойствам превосходят оловянные. На практике чаще всего используют безоловянные алюминиевые бронзы, например, марок БрА9Мц2Л, БрА9ЖЗЛ, БрА10ЖЗМц2. Свинцовые бронзы имеют повышенные антифрикционные свойства, но свинец в них в процессе кристаллизации сильно ликвирует. Поэтому для получения качественных отливок, например из сплава марки БрСЗО, необходима ускоренная кристаллизация расплава, которая может быть достигнута в кокиле при минимальной толпщне его покрытия.  [c.156]

Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением (см. 6-20). Эта пленка предохраняет алюминий от дальнейшей коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов и делает невозможной пайку алюминия обычными методами. Для пайки алюмнния применяются специальные пасты-припои или используются ультразвуковые паяльники. В местах контакта алюминия и меди возможна гальваническая коррозия. Если область контакта подвергается действию влаги, то возникает местная гальваническая пара с довольно высоким значением ЭДС, причем полярность этой пары такова, что на внешней поверхности контакта ток идет от алюминия к меди и алюминиевый проводник может быть сильно разрушен коррозией. Поэтому места соединения медных проводников с алюминиевыми должны тщательно защищаться от увлажнения (покрытием лаками и тому подобными способами).  [c.202]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Получение композиционного материала методом горячего прессования в вакууме также описано в работе [178]. Для улучшения прочности связи матрицы с волокном и с целью исключения возможности образования на поверхности раздела углеродное волокно—алюминий карбида алюминия на поверхность углеродных волокон наносили слой меди толщиной 0,2—0,4 мкм. Исходные волокна имели предел прочности 200 кгс/мм , плотность 1,73 г/см средний диаметр отдельных волокон был равен 8 мкм. Материал получали в вакууме 2—5 10 мм рт. ст. при температуре 620—650° С и времени выдержки 30—120 мин прессованием пакетов из чередующихся слоев алюминиевой фольги и однонаправленного углеродного волокна с медным покрытием. Предел прочности композиций, содержащих 10—15 об. % волокон, был равен 23—32 кгс/мм , а композиций с 20—40 об. % волокон — 35—48 кгс/ мм . Микрорентгеноспектральное, электронно-микроскопическое исследования композиций, а также исследсвание в растровом электронном микроскопе не обнаружили повреждений углеродных волокон.  [c.138]


Прокатка. Процесс изготовления полуфабриката в виде леиты из композиционного материала на основе алюминия, упрочненного борным волокном, описан ниже (Патент Франции № 2133317, 1971 г.). Предварительную заготовку, состоящую из чередующихся слоев алюминиевой фольги и однонаправленного, уложенного с определенным шагом борного волокна, подвергали прокатке при температуре 600—650° С. Прокатку вели с небольшими степенями деформации за несколько проходов. Для улучшения прочности связи на границе раздела матрица — волокно на поверхность волокон рекомендуется наносить тонкое покрытие из вольфрама, никеля или меди. Полученный в виде ленты композиционный материал, содержащий около 50 об. % борного волокна, имел модуль упругости 25 ООО кгс/мм .  [c.145]

Более перспективным методом получения алюминиевых композиционных материалов, упрочненных углеродными волокнами, является, очевидно, предварительная металлизация тем или иным способом углеродных волокон (никелирование, меднение, серебрение) и последующая пропитка покрытых волокон алюминиевым сплавом. Пропитка может осуществляться либо методом вакуумного всасывания, либо автоклавным методом, либо прессованием в слоях между фольгой из алюминиевого сплава при температуре образования жидкого расплава. Последний из перечисленных методов описан Линьоном [169]. Волокна типа графил предварительно покрывались слоем меди, содержащим 4% кобальта. Толщина покрытия составляла от 0,5 до 1,0 мкм, температура горячего прессования —600° С. Прочность на растяжение образцов, содержащих 30 об. % волокон, составила 50 кгс/мм .  [c.181]

Boro до золотисто-желтого. Форма частиц — чешуйчатая укры-вистость меньше, чем у алюминиевой пудры, что объясняется большей плотностью бронз. Они, так же как и алюминиевая пудра, защиш ают пленкообразующие в покрытиях от воздействия ультрафиолетовых лучей. Порошки, получаемые электролизом, обычно содержат 99,5% Си, незначительные примеси Fe, РЬ, а также оксиды меди. Плотность 1250—1800 кг/м основной размер частиц менее 20 мкм.  [c.68]

Пористое покрытие на основе меди, в частности Си— AljOa, можно получать и химическим способом [160]. Оксид алюминия, имеющий пористость 18—33%, получается спеканием в токе водорода смеси, образованной в результате взаимодействия растворов нитрата меди и алюминиевых квасцов. Покрытие содержит высокодисперсные частицы АЬОз (5—10 нм). Микротвердость материала составляет 100—155 МПа.  [c.252]

В результате исследований был разработан гальванодиффу-зионный способ восстановления бронзовых деталей авиационных конструкций, предусматривающий последовательное выполнение двух основных операций гальваническое нанесение на изношенную поверхность детали слоя меди необходимой толщины и диффузионное легирование его алюминием при соответствующей температуре. В результате этих операций на поверхности детали образуется покрытие, близкое по структуре и механическим свойствам к исходной алюминиевой бронзе.  [c.187]


Смотреть страницы где упоминается термин Медь-алюминиевые покрытия : [c.75]    [c.97]    [c.125]    [c.313]    [c.382]   
Смотреть главы в:

Научные основы технологии холодного газодинамического напыления(хгн) и свойства напыленных материалов  -> Медь-алюминиевые покрытия



ПОИСК



Медиана

Медь покрытия медый

Покрытие алюминиевые

Покрытия медью



© 2025 Mash-xxl.info Реклама на сайте