Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ультрафиолетовые лучи

Чтобы электроны могли покинуть металл, они должны обладать запасом энергии для преодоления электростатического притяжения ионов. Прочность связи электрона в данном металле характеризуется величиной работы выхода электрона, т. е. количеством энергии, которое необходимо для выделения электрона из металла. Только в случае придания электронам дополнительной энергии (нагрев, облучение ультрафиолетовыми лучами и др.) можно создать условия для выхода электронов из поверхностного слоя металла. В обычных условиях выход электронов из металла невозможен. Металлическая связь бывает весьма прочной металлам свойственна высокая твердость, высокая температура плавления и пр.  [c.10]


Полиэтилен подвержен процессам старения под воздействием тепла, ультрафиолетовых лучей и Оз (воздуха), приводящих к ухудшению его физико-механических и диэлектрических свойств. Горячее формование деталей из полиэтилена и последующее их охлаждение вызывает усадку. Повторное нагревание готовых деталей также дает усадку, достигающую 1,0—2,5%.  [c.351]

Кварц для тепловых лучей непрозрачен, а для световых и ультрафиолетовых прозрачен. Каменная соль прозрачна для тепловых и непрозрачна для ультрафиолетовых лучей. Оконное стекло прозрачно для световых лучей, а для ультрафиолетовых и тепловых почти непрозрачно. Белая поверхность (ткань, краска) хорошо отражает лишь видимые лучи, а тепловые лучи поглощает также хорошо, как и темная. Таким образом, свойство тел поглощать или  [c.459]

Скорость разрушения ЛКП зависит от свойств атмосферы, в которой оно находится, т. е. от количества атмосферных загрязнений, осадков и продолжительности воздействия солнечных лучей. Некоторую роль играет цвет наружного слоя покрытия, определяющий способность отражать инфракрасные и ультрафиолетовые лучи, а также тип связующего. При прочих равных условиях эффективность высококачественных ЛКП, применяемых для противокоррозионной защиты, определяется их суммарной толщиной. Покрытие определенной толщины предпочтительнее наносить в несколько слоев, чем в один, потому что краска, наносимая в несколько слоев, лучше закрывает поры и, кроме того, в тонких пленках легче происходят испарение растворителя и пространственные превращения при полимеризации.  [c.251]

Обычно призму Николя называют николем. Николь не применяется в ультрафиолетовой области из-за поглощения ультрафиолетовых лучей канадским бальзамом.  [c.228]

Два электрода (один в виде сетки, другой — плоский), находящиеся в вакууме, подсоединены к батарее. Включенный в цепь амперметр служит для измерения возникающей силы тока. Облучая катод светом различных длин волн, Столетов пришел к выводу, что наиболее эффективное действие оказывают ультрафиолетовые лучи. Кроме того, было установлено, что сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.  [c.342]

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей поэтому эти лампы называют кварцевыми лампами.  [c.279]

Оптический диапазон спектра (инфракрасные, видимые и ультрафиолетовые лучи) представляет большой интерес, но мы будем предельно кратки при общем описании методов возбуждения и регистрации спектра в этой области, так как в дальнейшем придется детально рассматривать многие вопросы, о которых здесь лишь упоминается.  [c.11]


Усреднение микроскопических значений законно в том случае, если линейные размеры области, где <Ем кр и <Н икр можно считать неизменными, значительно превыщают размеры атомов (молекул). Длина волны ), является тем отрезком, на котором напряженность поля сильно изменяется. Поэтому усреднение можно проводить лишь в том случае, когда /. значительно больше атомных размеров. Такое неравенство соблюдается для всего оптического диапазона спектра, включая короткие ультрафиолетовые лучи. Сложнее обстоит дело в рентгеновской области спектра, где ). 10 см, т. е. того же порядка, что и размеры атомов. В рамках данного курса количественные оценки будут проводиться лишь для оптического диапазона спектра, где законность усреднения микроскопических уравнений поля не вызывает сомнений.  [c.16]

Сложные проблемы усреднения также можно игнорировать на данном этапе исследования, особенно если ограничиться оптическим диапазоном спектра (инфракрасные, видимые и ультрафиолетовые лучи). В этом случае в кубе с ребром порядка длины световой волны даже при очень малой плотности вещества содержится громадное количество излучающих атомов, которые, как мы условились, не влияют друг на друга, и можно положить, что поляризация вещества в поле световой волны определяется соотношением Р = Nqr.  [c.140]

В заключение этого краткого обзора фотоэлектрических приемников упомянем о возможности преобразования невидимого излучения (инфракрасные и ультрафиолетовые лучи) в видимое, что может быть осуществлено с помощью электронно-оптического преобразователя (ЭОП), который также способен выполнять функции усилителя света. Схема действия этого прибора представлена на рис. 8.24. На фотокатоде происходит преобразование оптического изображения в электронное. Затем электронные пучки от разных частей фотокатода фокусируются и попадают на флуоресцирующий экран, где происходит визуализация изображения. Качество изображения не очень хорошее, так как аберрации электронных пучков, как правило, больше оптических, но все же современные устройства подобного типа имеют в центре картины разрешающую способность порядка нескольких десятков линий на миллиметр, что близко к возможностям обычной фотографической пластинки.  [c.443]

ИЗ. Инфракрасные и ультрафиолетовые лучи  [c.400]

ГЛ. XIX. ИНФРАКРАСНЫЕ, УЛЬТРАФИОЛЕТОВЫЕ ЛУЧИ  [c.401]

Особенным затруднением для гипотезы волновой природы рентгеновских лучей служили неудачи опытов, проделанных Рентгеном и рядом других исследователей с целью обнаружить интерференцию и дифракцию рентгеновских лучей. Лишь значительно позже (около 1910 г.) выяснилось, что длина волны рентгеновского излучения значительно меньше, чем у видимого света и ультрафиолетовых лучей, и поэтому первые опыты по осуществлению интерференции были заранее обречены на неудачу.  [c.407]

Наиболее эффективно действуют ультрафиолетовые лучи, поглощаемые телом ( чем спектр обильнее такими лучами, тем сильнее действие ).  [c.635]

Фотографирование на обычных пластинках в области короткого ультрафиолета, поглощаемого желатином, легко достигается при помощи сенсибилизации, основанной на ином принципе. Чувствительная поверхность пластинки покрывается веществом, флуоресцирующим под действием коротких ультрафиолетовых лучей (например, тонким слоем машинного масла). Свет флуоресценции, имеющей большую длину волны, проникает сквозь желатин и хорошо фотографируется. Таким путем без труда удается использовать обычные пластинки для фотографирования в ультрафиолете при X = 180,0 нм и короче.  [c.674]

Еспи заполнить трещины таким люминесцирующим веществом, то при облучении детали ультрафиолетовыми лучами трещины становятся хорошо заметными.  [c.372]

Закон Бугера — Ламберта—Бера в принципе применим для всего диапазона электромагнитных излучений — видимого света, инфракрасных и ультрафиолетовых лучей, радиоволн, рентгеновских и у-лучей. Однако при его практическом применении он имеет по ряду причин лишь приближенный характер.  [c.100]

Облучение воды (обеззараживание) производится ультрафиолетовыми лучами. В качестве источников излучения используются лампы аргонно-ртутные низкого или ртутно-кварцевые высокого давления. Лампы могут располагаться как над поверхностью воды, так и погружаться в нее в кварцевых чехлах. На рис. 14.7 показана установка для бактерицидного облучения. Для малых населенных мест рекомендуется использовать серийно выпускаемые отечественной промышленностью установки ОВ-Ш (пропускная способность — 3 м /ч давление 0,1 МПа с одной лампой типа ДБ-60 потребляемая мощность—0,06 кВт) и 0В-1П-РКС (пропускная способность— 50 м /ч давление 0,1 МПа с одной лампой типа ДРТ-2500 потребляемая мощность — 6,0 кВт).  [c.156]


Источниками ультрафиолетового излучения являются специальные газоразрядные лампы, в которых возникает электрический разряд в атмосфере паров ртути при том или ином давлении. Трубка или колба такой лампы изготавливаются из кварцевого или иного специального стекла, хорошо пропускающего ультрафиолетовые лучи. Лампы снабжаются устройствами для зажигания разряда (напряжение зажигания примерно в два раза больше напряжения при нормальной работе лампы) и другими регулирующими и защитными устройствами. Лучи от лампы проходят через светофильтр (стеклянный, пластмассовый или жидкостный), пропускающий ультрафиолетовые лучи определенного интервала длин волн, но интенсивно поглощающий видимые лучи, почему фильтрованные ультрафиолетовые лучи иногда называют черным светом. Пример состава стекла для такого фильтра 50% ЗЮа, 25% ВаО, 16% КгО, 9% N10. Для испытаний на воздействие ультрафиолетовых лучей могут быть использованы приборы люминесцентного анализа с мощными источниками ультрафиолетового излучения.  [c.195]

В зависимости от длины волны Я лучи обладают различными свойствами. Наименьшей длиной волны обладают космические лучи 1 = 0,1 А -f- 10 А (где А — ангстрем, единица длины, 1А = мм). Гамма-лучи, испускаемые радиоактивными веществами, имеют длину волны до 10А лучи Рентгена — = 10- 200А ультрафиолетовые лучи — 1 = 200А 0,4 мк мк — микрон, 1 мк — 0,001 мм) световые лучи — Я, = 0,4 -0,8 мк инфракрасные, или тепловые, лучи — Я, = 0,8- 400 мк радио или электромагнитные лучи — X > 400 мк. Из всех лучей наибольший интерес для теплопередачи представляют тепловые лучи с Я = 0,8- 40 мк.  [c.458]

Световые лучи оказывают ослепляющее действие, так как их яркость значительно превышает норму, допускаемую для человеческого глаза (до 10 000 раз). Ультрафиолетовые лучи даже при кратковременном Действии в течение нескольких секунд вызывают заболевание глаз, называемое электроофтальмией. Оно сопровождается острой болью, резью в глазах, слезотечением, спазмами век. Продолжительное действие ультрафиолетовых лучей приводит к ожогам кожи. Инфракрасные лучи при длительном действии вызывают помутнение хрусталиков глаз (катаракта), что может привести к ослаблению и потере зрения, тепловое действие этих лучей вызывает ожоги кожи. Защита зрения и кожи лица при дуговой сварке обеспечивается применением щитков, масок или шлемов, в смотро вое отверстие которых вставляют светофильтры, задерживающие и поглощающие излучение дуги. В зависимости от мощности дуги применяют различные светофильтры. Для защитц окружающих от  [c.155]

ЧТО Приводит к изменению интерференционной картини. Наконец, вследствие поглои1,ения стеклом ультрафиолетовых лучей возникает необходимость изготовлять пластины пз кварца. Изготовление таких пластин является трудоемким и дорогостоящим процессом.  [c.112]

Увеличение разрешающей силы микроскопа путем уменьшения длины световой волны прнв ело к положительному результату. Микроскопы, пспользующне ультрафиолетовые лучи, позволяют увеличить разрешающую силу примерно в два раза. Переход к микроскопам, использующим рентгеновские лучи, позволил бы резко увеличить разрешающую силу. Однако отсутствие оптических линз для рентгеновских лучей делает практически почти невозможным создание рентгеновских микроскопов. Такие принципиальные трудности были преодолены после того, как в 1923 г. Луи де Бройлем была выдвинута гипотеза, согласно которой любой частице с массой т, движущейся со скоростью v, соответствует волна с длиной  [c.203]

Фотоэффект. Облучая ультрафиолетовыми лучами находящиеся под напряжением электроды, Герц в 1887 г. наблюдал ускорение процесса разряда. Позднее Галвакс указал, что явление, наблюденное Герцем, обусловлено ионизацией окружающего электроды газа зарядами, вырванными под действием света.  [c.342]

При этом возникает линейчатый спектр. Для индикации рентгеновского излучения используют те же физические явления, что и при исследовании ультрафиолетовых лучей. В первую очередь применяют фотохимичекие, фотоэлек- 2. Смещение коротковолновой грани-  [c.13]

Применение ультрафиолетовых лучей, требующее изготовления оптики микроскопа из соответствующих материалов (кварц, флюорит) или использования отражательной оптики, ограничено длинами волн 250—200 нм, ибо большинство объектов, подлежаш,их наблюдению, сильно поглощает короткий ультрафиолет. Таким обра.зом, на этом пути возможно увеличение разрешающей силы примерно в два раза, что и осуществлено в современных ультрафиолетовых микроскопах, причем, конечно, необходимо применять фотографический метод наблюдения.  [c.357]

В самом начале XIX в. было введено понятие об инфракрасных и ультрафиолетовых лучах. Наличие инфракрасных волн было уста-г новлено в 1800 г. Герщелем, наблюдавшим нагревание чувствительного термометра, на который падало излучение Солнца с длинами волн, лежащими за красным концом спектра. Гершель обнаружил также, что эти лучи подчиняются таким же законам отражения и преломления, как и видимый свет.  [c.400]

Открытие фотографии и ее успехи сыграли решающую роль в исследовании ультрафиолетовых лучей, ибо фотографическая пластинка оказывается к ним весьма чувствительной. Исследование ультрафиолетового излучения удобно также производить по его сп Усоб-ности возбуждать свечение многих тел (флуоресценция и фосфоресценция) и вызывать фотоэлектрический эффект. Фотографировать можно также и инфракрасное излучение, применяя особым способом обработанные фотопластинки (сенсибилизация, см. гл. XXXV). Таким путем удается, однако, дойти лишь до 1= 1,2—1,3 мкм. Значительно дальше простирается чувствительность к инфракрасным лучам у современных фотоэлементов и фотосопротивлений, с помощью которых можно регистрировать инфракрасное излучение примерно до 100 мкм. Используя влияние инфракрасных лучей на яркость фосфоресценции (см. гл. XXXVIII), удалось исследовать область спектра до 1,7 мкм. Однако тепловой метод, применимый для любой длины волны, является и доныне весьма распространенным при работе с инфракрасным излучением, особенно для длин волн больше 2 мкм. Конечно, при этом применяются весьма чувствительные термометры, особенно электрические (сверхпроводящие и обычные болометры и термопары), позволяющие констатировать подъем температуры на миллионную долю градуса (10 К).  [c.401]


Все предыдущее показывает, что рентгеновское излучение представляет собой электромагнитные волны, отличающиеся от обычного света лишь своей малой длиной. Однако разнообразие длин волн рентгеновских лучей чрезвычайно велико. Если обычно длины волн рентгеновского излучения в сотни и тысячи раз меньше длин волн света, то возможны и гораздо более мягкие рентгеновские лучи, соответствующие большей длине волны. Трудность их наблюдения заключается в том, что они очень легко поглощаются всеми телами, приближаясь в этом отношении к короткому ультрафиолетовому излучению. Действительно, принимая меры предосторожности, необходимые при работе с такими легко поглощающимися лучами, удалось наблюдать рентгеновские лучи, по длине волны заходящие в область, которую мы обозначали как область ультрафиолета. Понятно, что в таком случае нет никакого различия между рентгеновскими и ультрафиолетовыми лучами. То или иное название для них зависит от способа их возбуждения. Если возбуждение лучей соответствует методам возбуждения рентгеновского излучения, т. е. мы подходим к этим мягким лучам со стороны более жестких, рентгеновских, то мы назовем их рентгеновскими. Если, наоборот, возникшие лучи вызваны по способу, принятому для возбуждения ультрафиолета, т. е. мы подходим к ним со стороны еще более длинных ультрафиолетовых лучей, то их естественно отнести к ультрафиолету. Область между рентгеновскими и ультрафиолетовыми лучами в настоящее время заполнена (Хольвег), подобно тому как заполнена область между терцовыми и инфракрасными лучами.  [c.415]

Явление, обнаруженное Герцом, можно наблюдать на следующем легко осуществимом опыте (рис. 32.1). Величина искрового промежутка F подбирается таким образом, что в схеме, состоящей из трансформатора Т и конденсатора С, искра проскакивает с трудом (один-два ра.за в минуту). Если осветить электроды F, сделанные из чистого цинка, светом ртутной лампы Hg, то разряд конденсатора значительно облегчается искра начинает проскакивать довольно часто, если, конечно, мощность трансформатора достаточна для быстрой зарядки конденсатора С. Поместив между лампой и электродами F стекло G, мы преграждаем доступ ультрафиолетовым лучам, и явление прекращается.  [c.634]

Призма Аренса (рис. 17.10) содержит три призмы из исландского шпата, склеенные канадским бальзамом. Угловая апертура призмы Аренса равна 35°. У всех поляризационных призм, склеенных канадским бальзамом, имеется общий недостаток — они непригодны для работы в ультрафиолетовой области, так как канадский бальзам сильно поглощает ультрафиолетовые лучи. Для работы в этой области применяются призмы с воздушной прослойкой или призмы, склеенные прозрачными для  [c.37]

Как известно, частота люминесцентного свечения меньше частоты возбуждающего излучения. Поэтому вполне понятно применение люминофоров для детектирования ультрафиолетовых лучей они возбуждают люминофор, который затем высвечивается в видимой области спектра. Но люминофоры могут с успехом детектировать также и инфракрасное излучение. Для этой цели используют вещества со стимулированной люминесценцией. Детектируемое инфракрасное излучение играет роль стимулятора, обеспечивающего переход центра люминесценции с метаста-бильного уровня на уровень высвечивания (см. рис. 8.1, 3). В крист аллофосфор ах инфракрасное излучение может способствовать освобождению электронов из ловушек и тем самым стимулировать люминесценцию. В отдельных случаях инфракрасное излучение может инициировать переходы, при которых энергия возбуждения передается центрам тушения тогда наблюдается не усиление, а, наоборот, ослабление люминесценции кристаллофосфора.  [c.198]

Взаимодействие с радиацией, вырывание полем. Мак-Леннан, Хуп-тер п Мак-Леод [136] измеряли фототок, возникающий при облучении свинца ультрафиолетовыми лучами. Фототок не обнаруживает заметных изменений при переходе свинца в сверхпроводяп ее состояние.  [c.672]

Существуют следующие методы обеззараживания термический (воздействие сильных окислителей), олигодинамия (воздействие благородных металлов) и физический (с помощью ультразвука, радиоактивного излучения, ультрафиолетовых лучей). Наиболее щироко применяется обеззараживание с помощью сильных окислителей хлора, диоксида хлора, озона, йода, марганцевокислого калия, пероксида водорода, гипохлорита натрия и  [c.253]

В ряде случаев, например для лакокрасочных покрытий (ГОСТ 6992—68), производится испытание на длительное воздействие солнечной радиации или облучения ультрафиолетовыми лучами при одновременном доступе воздуха, действии влажности и атмосферных осадков. Такие испытания можно выполнять, помещая испытуемые образцы на открытом воздухе (специальные атмосферные площадки на кры ше здания или на земле), где они подвергаются воздействию солнечного света, дождя, ветра и др. Через определенные промежутки времени образцы осматривают и, если нужно, фотографируют, отмечают [щменепие внешнего вида, массы,. отставание пленок от подложек, образование трещин и т. п.  [c.194]


Смотреть страницы где упоминается термин Ультрафиолетовые лучи : [c.405]    [c.161]    [c.9]    [c.431]    [c.38]    [c.202]    [c.54]    [c.194]   
Справочник рабочего-сварщика (1960) -- [ c.615 ]



ПОИСК



Х-лучи



© 2025 Mash-xxl.info Реклама на сайте