Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электролитическая обработка воды

КАТОДНАЯ ЗАЩИТА С НАЛОЖЕНИЕМ ТОКА ОТ ВНЕШНЕГО ИСТОЧНИКА И ЭЛЕКТРОЛИТИЧЕСКОЙ ОБРАБОТКОЙ ВОДЫ  [c.406]

Для оптимальной электролитической обработки воды 33 % материала анодов — протекторов должно быть размещено в верхней трети резервуара [10]. Катодная защита эффективна при всех применяемых в технике материалах для резервуаров и нагревательных поверхностей, например для стали без покрытий и оцинкованной, для коррозионностойкой стали [15] и меди (см. раздел  [c.410]


Электролитическая обработка воды 406—408 Электролиты 47  [c.495]

Активные формы А1(0Н)з с течением времени становятся инертными и проявляют особую чувствительность к внезапным колебаниям температуры более чем на 10 град [9]. По этой причине при подмешивании холодной воды или при дополнительном подогреве уже обработанной воды эффект защиты от коррозии обычно исчезает. В таких случаях может оказаться целесообразной кратковременная электролитическая обработка в реакционных сосудах меньшей емкости, если по  [c.407]

Технико-экономический анализ эффективности применения электролитических коагулянтов в технологии обработки небольших количеств воды показал, что по затратам они сравнимы с сульфатом алюминия, а в некоторых случаях их применение дает экономический эффект.  [c.221]

Никель — металл серебристо-белого цвета, тягучий и ковкий. До 360° С никель ферромагнитен, свыше — парамагнитен. Отливка производится при 1500—1600° С, прокатка — при 1100—1200° С и в холодном состоянии. Отжиг наклепанного никеля при 750—900° С. Механические свойства зависят от содержания примесей и вида обработки. Никель при нормальных температурах химически стоек к воздействию воздуха, пресной и соленой воды. В серной и соляной кислотах медленно растворяется, в азотной — легко. Щелочные соли (расплавленные и водные растворы) на никель не действуют. Никель используют как легирующий компонент при выплавке качественной стали (до 80% производства) и для образования сплавов с другими цветными металлами, а также для электролитического покрытия металлов, как правило, по предварительно нанесенному медному подслою. Марки никеля определены ГОСТами 849—56 и 492—52 (табл. Й). Никель вакуумной плавки марок НВ и НВК выпускается по МРТУ 14-14-46-65. Химический анализ никеля производят по ГОСТам 13047.1-67- 13047.18—67.  [c.102]

Никель — металл серебристо-белого цвета, тягучий и ковкий. До 360° G никель ферромагнитен, свыше этой температуры — парамагнитен. Отливка производится при 1500—1600° С, прокатка —при 1100—1200° С и в холодном состоянии. Отжиг наклепанного никеля — при 750—900° С. Механические свойства зависят от содержания примесей и вида обработки. Никель при нормальных температурах химически стоек к воздействию воздуха, пресной и соленой воде. В серной и соляной кислотах растворяется медленно, в азотной — быстро. Щелочные соли (расплавленные и водные растворы) на никель не действуют. Никель употребляется как легирующий компонент при выплавке качественной стали (до 80% производства) и в сплавах с другими цветными металлами, а также для электролитического покрытия металлов, как правило, по нанесен-  [c.185]


Для очистки в настоящее время применяют органические рас творители, обладающие свойством прекрасно растворять жиры. К ним относятся бензол, толуол, ксилол, часто также жиры, содержащие хлор, — четыреххлористый углерод, четыреххлористый этилен и т. п. Щелочные жидкости рекомендуются тогда, когда после очистки производится гальванизация. После обработки ультразвуком в щелочных ваннах детали опрыскивают сильным потоком воды, благодаря чему при последующей транспортировке отпадает необходимость в электролитическом обезжиривании.  [c.225]

Процесс анодно-механической обработки зависит от плотности тока, напряжения и давления на обрабатываемую поверхность, скорости движения инструмента. Электролитический режим определяет производительность процесса и качество обработанной поверхности. Напряжение источника тока 14—28 В, плотность тока колеблется от десятых долей ампера на 1 см на чистовых операциях до нескольких сотен на черновых. Давление инструмента обусловливает межэлектродный зазор и связанное с ним электролитическое сопротивление, а совместно с силой тока и рабочим напряжением определяет съем металла. Скорость перемещения инструмента относительно обрабатываемой поверхности влияет на скорость и степень нагрева поверхностного слоя металла заготовки и шероховатость поверхности. Скорость инструмента составляет 0,5— 25 м/с, а сила его прижима 50—200 КПа. Наилучший состав рабочей жидкости — раствор жидкого стекла (силиката натрия) в воде.  [c.297]

Технологический процесс восстановления деталей электрическими и химическими покрытиями состоит из следующих операций, выполняемых в приводимой ниже последовательности очистка от грязи, механическая обработка изношенных поверхностей, монтаж деталей на подвесные приспособления, изоляция поверхностей, не подлежащих покрытию, обезжиривание, промывка проточной водой, анодная обработка или химическое травление, нанесение покрытий электролитическим или химическим способом, промывка и нейтрализация, демонтаж с приспособлений, термическая и механическая обработка.  [c.208]

Для повышения защитных свойств применяются искусственные окисные (оксидные) пленки, получаемые на поверхности металла химическими или электролитическими способами. Эти способы, известные под названием оксидирования или воронения, широко применяются в машиностроении, приборостроении, оружейном деле и других отраслях промышленности как защитно-декоративные покрытия, не обладающие, однако, высокой противокоррозионной стойкостью. Защитные свойства оксидных покрытий значительно повышаются при условии их смазки нейтральными маслами. Лучшие результаты достигаются обработкой при повышенной температуре путем погружения изделий в горячую смазку. Жидкая разогретая смазка хорошо проникает в поры, которые имеются в оксидном покрове, и, охлаждаясь, закупоривает их. Большое значение имеет предшествующая смазыванию операция обработки изделий разбавленным водным раствором мыла. Действие мыльного раствора заключается в том, что поверхность металла не смачивается водой, но хорошо смачивается маслом. Вследствие этого устойчивость и защитные свойства масляной пленки значительно повышаются, что увеличивает стойкость оксидного покрытия.  [c.224]

Процесс электролитической очистки ведут при плотности тока 5— 10 а/дм , начиная его с катодной обработки деталей в течение 5 мин. Переключение полярности при очистке производят через каждые 5 мин, общая продолжительность процесса от 15 до 30 мин в зависимости от состояния поверхности. Процесс очистки заканчивается катодной обработкой деталей, после чего выключают постоянный ток и выгружают штангу с подвесками, выдерживая ее над ванной в течение 3—5 сек для стенания избытка щелочи. Затем детали двукратно погружают в воду на 3—5 сек. При быстром выполнении этой операции поверхность деталей остается светлой и детали не требуют специальной сушки.  [c.79]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]


Одной из усовершенствованных форм катодной внутренней защиты является электролизный способ защиты при помощи алюминиевых протекторов-анодов, питаемых током от внешнего источника он применяется для черных металлов без покрытий и горячеоцинкованных в системах снабжения холодной и горячей водой. Алюминий применяют как материал анода потому, что продукты его анодной реакции не ухудшают потребительских свойств воды и защищают трубопроводы, подсоединенные к резервуару, благодаря образованию защитного покрытия [7—9]. Наряду с катодной внутренней защитой резервуара и встроенных в него конструкций, например нагревательных поверхностей, при электролитической обработке воды происходит также и изменение ее параметров. Эффект защиты от коррозии обусловливается коллоидно-химическими процессами образования поверхностного слоя И обеспечивается не только для новых установок, но и для старых, уже частично пораженных коррозией [9].  [c.406]

Рис. 21.8. Поверхностный защитный слой, образовавшийся при электролитической обработке воды на горячеоцинкованной стальной трубе (срок службы 2 года) Рис. 21.8. <a href="/info/39639">Поверхностный защитный</a> слой, образовавшийся при электролитической обработке воды на горячеоцинкованной <a href="/info/165283">стальной трубе</a> (<a href="/info/55301">срок службы</a> 2 года)
Раствор для травления, приведенный Д Ансом и Лаксом [11], и состояший из 100 мл воды, 8 мл серной кислоты, 4 мл насыш,енного раствора хлористого натрия и 2 мл бихромата калия, по указанию Базетта [25], хорошо протравливает а-сплавы меди с бериллием. Как и при других бихроматных травлениях (см. реактив 10, гл. XIII и реактив 13, гл. XIV), для потемнения 7-фазы в а (а + 7)-сплавах используют последующее травление реактивами хлорного железа или электролитическую обработку в течение 10—15 с раствором сернокислого железа (И) следующего состава 1900 мл воды 100 мл серной кислоты 0,4 г едкого натра и 50 г сернокислого железа [II]. Этот реактив служит, кроме того, для выявления структуры сплавов меди с марганцем, кремнием, никелем и цинком (нейзильбер), бронз и т. д.  [c.207]

При последующей катодной обработке воды происходит прямое электролитическое и гомогенное каталитическое восстановление с участием высокоактивных соединений 0Н , НзОг г Н2, НО2", НО, Н2О2, Н202 . при этом ионы тяжелых металлов превращаются в нейтральные атомы, которые становятся нетоксичными для организма человека и не вступают в биохимические реакции окисления. В катодной камере реактора установки происходит смещение окислительно-восстановительного потенциала воды до уровня, соответствующего внутренней сре де организма человека. В результате повышается биологическая ценность воды, ее способность проникать сквозь биологические мембраны клеток и участвовать в процессах обмена.  [c.356]

Основным фактором, влияющим на сорбционную способность электролитически полученного гидроксида алюминия, является концентрация ионов водорода. В слабо кислой среде фтор сорбируется получаемым осадком значительно лучше, чем в. нейтральной и щелочной. Оптимальное значение pH обрабатываемой воды находится в пределах 6,4...6,6. Повышение или понижение активной реакции среды приводит к снижению эффективности дефторирования воды. Причиной этого, как и в случае реагентной обработки воды, является конкуренция гидроксил-ионов при высоких значениях pH и растворение хлопьевидного осадка в кислой среде. Расход металлического алюминия при предварительном подкислении воды составил около 12 г на каждый 1 г удаляемого фтора, расход кислоты — 0,2 л/м .  [c.381]

Изготовление образцов. Бромистое серебро приготовлялось методом осаждения из химически чистых веществ, растворенных в электролитически чистой воде. 0,4 N растворы азотнокислого серебра добавлялись к эквивалентным количествам растворов бромистого калия при энергичном перемешивании. Осадки промывались 5 раз большими объемами воды, затем 5 раз ацетоном и, наконец, 5 раз бензолом, очищенным от тиофена. Через осадок, находящийся в воронке Бюхнера, пропускался сухой воздух до исчезновения запаха бензола. Все операции осаждения и обработки бромистого серебра проводились при фотографически неактиничном красном свете.  [c.20]

Так как при комнатной температуре необходимо считаться со слишком продолжительным и потому невыгодным временем хранения, то для удаления из материала значительной части водорода в настояшее время пытаются ускорить процесс путем термической обработки. Необходимо указать, что отдача водорода из материала происходит в две фазы, следуюш ие одна за другой. Под действием длительного хранения или высокой температуры вначале относительно быстро удаляется находящийся на внешней поверхности концентрированный водород. Обратная диффузия проникшего глубже водорода идет гораздо медленнее. Если внезапный и быстрый выход водорода будет повышен тем, что наводороженные детали будут помещены в среду, нагретую до температуры, принятой для последующей обработки (вода, масло, свинцовая ванна, расплавленная соль), то могут, как это наглядно доказали Барденхейер и Плум, возникнуть значительные повреждения структуры, которые становятся необратимыми и очень неблагоприятно сказываются на показателях прочности. Барденхейер и Плум заметили бурное выделение водорода из наводороженной проволоки при погружении ее в воду с температурой 95°С. Если протравленную проволоку поместить на несколько секунд в жидкую латунь (ИОО С), то в глубокие межкристал-лические трещины и пустоты, возникшие под действием водорода (выделяющегося взрывообразно и при этом связывающегося в молекулы), проникает латунный припой, хорошо видимый на поперечном шлифе после протравления границ зерен. В дальнейшем после электролитического наводороживания образцов водород немедленно удалялся при те.мпературах 500, 200, 150 и 100°С благодаря тому, что пробы помещали в заранее нагретый до соответствующей температуры железный блок. После этого образцы погружали в расплав латуки. Оказалось, что независимо от выбранной температуры латунь проникла в значительном количестве в виде жилок в нарушенную структуру образца и прежде всего в разрыхленные границы между зернами. Величина остающихся повреждений сплава в результате удаления водорода зависит от скорости удаления. Для сохранения прочности подлежащий последующей термической обработке протравленный материал вместе со средой следует медленно нагревать до соответствующей температуры обработки. Протравленные. летали, особенно проволоку и полосы, обрабатывают от 30 мин до 2 ч. при температурах, лежащих между 90 (обработка горячей во- дой) и 250°С (проходная печь, печь с циркуляцией воздуха).  [c.181]


Электролитическую обработку волоки из стали ЭИ366 (после отжига заготовки на зернистый перлит) можно проводить в электролите, содержащем 3% железного ку пороса, 1% поваренной соли, 0,5% сегнетовой соли 95,5% воды. Электрод сделан из графита. После обра  [c.278]

При обработке воды щелочными реагентами значение рОН определяется значением ионного произведения воды К я и концентрацией Соя- С ростом температуры воды по тракту питательной воды энергоблока от 298 до 523 К, и в связи с увеличением электролитической диссоциации воды значение показателя рКду=рН+рОН снижается от 14,10 до 11,22, а константа диссоциации аммиака при этом уменьшается с 1,8-10-5 до 1,12-10- . Это обусловливает необходимость существенного увеличения концентрации аммиака для поддержания рОН на уровне 5,0. На рис. 3 изображен график изменения значения pH воды при различных температурах в зависимости от концентрации аммиака. Из этого графика следует, что в питательной воде на выходе из деаэратора Т=453 К, pH = 6,44)  [c.26]

Газообразный водород сейчас получается в основном пе электролитическим разложением воды (иа это требуются сл1ин-ком больн1ие энергетические затраты), а путем обработки газообразных углеводородов, например метана СИ4, водяным паром при температуре порядка 750—800 °С в присутствии катализаторов. В результате этого процесса образуется смесь молекулярного водорода и двуокиси углерода. Последняя абсорбируется специальными растворами, но водород сохраняет значительную долю примесей.  [c.231]

Для комплексно легированного магниевого сплава, особенно с алюминием, цинком, кадмием и висмутом, Мехель [15] вместо обычных, менее пригодных для этих целей вследствие образования окисных пленок, растворов для травления, рекомендует электролитический способ. Электролитом служит 10%-ный водный раствор едкого натра. Катод выполняют из меди. Режим травления следующий напряжение 4 В, плотность тока 0,53 А/см . После полирования до блеска оксидом магния, который находится во взвешенном состоянии в 10%-ном растворе едкого натра, или с алмазной пастой, шлиф очищают в 10%-ном растворе едкого натра. Продолжительность травления определяется состоянием образца, в большинстве случаев она колеблется от 2 до 4 мин. После травления шлиф тщательно промывают сначала в 10%-ном, затем в 5%-ном растворе едкого натра и в заключение в дистиллированной воде. При такой обработке уменьшается концентрация едкого натра, задержавшегося на образце. Для высушивания шлиф промывают в спирте.  [c.290]

Металлографии циркония и его сплавов посвяш,ена работа Робертсона [22]. Несмотря на повышенную твердость, этот металл при шлифовании, а также полировании очень склонен к смазыванию . Поэтому каждую отдельную ступень обработки (шлифование, полирование) нужно проводить дольше, чем обычно, чтобы полностью устранить деформированный слой. Эти меры, особенно для материала, подвергнутого неполному отжигу, нужно соблюдать чрезвычайно точно, так как часто при травлении выявляется не реальная структура, а слой после обработки. Этот слой может быть толш иной до 0,5 мм и даже больше. В качестве реактивов хорошо применять смеси 20 мл плавиковой и 10 мл азотной кислот в 60 мл глицерина или воде, продолжительность травления составляет 3—5 с. Другие реактивы, такие как раствор 10 мл НС1 в 30 мл спирта и 25 мл надхлорной кислоты в 450 мл спирта и 70 мл HjO, применяют при электролитических способах травления. Робертсон [22], кроме фотографий структур чистого циркония, приводит также фотографии структур сплавов циркония с ниобием, танталом, кремнием, бором и железом.  [c.297]

В работе [146] было установлено, что скорость коррозии стали в 3%-ной H2SO4 уменьшается при переходе от грубой механической обработки к более тонкой в следующей последовательности грубая обработка резцом, пескоструйная обработка, обдувка дробью, обкатка роликами, шлифование, полировка бязевыми кругами, электролитическая полировка. Измерение электродных потенциалов в водопроводной воде показало, что более грубой обработке поверхности соответствует более отрицательное значение начального электродного потенциала. В результате соноставления зависимостей высоты микронеровностей и скорости коррозии стали в кислоте от скорости резания при токарной обработке с постоянным шагом витка (при различных Скоростях резания) авторы пришли к выводу о решающем влиянии наклепа поверхностного слоя на скорость коррозии особенно при малых скоростях резания и отсутствии заметного влияния шероховатости ( истинной поверхности).  [c.186]

Из электролитической ванны полоса попадает в щеточно-моеч-ную машину 12, конструкция которой аналогична машине 6. Здесь происходит промежуточная очистка полосы. Затем она подвергается окончательной промывке в ванне 13 комбинированным способом погружением в горячую воду и последующей струйной обработке из соплового контура 14. Струйная обработка обеспечивает высокое качество очистки полосы от остатков загрязнений любого характера. Опыт показал, что при отсутствии такой завершающей струйной обработки качество чистоты изделия по всей его длине неодинаково и полная очистка не гарантирована.  [c.178]

После электролитической очистки полоса проходит механикожидкостную обработку в щеточно-моечной машине 11 и промывку горячей водой в ванне 12. Пройдя отжимные ролики 13, полусухая теплая полоса попадает в сушильное устройство 14, где изделие подвергается сушке теплым воздухом, нагретым от паровых калориферов. Движение полосы производится при помощи установки 15 тянущих самоцентрирующих роликов. Пройдя затем гильотинные ножницы 16 и направляющий ролик 17, полоса наматывается на плавающую моталку 18. Заправка полосы в моталку осуществляется при помощи ременного захлестывателя 19.  [c.181]

Исследования тепловых и химических свойств электрического тока, проводившиеся физиками Э. Карлейлам, В. Никольсоном, В. В. Петровым, Г. Дэви, М. Фарадеем, Э. X. Ленцем, Д. П. Джоулем, Б. С. Якоби, заложили научные основы практической электрохимии и электротермии. Промышленная электрохимия началась с освоения гальванотехнических процессов рафинирования меди и добычи электролитическим путем кислорода и водорода. Первоначально источниками электричества служили гальванические батареи. Отсутствие экономичных и достаточно мощных генераторов тормозило внедрение в практику электрохимических и электротермических процессов. Лишь появление в начале 70-х годов динамомашины дало заметный толчок развитию электрохимии и электрометаллургии. Еще больший размах эти отрасли получили с введением централизованного электроснабжения. К концу XIX в. электролитическим лутем производили в широких масштабах рафинированную медь, бертолетову соль, хлор, некоторые щелочи, озон (для стерилизации и очистки воды). Развивалась и совершенствовалась гальванотехника. Использование электрической энергии привело к появлению и развитию новых способов производства искусственных удобрений для сельского хозяйства. В это же время возник ряд электрометаллургических и электрохимических производств, основанных на применении электрических печей. Был изобретен и стал применяться на практике новый способ обработки металлов — электросварка.  [c.64]

Наибольшее влияние содержания углерода на механические свойства стали, наводороженной из газовой фазы высокотемпературным способом, наблюдается при его содержании около 0,9—1,0% [120]. При электролитическом наводороживании влияние легирующих элементов на склонность закаленной стали (0,3—0,45% С) к хрупкому разрушению исследовалось Я- М. Потаком [123]. Им установлено резко отрицательное влияние марганца на хрупкую прочность наводороженной стали. Эта отрицательная роль марганца проявилась как на образцах, закаленных в воду,так и на образцах, закаленных в масло. Образцы, закаленные в воду, при некотором содержании марганца хрупко разрушались при наводороживании стали даже при отсутствии внешней нагрузки, только в результате действия внутренних напряжений. Наиболее чувствительной к водородной хрупкости оказалась марганцовистая сталь 65Г при ее обработке до твердости HR 50. Все попытки устранить влияние наводороживания на прочность пружинных шайб Гровера, изготовляемых из этой стали при твердости, близкой к HR 48—ГО, положительных результатов не дали.  [c.88]


Как и в случае нержавеющих сталей, потенциостат в данном случае является удобным средством для изучения сенсибилизации по отношению к межкристаллитной коррозии. Кривые поляризации, представленные на рис. 7, относятся к четырем образцам одного и того же сплава A-G7. Все образцы отжигали в продолжение нескольких часов при 420° С и закалке в воде. Один образец был исследован в этом состоянии, а три остальных — после отпуска в продолжение соответственно 17 и 47 час. при 160° С и 5 час. при 220° С. Обработка поверхности во всех случаях заключалась в электролитической полировке с помощью тампона эллополь .  [c.265]

По составу электролита раз-личают три способа электролитического лужения щелочной, кислый и галогенидный. Наиболее распространен второй способ. На рис. ИЗ представлена схема непрерывного агрегата э лектро-литического лужения с кислым электролитом. Рулон жести с раз-матывателем подается к ножницам и сварочной машине, где производится сварка концов предыдущего и последующего рулонов. Через петлевую яму полосу подают в ванну электролитического обезжиривания и травления с последующей струйной промывкой. Слой олова наносят в ванне, содержащей сернокислый электролит. Электролит для лужения состоит из раствора сернокислого олова, серной кислоты и добавок диметиламина, фенола и других поверхностно активных веществ, улучшающих качество покрытия. После улавливания электролита и промывки полосы водой ее подают в установку для оплавления олова контактным способом с целью уменьшения пористости оловянного покрытия и придания ему высокой химической стойкости. Затем в камере осуществляют электрохимическую обработку полосы — пассивацию. После пассивации на полосе образуется тончайшая сплошная бесцветная пленка, пре-  [c.183]

Очистку от смазки и жира можно выполнять при помощи органических растворителей (бензина, керосина), венской известью и щелочными растворами в горячих или электролитических ваннах. При больших масштабах производства органические растворители применять не рекомендуется, так как они опасны в пожарном отношении. Кроме того, после обработки бензином или керосином на поверхности деталей все же остается тонкая пленка жира. Для обеспечения надежного спепления нарощенного и основного металла необходимо удалить и эту пленку. При отсутствии специальных ванн указанная пленка может быть удалена натиранием поверхности детали венской известью, разведенной водой до кашицеобразного состояния.  [c.123]

Разработаны новые сплавы титана аккумулирующие водород, с эффектом запоминания формы и сверхпроводящие. Из новых областей использования сплавов титана следует отметить установки для получения электролитической медной фольги для печатных и интегральных схем, суперцентрифуги в биотехнологии, оборудование для обработки сточных вод и ила, имплантанты в медицинской технике. Соотношение использования сплавов титана в различных областях в Японии по данным  [c.257]

Снятие пассивной пленки со стальных деталей перед фосфатированием. В практике защиты от коррозии часты случаи, когда один из участков детали подвергается хромированию или какому-либо другому электролитическому покрытию, а остальная поверхность фосфатируется. При этом нехромируемые участки под действием электролита пассивируются и последующее их фосфатирование не достигает цели. Для устранения этого явления применяют обработку деталей в растворе следующего состава 55 об. % ортофосфорной кислоты уд. веса 1,14 43 об. % воды 2 вес. % фтористого натрия. Рабочая температура 15 25° С, выдержка не свыше 5 мин.  [c.193]


Смотреть страницы где упоминается термин Электролитическая обработка воды : [c.93]    [c.293]    [c.253]    [c.186]    [c.146]    [c.220]    [c.47]    [c.221]    [c.356]    [c.257]    [c.135]    [c.190]    [c.76]    [c.247]   
Катодная защита от коррозии (1984) -- [ c.406 , c.408 ]



ПОИСК



Катодная защита с наложением тока от внешнего источника и электролитической обработкой воды

Обработка воды



© 2025 Mash-xxl.info Реклама на сайте