Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Окисление высокотемпературное

Процесс получения углеродных волокон из ПАН-волокон включает текстильную подготовку материала, окисление, высокотемпературную об-  [c.17]

Из-за сильного окисления высокотемпературных материалов на открытом воздухе эксплуатация тепловых труб при температурах свыше 500° С возможна лишь в вакууме или в инертной среде. Поэтому чтобы не подвергать вновь вакуумному отжигу внешнюю поверхность трубы, целесообразно здесь же в камере сборки запаять трубу под вакуумом в стеклянную колбу и уже в таком виде транспортировать к месту сборки всей установки.  [c.79]


Линейный закон роста окисной пленки имеет место при высокотемпературном окислении в воздухе и кислороде металлов, окислы которых не удовлетворяют условию сплошности (щелочных и щелочно-земельных металлов, магния) или летучи и частично возгоняются при высоких температурах, что делает их пористыми (например, вольфрама, молибдена, а также сплавов, содержащих значительные количества этих металлов).  [c.46]

По мере утолщения образующихся при высокотемпературном окислении металлов пленок перемещение реагентов через них в преобладающем большинстве случаев осуществляется диффузией (из-за наличия концентрационного градиента, созданного разностью химических потенциалов), которая часто и контролирует процесс окисления металлов, являющийся, таким образом, процессом реакционной диффузии (диффузии, при которой возникают или разлагаются химические соединения). Если исходить из преимущественной диффузии через окисную пленку кислорода (зона роста пленки при этом находится у поверхности раздела пленка—металл), то для скорости установившегося стационарного режима процесса можно написать уравнение  [c.56]

Рассмотрение механизма диффузии и электропроводности в полупроводниковых кристаллах позволило Вагнеру сформулировать ионно-электронную теорию высокотемпературного параболического окисления металлов с образованием достаточно толстых окисных пленок и дать количественный расчет этого процесса. Ниже приводится в простейшем виде вывод уравнения Вагнера.  [c.59]

Процесс высокотемпературного окисления металлов является более сложным, чем рассмотренный выше случай, так как может включать внутреннюю диффузию не только окислителя, но и металла, а иногда только металла, но указывает, как показала Л. П. Емельяненко, на неоправданность полного игнорирования внешней массопередачи (диффузии) окислителя.  [c.68]

Вычисления показывают, что закон роста пленки окисла на сплавах, вообще говоря, может сильно отличаться от параболического закона kr, который получается в предположении независимости коэффициентов диффузии от состава окисла и экспериментально подтверждается при высокотемпературном окислении чистых металлов. Это проявилось бы еще более резко при рассмотрении общей задачи, где а ф Q н Ь =f= 0.  [c.96]

Упомянутые выше эффекты, а также интенсификация окисления меди при наложении переменного тока указывают на большое сходство высокотемпературной пассивации металлов и поведения пассивирующих металлов в электролитах.  [c.135]


Исследования высокотемпературного окисления рения и молибдена в реакционных системах с газовым потоком, выполненные  [c.135]

Изложены закономерности учения о коррозии металлов и основы технологии противокоррозионной защиты. Рассмотрены биогенная и почвенная коррозия, высокотемпературное окисление металлов, питтинговая и межкристаллитная коррозия, коррозионное растрескивание, влияние радиации и блуждающих токов. Охарактеризована стойкость основных групп металлических конструкционных материалов, в том числе новых сплавов, используемых в химической, атомной, энергетической и других отраслях промышленности.  [c.4]

Равномерная коррозия включает общеизвестные ржавление железа или потускнение серебра. Помутнение никеля и высокотемпературное окисление металлов также являются примерами равномерной коррозии.  [c.26]

Эффективными легирующими элементами, повышающими стойкость к высокотемпературной коррозии, являются А1, Be и Mg. Например, при 256 °С сплав 2 % Be — Си при выдержке в течение 1 ч окисляется со скоростью, равной Vi4 скорости окисления чистой меди [45]. Максимальный эффект от легирования алюминием наблюдается при его содержании 8 % [461.  [c.202]

ОКСИДНЫЕ ПОКРЫТИЯ на стали можно получить контролируемым высокотемпературным окислением на воздухе или, например, погружением в горячий концентрированный раствор щелочи, содержащий персульфаты, нитраты или хлораты оксидирование). Такие покрытия, синие, коричневые или черные, со-  [c.246]

В высокотемпературной зоне интенсивно развиваются эндотермические реакции, приводящие к легированию и одновременно к окислению металла сварочной ванны компонентами флюса  [c.369]

Однако методы защиты зтих веществ от окисления в высокотемпературных режимах недостаточно исследованы и изучены.  [c.27]

Рабочий цикл в газотурбинном двигателе происходит при высокотемпературном тепловом процессе с образованием высокоскоростных выхлопных газов. В процессе работы рабочие лопатки турбины высокого давления подвергаются окислению и газодинамической коррозии, т.е. физическому разрушению.  [c.433]

Как показано на рис. 10.6, атмосферный воздух сжимается в компрессоре 1 до давления 0,8—3,0 МПа. Затем воздух посту-.пает в камеру сгорания 2, куда подается жидкое или газообразное топливо В. Топливо сгорает практически при постоянном давлении, температура в активной зоне камеры сгорания, обеспечивающая полный и достаточно быстрый процесс окисления топлива, составляет 1800—2300 К, тогда как температура продуктов сгорания (газов) перед турбиной должна быть значительно ниже, исходя из прочности лопаток турбины. Температура перед турбиной в современных ГТУ может быть 1100— 1500 К. Для снижения температуры газов, выходящих из камеры сгорания, часть воздуха, подаваемого компрессором, проходит, минуя активную зону камеры сгорания, и, перемешиваясь с высокотемпературными продуктами сгорания, обеспечивает снижение температуры общего потока продуктов сгорания перед турбиной до заданного значения. Продукты сгорания поступают в турбину 3, где при их расширении кинетическая энергия преобразуется в работу на лопатках турбины, соединенных с валом. Вал установки 4 соединяет турбину, компрессор и полезную нагрузку 5, например электрогенератор или нагнетатель транспортируемого природного газа.  [c.146]

Для получения однородных и воспроизводимых по параметрам пленок с малой плотностью дефектов разработан двухстадийный процесс, при котором на первом этапе идет окисление при температуре около 1000 °С в сухом кислороде с добавлением НС1, а на втором для пассивирования и доведения оксида до нужной толщины выполняется термообработка при 1150 °С в атмосфере N , О2 и H I. Такая технологическая схема позволяет использовать преимущества как высокотемпературного, так и низкотемпературного процессов.  [c.41]

Молибден начинает заметно окисляться при температуре выше 200 °С при более высоких температурах окисляется интенсивно. МоОз плавится при 795°С, кипит при 1155°С, но испаряется при температурах выше 500 °С. Испаряющаяся МоОз открывает доступ кислорода к практически незащищенной поверхности металла, что вызывает бурное высокотемпературное окисление. Предельная растворимость кислорода в молибдене при 200 °С не более 0,0002 % [1].  [c.120]


Сплавы, содержащие 3,5—10% Rh, применяются для тиглей, сосудов для плавки стекла, фильер для производства стеклянного волокна и вискозного шелка, как катализаторы в виде сеток для окисления аммиака в азотную кислоту, для электрических контактов и электродов запальных свечей в авиационной промышленности. Для высокотемпературных печей до 1800° С в качестве обмотки сопротивления применяются сплавы с 10—30% Rh. Наиболее широка  [c.409]

Рутений менее дефицитен, чем платина и родий, и значительно дешевле как видно из табл. 31, рутений имеет наибольшую твердость и температуру плавления, он легко пассивируется на воздухе и очень хорошо противостоит действию агрессивных сред. На него не действуют разбавленные и концентрированные кислоты и щелочи. Рутений стоек к воздействию соединений фосфора и азота, в ряде случаев он превосходит по химической стойкости палладий, родий и платину он более устойчив к воздействию серы. Пленки сернистых соединений, образующиеся на поверхности, отрицательно сказываются на переходном электрическом сопротивлении. При обычных и повышенных температурах на воздухе и в среде, богатой кислородом, рутений не тускнеет и сохраняет блеск, что позволяет использовать его при покрытии отражателей. Рутений в отличие от платины и палладия не поглощает водорода и не образует гидридов. Несмотря на хорошие физико-механические свойства рутений недостаточно широко используется в промышленности. Одной из причин этого является сложность изготовления деталей из рутения вследствие высокой температуры плавления, высокой твердости и хрупкости. Рутений подвергается высокотемпературному окислению, как и родий образующаяся окисная пленка обладает хорошей электропроводностью.  [c.76]

Иридий и осмий — самые тугоплавкие металлы платиновой группы. Стойкость иридия против окисления при высоких температурах является основным фактором, определяющим область его применения. Осадок иридия на молибдене, отожженный при 1000 °С, хорошо защищает основной металл от окисления. Иридий отличается высокой износостойкостью и возможно, что иридиевые покрытия или электролитические сплавы на основе иридия окажутся хорошим износостойким материалом в условиях высокотемпературного трения. Другие механические и электрические свойства иридия и осмия мало исследованы.  [c.76]

Исследование окисленных поверхностей на оптическом микроскопе представляет еще большие затруднения, чем на электронном. Наличие тонкой просвечивающей окисной пленки, в ряде случаев не искажающей рельеф, но преломляющей лучи света, иногда приводит к тому, что невозможно одновременно сфокусировать систему на основание и вершину неровности даже при небольшой шероховатости. Поэтому на окисленных высокотемпературных усталостных изломах характерные усталостные полоски и складки часто различимы лишь при расфокусированном положении. В связи с этим такие поверхности лучше всего изучать с помощью реплик.  [c.188]

Для уменьшения скорости окисления высокотемпературных металлов в них вводят различные легирующие добавки. Этим объясняется положительное влияние присадок циркония и титана на ряд тугоплавких металлов. Также успешным оказалось легирование сплавов на нио-биево-титановой основе алюминием, кремнием и хромом. Выше 1500 К легированные металлы практически неработоспособны.  [c.164]

Игнорирование стадии внешней мас-сопередачи в преобладаюш,ем большинстве работ по высокотемпературному окислению металлов является поразительным и неоправданным.  [c.65]

Существует предположение, что возникающие при трении локальные перегревы металла приводят к его окислению, после чего происходит истирание поверхностного оксидного слоя [89]. Хотя трение несомненно, вызывает локальный разогрев до высоких температур, разрушение при фреттинг-коррозии обусловлено не только высокотемпературным окислением. Это подтверждается следующими факторами увеличением разрушения при температурах ниже комнатной снижением разрушения при высоких частотах, когда температура на поверхности максимальна тем, что при фрет-  [c.168]

График зависимости от t имеет вид прямой линии (рис. 10.2). Это уравнение справедливо для пленок с хорошими защитными свойствами, т. е. при Л1рм/ рок > 1- Оно применимо для описания высокотемпературного окисления многих металлов, таких как медь, никель, железо, хром и кобальт.  [c.193]

Ионная имплантация — процесс получения тонких покрытий из сплавов посредством ионной бомбардировки поверхности металла в вакууме. Такие покрытия, например из Ti, В, Сг или Y, получайт специально для придания изделиям стойкости к износу и высокотемпературному окислению [2].  [c.231]

Диффузионные покрытия (алитирование) получают барабанной обработкой в атмосфере водорода при температуре около 1000 °С в смеси алюминиевого порошка, AljOj и небольшого количества NH4 1. Получается поверхностный сплав алюминия с железом, который обеспечивает стойкость как к высокотемпературному окислению на воздухе (до 850—950 °С), так и к коррозии в серу-содержащей атмосфере (например, при очистке нефти). Диффузионные алюминиевые покрытия на стали обычно не обеспечивают  [c.242]

Пламя любой газовой горелки неоднородно и состоит из отдельных зон. В первой зоне идет образование активных центров вследствие возбуждения молекул и их диссоциации. Эти процессы эндотермичны и температура первой зоны относительно низкая. Вторая зона — зона горения, т. е. область развития цепных реакций окисления горючего под действием активных центров, поступающих из первой зоны. Эта зона будет самой высокотемпературной частью общего пламени. Третья зона — догорания продуктов реакции из второй зоны или ореол пламени, в который инжектируется кислород и азот окружающего воздуха. Температура в этой зоне постепенно снижается. Максимальная температура пламени определяется составом горючей смеси и природой реагирующих между собой веществ (табл. 8.12).  [c.312]


Одной из реальных возможностей дальнейшего повышения жаропрочности сплавов и температурного уровня эксплуатации деталей и узлов ГТД является решение проблемы защиты от окисления. Разработанный нами способ, связанный с защитой тугоплавких жаропрочных сплавов ВЖЛ12У, ЖС6У, ЖС32 с помощью высокотемпературных покрытий, положительно решает поставленную задачу.  [c.434]


Смотреть страницы где упоминается термин Окисление высокотемпературное : [c.779]    [c.124]    [c.134]    [c.147]    [c.132]    [c.201]    [c.200]    [c.201]    [c.205]    [c.243]    [c.299]    [c.299]    [c.29]    [c.30]    [c.62]    [c.190]    [c.688]    [c.139]    [c.167]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.2 , c.264 , c.389 ]



ПОИСК



Абраимов Н. В., Коломыцев П. Т., Пусберг Р. Ю., Семенов А. П. Перспективы диффузионных покрытий для защиты никелевых сплавов от высокотемпературного окисления

Высокотемпературная ТЦО

Высокотемпературное окисление печного оборудования обогревающими газами (А. В. Шрейдер, С. С. Шитов)

Защита тугоплавких металлов и их сплавов против высокотемпературного окисления

Механизм высокотемпературного окисления

ОБЩИЕ ВОПРОСЫ Бялобжеский, М. С. Цирлин. Принципы защиты тугоплавких металлов от высокотемпературного окисления

Окисление

Три режима окисления высокотемпературных материалов

Цирлин М. С., Красовский А. И. Кинетика высокотемпературного окисления силицидных покрытий на молибдене

Ч а с т ь 4. СТОЙКОСТЬ ПОВЕРХНОСТИ Высокотемпературное окисление. Дж.Л.Смиалек, ХМейлер



© 2025 Mash-xxl.info Реклама на сайте