Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точка плавления

Скрытая теплота плавления при точке плавления 933 °К равна 2550 кал моль.  [c.291]

В атмосфере углекислоты медь неустойчива. Хлор, бром и йод при температурах ниже точек плавления их соединений с медью разрушают ее, а с повышением температуры скорость коррозии сильно возрастает. Медь можно применять в газообразных НС1 и lo при температурах ниже 225 и 260° С соответственно. Азот не действует на медь п ее сплавы, а окислы азота разрушают медные сплавы. Аммиак также вызывает окисление меди и ее сплавов. В условиях диссоциации аммиака наблюдается водородная коррозия меди.  [c.255]


Цель данной книги — изложение основных принципов термометрии в интервале от 0,5 до приблизительно 3000 К. В течение последних 25 лет по этому вопросу накоплен весьма богатый опыт, и настало время объединить полученные результаты и обсудить достигнутые успехи. Большая часть работ последних лет относилась к низкотемпературной термометрии ниже приблизительно 30 К и их результаты послужили основой Предварительной температурной шкалы 1976 г. от 0,5 до 30 К. Таким образом, температура 0,5 К оказалась удобной нижней границей интервала температур, обсуждаемого в книге. Верхняя граница не обладает такой же определенностью, поскольку термометрия по излучению, рассматриваемая в гл. 7, может быть в принципе распространена на сколь угодно высокие температуры и достаточно лишь теплового равновесия в системе, температура которой измеряется. При всем разнообразии условий в термометрии, охватывающей интервал от температур жидкого гелия до точки плавления платины, общими являются требования теплового равновесия и теплового контакта с термометром. Эти требования неизменно присутствуют при всех термометрических работах и всех температурах на протяжении данной книги. Ясное понимание физических основ каждого из различных методов термометрии представляется обязательным для детального обсуждения их принципов, точности, интервала применения и ограничений. По этой причине каждой из основных глав предпослано краткое изложение физических основ метода в той мере, в какой это требуется для теории и практики термометрии.  [c.9]

ТОЙ нержавеющей сталью, никеля или даже серебра в зависимости от особых требований и температурного интервала. Покрытая нержавеющей сталью медь особенно удобна до температур порядка 1050 °С (точка плавления меди 1084 °С). Покры-  [c.143]

В отличие от фазовых переходов первого рода, таких, как точки плавления или кипения, при фазовых переходах второго рода отсутствует скрытая теплота перехода. Поэтому такие переходы используются лишь как индикатор определенной температуры, а не способ ее поддержания. При затвердевании чистых металлов, которое обсуждается ниже, образец металла будет оставаться при температуре затвердевания, хотя его окружение охлаждается. В случае сверхпроводящих переходов отсутствие скрытой теплоты перехода не создает серьезных проблем. Это объясняется тем, что при низких температурах легко обеспечить необходимую точность терморегулирования, а теплоемкости и теплопроводности материалов таковы, что неоднородности температуры в криостате и инерционность объектов регулирования не создают никаких затруднений.  [c.168]


Интенсивное изучение методов и техники точной реализации точек плавления и затвердевания металлов было проведено авторами работ [47—50] и [52—56]. Предел воспроизводимости, достигнутый при реализации точек затвердевания металлов, определяется скорее совершенством термометров, используемых для фиксации переходов, чем самими металлами. Необходимость обеспечить достаточную глубину погружения термометра в среду с измеряемой температурой является сложной проблемой (см. гл. 5). В зависимости от конструкции термометра требуется его погружение в зону однородных температур в пределах от 10 до 20 см, чтобы чувствительный элемент в пределах 0,5 мК соответствовал температуре окружения. Поскольку разница АТ между температурой чувствительного элемента и температурой окружения экспоненциально уменьшается с глубиной погружения, нет больших различий в глубине погружения для точки таяния льда, точки затвердевания олова и даже золота. Увеличение глубины погружения для разных конструкций термометров на 1,5—3 см приводит к уменьшению АТ примерно в 10 раз. В точках затвердевания металлов обычно можно обеспечить достаточную глубину погружения, однако при измерении платиновым термометром сопротивления температур других объектов всегда важным ограничением является однородность их температур. Поэтому выше 500 °С платиновым термометром трудно измерить температуру тела с точностью лучше 50 мК. Отметим в этой связи эффективность применения тепловых трубок для увеличения области очень однородной температуры.  [c.169]

Практическая реализация точек плавления и затвердевания металлов  [c.173]

Платиновый термометр сопротивления является прибором, которому отдают предпочтение для наиболее точного измерения температуры в диапазоне от тройной точки водорода (13,81 К) до точки плавления сурьмы (903,89 К). К достоинствам платины как материала для термометров можно отнести ее химическую инертность вплоть до высоких температур, высокую температуру плавления, высокое удельное сопротивление ( 10 мкОм-см при комнатной температуре), а также легкость изготовления из платины высокочистой тонкой проволоки. Од-  [c.200]

Рис. 5.16. Платиновые термометры сопротивления, предназначенные для использования до точки плавления золота, а — птичья клетка [23] б — одинарная спираль [24] в — двойная спираль [25]. I — платиновый вывод 2 — платиновая проволока диаметром 0,4 мм 3 — кварцевый диск-изолятор 4 — кварцевая изоляционная трубка, в которой проходит платиновый центральный вывод 5 — центральный вывод. Рис. 5.16. <a href="/info/251578">Платиновые термометры сопротивления</a>, предназначенные для использования до точки плавления золота, а — птичья клетка [23] б — одинарная спираль [24] в — <a href="/info/238323">двойная спираль</a> [25]. I — платиновый вывод 2 — <a href="/info/69386">платиновая проволока</a> диаметром 0,4 мм 3 — кварцевый диск-изолятор 4 — кварцевая <a href="/info/276680">изоляционная трубка</a>, в которой проходит платиновый центральный вывод 5 — центральный вывод.
Применение этого уравнения для конкретного термометра требует градуировки последнего при 0 °С, в точке кипения воды (или точке плавления олова) и в точках затвердевания цинка, серебра и золота. Значения (480,081 °С) и W (630,74 °С) получаются расчетным путем из интерполяционного уравнения (5.23).  [c.219]

Максимальная температура, до которой могут применяться термопары типов S я R, ограничена точкой плавления платинового электрода 1769°С. Однако верхняя граница использования лежит, как правило, значительно ниже, поскольку платиновый электрод становится чрезвычайно мягким выше 1600°С- Как и  [c.280]

Эти термопары имеют более высокую термо-э.д.с. по сравнению с термопарами, описанными выше. Однако ими нельзя пользоваться при столь же высоких температурах в связи с более низкой точкой плавления электродов и быстрой порчей при окислении. В промышленности чаще всего применяются стандартизованные термопары типов Е, I, К п Т, которые изготавливаются во множестве вариантов в зависимости от условий их применения. Подробные сведения о рекомендуемых диаметрах проволок, материалах изоляции и чехлов и других требованиях, связанных с особенностями эксплуатации, содержатся в национальных стандартах (см., например, [2]) приведенное ниже краткое описание свойств термопар из неблагородных металлов может быть дополнено, например, сведениями из работы [40] и других источников.  [c.287]


Для градуировки термопар типов 8, R и В в температурном интервале выше 1100°С удобен, а при соблюдении ряда предосторожностей и надежен метод плавящейся проволоки. Принцип метода состоит в том, что небольшой кусочек проволоки из зо.лота, палладия или платины вставляется между двумя электродами термопары, как показано на рис. 6.17. Когда температура печи проходит через точку плавления проволоки, э.д. с. термопары перестает меняться, а затем исчезает в результате разрыва цепи. Одновременно измеряется э.д.с. конт-  [c.302]

Средняя температура капель электродного металла, поступающих в ванну, увеличивается с увеличением плотности тока и составляет при сварке сталей от 2200 до 2700 С, т. е. характеризуется значительным перегревом. Температура сварочной ванны при дуговой сварке также характеризуется значительным превышением над точкой плавления, перегрев составляет 100—500° С. Высокая температура способствует высокой скорости протекания реакций, однако из-за больших скоростей охлаждения реакции при сварке обычно не успевают завершиться полностью.  [c.26]

Ферритные стали названы так по ферритной фазе — относительно чистому железу, которое является компонентом углеродистых сталей, медленно охлаждаемых из аустенитной области температур. Феррит или так называемая а-фаза чистого железа устойчив при температуре ниже 910 °С. В малоуглеродистых сплавах Сг—Fe высокотемпературный аустенит (или v-фаза) существует только, если он содержит до 12 % Сг. При увеличении содержания хрома выше 12 % сплавы представляют собой ферритную фазу во всем интервале температур вплоть до точки плавления. Они умеренно упрочняются при холодной обработке  [c.296]

Легкость скольжения коньков по льду. Известно, что точка плавления льда с повышением давления понижается. Основываясь на этой закономерности, скользкость льда, т. е. легкость скольжения коньков по льду, объясняют следующим образом под давлением острого конька лед плавится при температуре ниже 0° С, образуя жидкую смазку, которая и обеспечивает легкость катания по льду зимой.  [c.167]

Поскольку при переходе жидкости в пар теплота сообщается (Х>0) и объем всегда увеличивается v >v ), то, следовательно, dT/dp>(), т. е, температура кипения при увеличении давления всегда повышается. Точка же плавления при увеличении давления или повышается, или понижается, смотря по тому, увеличивается или уменьшается объем при плавлении. У большинства тел при плавлении v">v, поэтому у таких тел, как и в случае кипения, dT/dp>0. Однако у воды, чугуна, висмута, германия и таллия объем при плавлении твердой фазы уменьшается (жидкая фаза в этих случаях тяжелее твердой), поэтому для них dT/dp<0, т. е. точка плавления с увеличением давления понижается.  [c.236]

Точка плавления йода I2 равна 114 °С. Возрастание упругости пара вблизи температуры плавления при увеличении температуры плавления на Г С равно 578,6 Па/К. Найти теплоту возгонки йода при температуре плавления упругость пара твердого иода при этой температуре равна 11821 Па.  [c.254]

Таблица 4.9. Сжимаемость жидких металлов в точке плавления Таблица 4.9. Сжимаемость <a href="/info/102770">жидких металлов</a> в точке плавления
Существенный прогресс последних лет в эталонной термометрии связан с созданием герметичных ячеек с чистыми газами для воспроизведения температур их тройных точек. Осуществленное по разработанной ККТ программе международное сличение транспортируемых герметичных ячеек разных лабораторий, в том числе ВНИИФТРИ, показало, что их воспроизводимость по крайней мере в несколько раз лучше, чем на традиционной стационарной аппаратуре. Поэтому естественна современная тенденция положить в основу будущей МПТШ в качестве реперных температур только тройные точки в ее низкотемпературной части и точки затвердевания металлов при температурах выше 0° С. Отметим в этой связи превосходные метрологические характеристики точки галлия. В низкотемпературной части МПТШ эта программа, обеспечивающая повышение воспроизводимости будущей шкалы в несколько раз, может быть, без сомнения, реализована вплоть до 24 К, особенно при добавлении к традиционным тройным точкам МПТШ-68 тройной точки вблизи 150 К и точки плавления галлия.  [c.7]

В 1889 г. 1-я ГКМВ утвердила принятую МКМВ в 1887 г. шкалу водородного газового термометра постоянного объема, основанную на реперных точках плавления льда (О °С) и кипения воды (100 °С) и получившую название нормальной водородной шкалы в качестве международной практической шкалы. В описании шкалы указывалось начальное давление заполнения (1 м рт. ст. при о °С) и никаких поправок на отклонение свойств водорода от идеального газа не вводилось. По этой. причине шкала была названа практической . Она, очевидно, и не была термодинамической, поскольку наблюдалась зависимость результатов измерений от свойств рабочего газа. В гл. 3 будет подробно рассмотрено, каким образом отклонения от свойств идеального газа учитываются в газовой термометрии. Здесь же следует подчеркнуть, что для газового термометра постоянного объема, калиброванного в двух точках и примененного для интерполяции между ними, как это сделал Шаппюи, погрешности, вызванные неидеальностью газа, скажутся лишь в меру изменения самой неидеальности между реперными точками. Для водорода эти изменения от О до 100 °С неве-  [c.39]

Это затруднение было преодолено в ревизии температурной шкалы 1968 г., когда единица температуры по практической и термодинамической шкалам была одинаково определена равной 1/273,16 части термодинамической температуры тройной точки воды. Единица получила название кельвин вместо градус Кельвина и обозначение К вместо °К. При таком определении единицы интервал температур между точкой плавления льда и точкой кипения воды может изменять свое значение по результатам более совершенных измерений термодинамической температуры точки кипения. В температурной шкале 1968 г. значение температуры кипения воды было принято точно 100 °С, поскольку не имелось никаких указаний на ошибочность этого значения. Однако новые измерения с газовым термометром и оптическим пирометром, выполненные после 1968 г., показали, что следует предпочесть значение 99,975 °С (см. гл. 3). Тот факт, что новые первичные измерения, опираюшиеся на значение температуры 273,16 К для тройной точки воды, дают значение 99,975 °С для точки кипения воды, означает, что ранние работы с газовым термометром, градуированным в интервале 0°С и 100°С между точкой плавления льда и точкой кипения воды, дали ошибочное значение —273,15 °С для абсолютного нуля температуры. Исправленное значение составляет —273,22 °С.  [c.50]


Влияние примесей на точку плавления и на давление паро было изучено и оказалось небольшим. Частично это связано с тем, что немногие из часто встречающихся примесей попадаюг в камеру с образцом. Например газы, имеющие точки кипения выще азотных температур, конденсируются в области, далекой от области жидкого водорода. Наиболее вероятные примеси —  [c.155]

Рис. 4.14. Влияние на точку плавления водорода различных количеств катализатора, расположенного различным образом А — катализатор отсутствует В — 0,78 г катализатора в камере-конверсии С — 0,072 г катализатора в камере конверсии Д],. >2 — 0,147 г катализатора в паровой фазе Е — 0,147 г катализатора в паровой фазе на границе с конденсированным образцом Е—-1 г катализатора на дне камеры с образцом означает повторное замораживание образца, — испарение и затем замораживание [4]. Рис. 4.14. Влияние на точку плавления водорода различных количеств катализатора, расположенного различным образом А — катализатор отсутствует В — 0,78 г катализатора в камере-конверсии С — 0,072 г катализатора в камере конверсии Д],. >2 — 0,147 г катализатора в <a href="/info/415570">паровой фазе</a> Е — 0,147 г катализатора в <a href="/info/415570">паровой фазе</a> на границе с конденсированным образцом Е—-1 г катализатора на дне камеры с образцом означает повторное замораживание образца, — испарение и затем замораживание [4].
На рис. 4.23, а показана небольщая часть фазовой диаграммы бинарного сплава А—В, обогащенного компонентом А. Основы фазовых диаграмм рассмотрены в работе [33]. Вместо плавления и затвердевания при единственной температуре Та сплав, содержащий примесь б в Л и имеющий концентрацию В, в идеальном случае плавится в интервале температур от Ту до 7з. Диаграмма на рис. 4.23, а составлена для растворенного вещества В, которое понижает точку плавления вещества А. Заметим, что обе температуры Ту н Тз лежат ниже точки плавления чистого металла А. При охлаждении сплава состава Ву из области жидкости и при условии, что переохлаждение отсутствует, зарождение твердой фазы начинается при температуре Гь Твердая фаза, появившаяся при этой температуре, имеет состав б] и оставляет жидкость состава Ьу. При дальнейшем охлаждении осаждается большее количество твердой фазы, имеющей состав, который изменяется вдоль линии солидуса. Состав оставшейся жидкости изменяется по линии ликвидуса. При температуре Т твердая фаза имеет состав бз, жидкая — Ьз, а при температуре Тз твердая фаза состава бз находится в равновесии с жидкостью состава бз. До сих пор считалось, что скорость охлаждения бесконечно мала, так что всегда поддерживается равновесный состав. Другими словами, твердая фаза состава б], появившаяся первой, успела диффузионно перейти в состав бз, пока температура падала до Тз. Поскольку диффузия в твердом состоянии всегда медленна, а скорость охлаждения не может быть бесконечно мала, концентрационное равновесие никогда не достигается, в результате чего при температуре ниже Тз состав твердой фазы оказывается между 61 и 63, а жидкость с избытком В не затвердеет окончательно, пока температура не достигнет Т .  [c.170]

Сведения о влиянии различных примесей на точки плавления и затвердевания упоминавщихся выше металлов можно найти в работах по фазовым диаграммам бинарных сплавов [32, 71]. Этими фазовыми диаграммами для очень малых концентраций следует пользоваться с осторожностью, поскольку экспериментальные сведения для сильно разбавленных твердых растворов ненадежны [26]. Солидус и ликвидус обычно просто экстраполируются до пересечения в точке плавления основного компонента. Этот наклон может оказаться ошибочным, если ближайшие экспериментальные точки получены при концентрации дополнительного компонента, равной, например, 5%-  [c.173]

При измерении высоких температур термометрами сопротивления существенными становятся также радиационные тепловые потери вдоль термометра. Для термометров, имеющих кварцевый кожух, световодный эффект (многократное отражение внутри стенок кожуха) приводит к погрешности до 80 мК при 600 °С [22]. К счастью, тепловые потери за счет внутренних отражений легко ослабить, обработав пескоструйным аппаратом внешнюю поверхность кожуха или зачернив ее, например, аквадагом на длину в несколько сантиметров сразу за чувствительным элементом (см. рис. 5.13). Этот прием теперь используется при изготовлении всех стержневых термометров, включая и термометры в стеклянном кожухе, предназначенные для использования выше точки плавления олова (-230 С).  [c.213]

Взаимодействие кислорода с чистой поверхностью металла протекает в три этапа I) адсорбция кислорода, 2) иуклеация, т. е. образование зародышей, 3) рост сплошной оксидной пленки. На первых стадиях адсорбции пленка состоит из атомов кислорода, так как свободная энергия адсорбции атомов кислорода превышает свободную энергию диссоциации его молекул. Методом дифракции медленных электронов удалось установить, что атомы некоторых металлов входят в состав адсорбционной пленки и образуют относительно стабильную двухмерную структуру из ионов кислорода (отрицательно заряженных) и металла (положительно заряженных). Как уже говорилось в отношении пассивирующей пленки (разд. 5.5), адсорбционная пленка, составляющая доли монослоя, термодинамически более стабильна, чем оксид металла. На никеле, например, она сохраняется вплоть до точки плавления никеля [1 ], тогда как NiO разрушается вследствие растворения кислорода в металле . Дальнейшая выдержка при низком давлении кислорода ведет к адсорбции на металле молекул Оа, проникающих сквозь первичный адсорбционный слой. Так как второй слой кислорода связан менее прочно, чем первый, он адсорбируется не диссоциируя. Возникающая в результате структура более стабильна на переходных, чем на непереходных металлах [2]. Любые дополнительные слои адсорбированного кислорода связаны еще слабее, и наружные слои становятся подвижными при повышенных температурах, о чем свидетельствуют рентгенограммы, отвечающие аморфной структуре. Вероятно, ионы металла входят в многослойную адсорбционную пленку в нестехиометрических количествах и к тому же относительно подвижны. Например, обнаружено, что скорость поверхностной диффузии атомов серебра и меди выше в присутствии адсорбированного кислорода, чем в его отсутствие [3].  [c.189]

Эвтектическая смесь оксидов еще больше снижает температуру плавления. Если в нефти, содержащей ванадий, присутствуют соединения серы или натрия, то благодаря катализирующему влиянию V2O5 на реакцию окисления SO в SO3 образуется содержащая N82804 и различные оксиды окалина, температура плавления которой всего 500 °С. Положительное действие оказывает добавление в нефть кальциевых и магниевых мыл, порошкообразного доломита или магния — они повышают температуру плавления золы вследствие образования СаО (<пл = 2570 °С) или MgO ( пл =2800°С). Катастрофического окисления можно также избежать, работая при температурах ниже точки плавления оксидов. Сплавы, содержащие большое количество никеля, устойчивее вследствие высокой температуры плавления NiO (1990 °С).  [c.201]

Циркон имеет повышенную огнеупорность точка плавления промышленных сортов циркона составляет 2200°С. Это намного выше, чем встречающиеся на практике температуры в самых напряженных горячих узлах отливок. Это свойство важно для производства точных отливок с гладкой поверхностью (Ra = 1,6 -80 мкм), т.е. отсутствует шероховатость поверхности iyiy6oKHx карманов отливок. Дисперсность составляет 7000 - 8000 см 7г.  [c.208]


Так, например, следует учитывать тепловое расширение металла [83, 84] ). Вызывающая его ангармоничность колебаний решетки должна приводить к нелинейности температурной зависимости удельного сопротивления [85]. Кроме того, полагают, что, начиная с температуры, лежаш ей на 50—100° ниже точки плавления металла, концентрация дефектов решетки, вызванных тепловым движением, быстро растет последнее также должно оказывать существенное влияние на температурный ход сопротивления [86, 87]. Наконец, у переходных металлов рассеяние, обусловленное переходами между s-и б -зонами, тоже может вносить свой вклад в сопротивление [88—91]. Чтобы учесть отклонения температурно зависимости сопротивления от линейности, появляющиеся по той или иной причине при высоких температурах, Грюнейзен ввел в теоретическую формулу эмпирический множитель -fb, Г ), вследствие которого достоверность данных, приведенных в табл. 4, несколько уменьшается.  [c.192]

Выясним, почему в качестве реперной точки выбрана тройная точка воды, а не точка кипения воды, как это, например, сделано при построении шкалы Цельсия, или не точка плавления льда, как это сделано в темнератур1юй шкале Реомюра.  [c.89]

Стекло представляет собой типичный пример так называемого аморфного состояния вещества, которое в отличие от кристаллического характеризуется двумя признаками — изотропностью свойств и отсутствием точки плавления. Аморфные тела встречаются обычно в виде двух форм — компактной и дисперсной. Представителем компактной формы является стеклообразное состояние, дисперсной — сажа, аморфные-бор и кремний. Для аморфного состояния характерен только ближний порядок расположения структурных единиц. Дальний порядок, свойственный кристаллам, отсутствует. Компактное аморфное состояние представляет собой сильно перео.хлажденную жидкость и отличается от последней только отсутствием подвижного обмена местами между отдельными структурными ассоциатами, что обусловлено высокой вязкостью. В дисперсном аморфном состоянии (тонкий порошок, состоящий из агрегатов, не имеющих упорядоченного строения) химическое взаимодействие отсутствует. Обе формы аморфного состояния вещества в термодинамическом отношении метастабильны и при благоприятных условиях способны кристаллизоваться с выделением тепла.  [c.13]


Смотреть страницы где упоминается термин Точка плавления : [c.258]    [c.9]    [c.167]    [c.40]    [c.48]    [c.49]    [c.53]    [c.139]    [c.155]    [c.157]    [c.179]    [c.282]    [c.191]    [c.88]    [c.328]    [c.824]    [c.168]   
Теплотехника (1986) -- [ c.31 ]

Техническая термодинамика Изд.3 (1979) -- [ c.136 ]

Химия и радиоматериалы (1970) -- [ c.58 ]

Температура и её измерение (1960) -- [ c.15 ]

Краткий справочник прокатчика (1955) -- [ c.358 ]

Основные термины в области температурных измерений (1992) -- [ c.0 ]

Техническая энциклопедия Том16 (1932) -- [ c.0 ]

Справочное руководство по физике (0) -- [ c.174 ]

Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.456 ]



ПОИСК



Аммиак Точка плавления

Аргон Точка плавления

Определение точки плавления и точки застывания. Способ Поля

Плавление

Пропан Точка плавления

Реперная точка плавления льда

Способ, применяемый для определения точки плавления вагонной смазки

Сыр плавленый

Температура плавления нормальна точка кипения нормальная

Термодинамическая температура точки плавления льда (перевод Беликовой Т. П. и Боровика-Романова А. С)

Термодинамические свойства Не Фомичев, Пе Б. Кантор, В. В. Кандыба Новые исследования температуры плавления корунда как вторичной реперной точки шкалы температур

Точка плавления Удельный вес

Точка плавления жиров и консистентных смазок

Точка плавления льда

Точки плавления и кипения

ФУНКЦИИ 327 - Точка плавления

Хлор Точка плавления



© 2025 Mash-xxl.info Реклама на сайте