Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь и никель

Параболический закон роста окисной пленки, установленный впервые Тамманом на примере взаимодействия серебра с парами йода, наблюдали в опытах по окислению на воздухе и в кислороде меди и никеля (при t > 500° С), железа (при t > 700° С) и большого числа других металлов и сплавов при определенных температурах, В табл. 6 приведены параметры диффузии элементов в окислах.  [c.59]

Хорошие результаты дает покрытие предварительно зачищенных поверхностей стыка пластичным г металлами, наносимыми гальванически или газопламенным напылением. Наибольшей термостойкостью обладают покрытия медью и никелем.  [c.201]


Металлы, кристаллизующиеся в системе куба с центрированными гранями (медь, алюминий, никель, серебро, золото и др.), не обнаруживают хладноломкости ни при каком понижении температуры. Например, алюминий при температуре жидкого азота (—196 С) увеличивает прочность приблизительно в 2 раза, увеличивая одновременно относительное удлинение в 4 раза. Аналогично ведут себя медь и никель. Многие сплавы алюминия, меди, а также некоторые стали не обладают свойством хладноломкости.  [c.118]

Если принять, что атомы меди и никеля различаются только тем, что медь имеет на один электрон больше, чем никель, тогда 0,6 электронных вакансий на 1 атом никеля вполне могут быть заполнены электронами меди при атомном содержании 60 % 150,511.  [c.94]

Можно принять и противоположное допущение о том, что атомы меди и никеля поддерживают свою индивидуальность и что вакансии атома никеля зависят от концентрации его в сплавах [52].  [c.94]

На скорость контактной коррозии оказывает влияние скорость движения воды (табл. 3). При малых скоростях движения воды влияние разнородных положительных контактов на коррозию стали практически одинаково, при больших скоростях проявляется индивидуальная природа катода и в наибольшей степени усиливают коррозию стали медь и никель.  [c.9]

При высокой температуре пайки ряда разнородных металлов (например, титана с медью и никелем, магния со сталью, алюминия с медью и др.) невозможно получить пластичные и прочные соединения без нанесения на них барьерных покрытий, предохраняющих разнородные металлы от активного взаимодействия и, как следствие, возникновения в паяном шве хрупких интерметаллидов.  [c.480]

Важнейшая отличительная особенность бериллия — исключительно низкая растворимость в нем примесей (хрома, меди и никеля). Даже очень чистый бериллий Представляет собой пересыщенный твердый раствор, содержащий выделения вторичных фаз границы зерен обогащены примесями.  [c.70]

Медь образует с никелем непрерывны ряд твердых растворов (фиг. 5). Она повышает химическую стойкость никеля. Сплавы никеля с медью превосходят по своей коррозионной стойкости медь и никель.  [c.258]

Щелочные, щелочно-земельные металлы, магний, алюминий, цинк, олово, свинец, кадмий, платина, золото и серебро растворяются в ртути, образуя амальгамы. Слабо растворяются в рт ти медь и никель.  [c.218]

Разработаны принципы получения покрытий на УВ из меди и никеля методом химического осаждения. Преимуществом этого метода является то, что процесс ведется при температурах ниже 100° С и обеспечивает равномерное покрытие. Для химического осаждения необходимо, чтобы материал являлся катализатором для восстановительной реакции, поэтому УВ предварительно подвергаются обработке в окислительной среде и проходят стадию стабилизации и активации, после чего из щелочных растворов солей осаждается металлическое покрытие, толщина которого колеблется от 0.06 до 1.6 мкм. Прочность УВ после обработки и покрытия остается на том же уровне.  [c.117]


Принцип действия термометров сопротивления основан на свойстве металлов изменять электрическое сопротивление с изменением температуры. Термосопротивления для измерения стационарных температур различных сред в производственных и лабораторных условиях изготовляют стандартными по установившимся формам, габаритам и электрическим параметрам. Термочувствительные элементы выполняют из платины, меди и никеля.  [c.112]

Дальнейшее изучение [571 механохимического растворения различных металлов (Fe, Мо, Си, Ni) при непрерывном растяжении с различной постоянной скоростью при контролируемом потенциале вблизи потенциала коррозии показало, что сила тока с увеличением степени и скорости деформации нарастает. В случае железа и молибдена механохимический эффект был значительно более высоким, чем у меди и никеля, и, кроме того, в слу чае молибдена наблюдался переход тока через максимум (не получивший удовлетворительного объяснения).  [c.70]

Независимость прочностных характеристик металлизированных углеродных волокон от условий отжига до температуры 800 и 900° С для меди и никеля соответственно можно объяснить отсутствием  [c.130]

Исследовалось влияние термообработки на свойства металлизированного углеродного волокна. На примере меди и никеля изучалось поведение металлических покрытий при повышенных температурах. Посредством сканирующей электронной микроскопии было обнаружено собирание покрытия в складки при 400° С с дальнейшей сфероидизацией по мере увеличения температуры отжига. Установлено, что медное покрытие не снижает прочность углеродных волокон до температуры 800 С, а никелевое — до 900° С. После термообработки при 1000° С прочность углеродных волокон, отожженных в контакте с никелем, уменьшается. Рис. 2, библиогр. 5.  [c.228]

Растворы химического восстановления для нанесения покрытия на медь и никель состоят из водных растворов солей тех же металлов. Щелочные растворы используются как для меди, так и для никеля. Для никеля приемлемы также кислотные растворы.  [c.83]

Сплавы на основе меди и никеля  [c.298]

Исследование прочностных свойств композиционных материалов с различным содержанием волокон показало, что в материалах, полученных этим методом, достаточно полно реализуется прочность составляющих их компонентов. В этой же работе исследовано воздействие частиц различных напыляемых металлов па прочностные свойства стальной проволоки. Установлено, что такие металлы, как цинк, алюминий, медь и никель практически не разупрочняют проволоку. Цирконий и молибден при напылении значительно снижают прочность проволоки. Несмотря на то, что разупрочнение проволоки при стационарном нагреве происходит в течение нескольких минут уже при температурах 450—500° С, процесс плазменного напыления, ввиду кратковременного (3 -5 с) 174  [c.174]

Кроме этих постоянных примесей, в чугун часто вводят и другие элементы. Такие чугуны называются легированными. Если примеси содержались в рудах, из которых в доменной печи выплавлялся чугун, то такие чугуны называются природнолегированными. Наиболее часто чугун легируют хромом, никелем, медью, альэминием, титаном. Хром препятствует, а медь и никель способствуют графитизации чугуна.  [c.215]

Медь и никель неограниченно растворимы в твердом состоянии. Медноникелевые сплавы с 40—50% Ni обладают максимальным для этих сплавов электросопротивлением почти при нулевом значении температурного коэффициента электросопротивления (т. е. электросопротивление у этих сплавов практически не изменяется с температурой, рис. 40,5). Действительно, наиболее распространенные реостатные сплавы — консгантан (40% Ni) и никелин (45% Ni) — являются сплавами меди и никеля, когда электросопротивление принимает максимальяое значение, а температурный коэффициент — минИ мальное.  [c.554]

Процессы закалки и последуюн1его старения ишроко используют для иовыи1еиия прочности (жаропрочности) и некоторых с()изи-ческнх свойств многих сплавов на основе алюминия, железа,. меди и никеля.  [c.110]

Главными трудностями являются охрупйивание металла при сварке и холодные трещины. Поэтому технология сварки чугуна строится, исходя из этих факторов. Для борьбы с охрупчиванием и холодными трещинами применяют подогрев металла, используют присадочные материалы, обеспечивающие структуру серого чугуна за счет легирования графитизаторами, а также используют специальные электроды с медью и никелем.  [c.130]


Потенциал кадмия во многих средах близок потенциалу алюминия, поэтому кадмированные сталью винты, болты, детали и пр. можно применять в непосредственном контакте с алюминием. Считается, что можно с успехом использовать и оловянные покрытия. Цинк имеет несколько отличное значение потенциала, однако его также можно применять в большинстве случаев. В контакте с алюминием цинк является анодом и, следовательно, катодно защищает алюминий против инициации питтинга в нейтральных и слабокислых средах (см. разд. 12.1.6). Однако в щелочах происходит перемена полярности, и цинк ускоряет коррозию алюминия. Магний является анодом по отношению к алюминию, но при контакте этих металлов (например, в морской воде) возникает столь большая разность потенциалов и протекает столь большой ток, что алюминий может оказаться катодно переза-щищенным и вследствие этого будет разрушаться. Алюминий корродирует в меньшей степени, если он легирован магнием. Показано, что алюминий высокой чистоты может находиться в контакте с магнием без вреда для обоих металлов [24], поскольку в отсутствие примесей железа, меди и никеля, действующих как эффективные катоды, гальванический ток в этой паре невелик.  [c.351]

Для улучшения механических свойств в алюминий в качестве легирующих добавок обычно вводят медь, кремний, магний, цинк и марганец. Из них марганец может заметно повысить коррозионную стойкость деформируемых и литейных сплавов, потому что образуется МпА способный связывать железо в интер-металлид состава (MnFe)Ale. Последний в плавильной ваннё оса-ждается в виде шлама, и таким образом уменьшается вредное влияние небольших примесей железа на коррозионную стойкость [25]. Так как марганец не образует подобных соединений с кобальтом, медью и никелем, то не следует ожидать, что добавка марганца устранит отрицательное влияние этих металлов на коррозионное поведение сплава.  [c.352]

Некоторые магнитные свойства медно-никелевых сплавов согласуются с этими предположениями. Однако теплоемкость, как это следует из измерений на ряде сплавов, проведенных Кеезомом п Карелмейером [171, 172], пе обнаруживает резкого изменения прп критической концентрации. Значение (, приводимое этими авторами для сплавов, содержащих 20, 40, 60 и 80% меди, а также для чистых меди и никеля, дано на фиг. 23. Как легко видеть, при содержании меди, равном 60%, у имеет почти такую же величину, как и для чистого никеля.  [c.360]

Металлические тензопреобразователи выполняются из проволоки или. фольги. Для проволоки используют сплавы из меди и никеля, никеля и хрома, никеля и железа и др., для фольги применяют константан, хромоникелевыа сплав и др. Погрешность при определении изменения сопротивления от удлинения составляет 1—2 %.  [c.162]

Для чувствительного элемента тензодатчика желательно использовать материалы, которые имели бы большие коэффициенты чувствительности, достаточно большое удельное электрическое сопротивление, небольшой температурный коэффициент электрического сопротивления и достаточно большой диапазон линейной зависимости между относительной деформацией и изменением сопротивления. Наиболее полно этим требованиям удовлетворяет константан (сплав меди и никеля), для которого в широком диапазоне деформаций /i= onst. Возможно применение и других материалов. Для проволочных и фольговых датчиков используют -одни и те же материалы.  [c.314]

Ртуть и ее соединения весьма ядовиты очень вредны пары ртути. Щелочные и щелочноземельные металлы, магний, алюминий, цинк, олово, свинец, кадмий, платина, золото и серебро пастворяютс.я в ртут.и, образуя амальгамы. Слабо растворяются в ртути медь и никель. Приборы, содержащие ртуть, должны иметь металлическую арматуру из вольфрама, железа или тантала, так как эти металлы не растворимы в ртути.  [c.35]

Один из способов снижения наводороживания - нанесение подслоя из другого металла, обладающего более низкой водородопроницае-мостью. Эффективно в качестве подслоя при кадмировании использовать медь или никель. Оба металла снижают степень наводороживания стали, но не исключают его полностью. Кроме того, подслой меди и никеля может вызвать в некоторых агрессивных средах развитие контактной коррозии, ухудшающей коррозионное состояние изделия. Поэтому при выборе металла подслоя необходимо учитывать поведение системы в целом.  [c.104]

Как видно из приведенных данных, при малых скоростях движения воды влияние различных положительных контактов мало сказывается на коррозии стали, а при больших скоростях движения воды проявляется индивидуальная природа катода и в наибольшей степени усиливают коррозию стали медь и никель. Поэтому детали из меди и медных сплавов, нержавеющих сталей, никеля или никелевых сплавов, контактирующих со сталью, необходимо оцинковьшать или кадмировать. Могут быть также П1жменены прокладки из оцинкованного железа или оцинкованных стальных деталей.  [c.201]

Важным антифрикционным металлокерамическим материалом являете трехелойная композиция, состоящая из стальной ленты с медноникелевым я баббитовым спаями (фиг. 25). На стальную ленту напрессовывается смесь порошков меди и никеля (около 60% Си крупностью 100—200 меш и 40% Ni крупностью 80—100 меш). Никель при последующем спекании увеличивает сцепление частиц меди со стальной основой. Толщина металлокерамнческого слоя около 0,5 мм. После спекания поры металлокерамического подслоя пропитываются расплавленным свинцовистым баббитот, избыток которого образует третий поверхностный антифрикционный слой толщиной после обработки резанием не свыше 75 мк (для некоторых применений даже 20 лк .  [c.589]

На рис, 7.11 приведены опытные данные Я. Марта и др., полученные при кипении азота на зеркально полированных торцах стержней, изготовленных из меди и никеля. Здесь же приведены данные А. В. Клименко и В. В. Цибульского, полученные при кипении азота и кислорода на полированных трубках, изготовленных из мельхиора и ста-  [c.202]

Для различных металлов скорости хаотического теплового дви- eHHH электронов (при определенной температуре) примерно одинаковы. Незначительно различаются такл<е и концентрации свободных электронов Ло (например, для меди и никеля это различие меньше  [c.191]


Химическое осаждение пленок. Этот метод широко применяется для металлизации плат, получения пленочных резисторов и других изделий РЭА. Перед металлизацией на плату сначала наносят раствор хлорного олова (Sn la), ионы которого прочно адсорбируются на плате. После промывки на поверхность наносится раствор хлористого серебра (Ag l). В результате протекающей реакции ионы серебра замещают ионы олова. Плата с подготовленной таким образом поверхностью помещается в раствор соли того металла, которым собираются металлизировать поверхность. В раствор добавляют восстановитель, вытесняющий металл из раствора. Реакция ускоряется и катализируется под действием находящегося там серебра. Так можно получать пленки меди и никеля (в последнем случае предварительную обработку поверхности производят раствором хлористого палладия). Толщина пленок составляет обычно I—2 мкм. Дальнейшее увеличение толщины производят гальваническим методом.  [c.72]

Мы изучали поведение углеродных волокон на основе полиак-рилонитрила, покрытых медью и никелем. Покрытия наносили химическим методом, то есть осаждением из растворов солей, при температурах 20 и 80° С для меди и никеля соответственно. Для выбранных нами металлов исключена возможность образования химических соединений при температурах нанесения покрытия [5], а следовательно, и снижение прочностных характеристик углеродных волокон (что подтверждено экспериментально). Поэтому изучалось влияние на свойства металлизированного углеродного волокна температур, близких к технологическим и эксплуатационным. Для этого определяли прочность на разрыв волокон без покрытия после отжига в контакте с металлами. Отжиг проводили в вакууме с давлением 5 Ю мм рт. ст. в течение 24 ч. Предварительно было  [c.129]

Состояние поверхности металлизированного углеродного воло -на при комнатной и повышенной температурах изучалось методом сканирующей электронной микроскопии. Было установлено, что исходные металлические покрытия из меди и никеля сплошные. Под воздействием температуры поверхность металлизированного углеродного волокна модифицируется. Так, медное покрытие после отжига при температуре 400° С собирается в складки (рис. 2, а, см. вклейку). При увеличении температуры термообработки до 800° С происходит сфероидизация покрытия (рис. 2, б, см. вклейку). Аналогичные результаты при указанных температурах получаются и в случае покрытия углеродных волокон никелем.  [c.130]

Химическое осаждение можно получить автокаталитически, когда металлическое покрытие осаждается на металлической или активированной металлом поверхности, а его толщина увеличивается более или менее линейно до тех пор, пока поддерживается равновесное по составу состояние раствора. Растворы этого вида обычно называют растворами химического восстановления. К металлам, которые могут осаждаться автокаталитически, относятся медь, никель, железо, кобальт, серебро, золото, платина и палладий. Из этих металлов наиболее широкое распространение (в технике и электронике или для металлизации пластмасс при подготовке к электроосаждению) получили, пожалуй, медь и никель. Серебро и золото имеют более ограниченное применение и используются в некоторых электронных приборах.  [c.83]

В таких условиях продукты коррозии остаются на металле и при хорошей адгезии замедляют процесс разрушения во времени. Скорчелетти показал, что продукты атмосферной коррозии, возникающие на низколегированных и высокоуглеродистых сталях, обладают большей защитной способностью по сравнению с продуктами коррозии на углеродистых сталях. Объясняется это их меньшей способностью к капиллярной конденсации воды и большим потенциалом в связи с тем, что в состав пленки входят окислы хрома, меди и никеля.  [c.13]

Методом пропитки получали композиционный материал алюминий— углеродное волокно [126, 127, 155, 169] (патент ФРГ № 2115925, 1972 г.)- При этом для улучшения смачиваемости углеродные волокна предварительно покрывали никелем [20, 98], танталом [155], двухслойным покрытием из меди и никеля. Положительный эффект при пропитке углеродного волокна алюминием оказывает введение в расплавленный алюминий 0,5— 1,0% титана, предотвращающего образование на границе раздела матрица —волокно фазы AI4 3 и повышающего на 50% предел прочности изделия.  [c.97]


Смотреть страницы где упоминается термин Медь и никель : [c.336]    [c.337]    [c.257]    [c.131]    [c.782]    [c.782]    [c.115]    [c.273]    [c.236]   
Смотреть главы в:

Основы металловедения  -> Медь и никель



ПОИСК



Жаропрочные сплавы системы алюминий—медь—магний—железо—никел

Изучение микроструктуры тройных сплавов висмут—свинец—олово и медь никель—марганец

Коррозия сплавов меди, никеля и титана

Меди сплавы (осаждение) с никелем

Медиана

Медь (никель)—вольфрам

Медь Никель Свинец Цинк

Металлы жидкие — Свойства теплофизические например, Медь, Никель, Олово

Никелевые сплавы деформируемые жаропрочны никель-медь, коррозия

Никель

Никель сплавы с медью

Плавящиеся электроды для сварки алюминия, меди, титана, чугуна и никеля

Получение никеля из сульфидных медио-иикелевых руд

Применение медно-никелевые — Диаграмма состояния сплавов системы медь—никель

Проволока биметаллическая медь — никель — Сопротивление

Разделение меди и никеля

Рафинирование меди и никеля

Система медь — никель

Сплавы меди с никелем. Константан (550 Си

Сплавы медь — марганец, медь — висмут, медь — сурьма, медь — индий, медь — цинк — олово, медь — цинк — никель

Сплавы на основе меди и никеля

Сплавы никеля с медью, содержащие 20—40 Си

Средне- и высокоплавкие припои на основе алюминия, серебра, меди, золота, палладия, никеля, марганца и железа

Флюсы для пайки алюминия железа, меди, никеля и их сплавов

Фосфатирование меди, никеля, свинца, олова, германия и теллура

Электролизные ванны для рафинирования меди и никеля

Электролитическое рафинирование меди Металлургия никеля



© 2025 Mash-xxl.info Реклама на сайте