Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия алюминиевых сплавов

В морских конструкциях находят все большее применение алюминиевые сплавы. Это способствует облегчению транспортировки и монтажа конструкций в открытом море при сохранении достаточной прочности и требуемой долговечности. К числу сплавов, получивших наибольшее распространение в погружаемых конструкциях, относятся сплавы А1 — Mg. Алюминиевые сплавы, как известно, склонны к питтингу, однако, несмотря на повышение солености воды по глубине моря, увеличение глубины питтингов в глубь моря неравномерно. Она оказалась наибольшей на глубине около 700 м в Тихом океане, т.е. в зоне наименьшей концентрации кислорода (рис. 7). Отсюда следует, что питтинговая коррозия алюминиевых сплавов зависит не столько от глубины погружения в море, сколько от концентрации кислорода. Склонность различных алюминиевых сплавов к питтинговой коррозии можно сравнить, измеряя их потенциал в морской воде. Сплавы с более электроотрицательным потенциалом проявили большую склонность к питтинговой коррозии, чем сплавы с более электроположительным потенциалом. Особенно склонны к питтингу высокопрочные сплавы, а сплавы серии Al-Mg сравнительно невосприимчивы к этому виду коррозии, однако при глубоком погружении даже эти сплавы подвержены довольно сильному питтингу.  [c.23]


Зависимость скорости коррозии алюминиевых сплавов от времени практически для всех сплавов имеет один и тот же характер. Первое время контакт металла с морской водой вызывает интенсивную коррозию, затем скорость коррозии постепенно уменьшается. Так, алюминиевый сплав 5052 интенсивно корродирует первые 15 17 сут, а затем наступает уменьшение скорости коррозии в связи с образованием на поверхности защитной пленки сложного состава, включающей прод>т<ты жизнедеятельности бактерий.  [c.25]

Наиболее стойки в грунтах сплавы алюминия с содержанием магния 2,5—3,5 %. Скорость коррозии алюминиевого сплава с 3,5 % магния составила 3 г/ (м год), но при наличии блуждающих токов скорость коррозии возрастала до 30 г/ (м год).  [c.48]

Такая же тенденция наблюдается при коррозии алюминиевых сплавов. При повышении температуры выше 60 °С повышается стойкость к коррозионной уста-  [c.110]

Аналогично высоколегированным сталям, алюминий и его сплавы в нейтральных водах тоже подвергаются язвенной коррозии [8, 26, 27, 40—42]. Потенциалы язвенной коррозии у алюминия и его сплавов гораздо более отрицательны, чем у сталей, тогда как электропроводность пассивного слоя чрезвычайно мала. Вследствие этого катодная промежуточная реакция сильно затормаживается, так что несмотря на неблагоприятные значения потенциала язвенной коррозии алюминиевые сплавы оказываются сравнительно коррозионностойкими. Потенциалы язвенной коррозии имеют практическое значение для оценки коррозионной опасности при образовании коррозионного элемента с посторонними металлами или для катодной защиты. Для водопроводной воды (4 ммоль-л С1 ) при 25 °С они составляют примерно t/н —В, а  [c.70]

Скорость коррозии алюминиевых сплавов, не содержащих Си, в хромовой кислоте при 50 °С  [c.493]

Рис. 2.2. Зависимость скорости коррозии алюминиевых сплавов от температуры Рис. 2.2. Зависимость скорости коррозии алюминиевых сплавов от температуры
Как было отмечено в условиях испытания в сухом водороде, при его давлении 0,1 МПа трещина не растет. На рис. 37 показана максимальная скорость роста трещины, которую можно было измерить. В заключение следует отметить, что вода, содержащаяся при низких давлениях в газообразном водороде, можег вызывать коррозионное растрескивание высокочувствительных к этому виду коррозии алюминиевых сплавов.  [c.192]


Коррозия алюминиевых сплавов  [c.188]

В Лаборатории материаловедения ВВС США были исследованы 6 различных плакировочных покрытий, предназначенных для заш 1ты от коррозии алюминиевого сплава 7075-Т6 [223]. Для плакирования использовались алюминиевые сплавы 1199, 5457, 7004, 7039, 7072 и 7472. Испытания проводили в тропической, субтропической и промышленной атмосферах в Панаме, на мысе Кеннеди (Флорида) и в Мак-Куке (Иллинойс) соответственно. При плакировании сплавами 1199 (99,99 А1), 5457 (0.9 Mg), 7004 (4,4 Zn 1,7 Mg 0,3 Мп 0,14 Сг) и 7472 (1,6 Zn 1,2 Mg) была получена более высокая коррозионная стойкость, чем в случае широко применяемого в настоящее время сплава 7072. Наилучшие результаты были достигнуты при плакировании сплавом 1199 лишь немного уступал ему сплав 5457.  [c.197]

СКОРОСТИ И ТИПЫ КОРРОЗИИ АЛЮМИНИЕВЫХ СПЛАВОВ СЕРИИ 1000  [c.358]

Изменения концентрации кислорода в морской воде не оказывали заметного влияния на коррозию алюминиевого сплава 1100. В целом после 1 года экспозиции скорости коррозии и агрессивность щелевой коррозии были большими при низких концентрациях кислорода агрессивность питтинговой коррозии была наибольшей при максимальной концентрации кислорода.  [c.358]

СКОРОСТИ Й типы КОРРОЗИИ АЛЮМИНИЕВЫХ СПЛАВОВ СЕРИИ 5000  [c.370]

В обычной атмосфере наиболее неблагоприятным для коррозии алюминиевых сплавов является контакт их с медью и медными сплавами, с никелем, никелевыми сплавами и никелевыми покрытиями, с серебром.  [c.74]

Защита от коррозии. Алюминиевые сплавы защищают от коррозии металлическими покрытиями (плакирование, гальванические покрытия) и неметалличе-скими покрытиями (оксидные пленки, лакокрасочные покрытия, смазки).  [c.74]

Для защитно-декоративных целей, а также для повышения износостойкости используют хромовые или никель-хромовые гальванические покрытия. Применение оксидных пленок, полученных химическим или электрохимическим методом, является одним из основных способов защиты от коррозии алюминиевых сплавов. Оксидные пленки обладают также хорошими адгезионными свойствами, и поэтому их применяют как основу при нанесении лакокрасочных покрытий.  [c.74]

Межкристаллитная коррозия дюралюминия (около 4—5% Си 0,5—1,75% Mg, по 0,5% Si, Мп и Fe, ост. AI), согласно работам А. И. Голубева, связана с разрушением образующегося при распаде твердого раствора (в виде более или менее непрерывной цепочки на границах зерен) интерметаллического соединения uAla в тех случаях, когда процесс коррозии сопровождается выделением водорода. В этих случаях на включениях uAla и зернах твердого раствора не образуется кроющая пленка продуктов коррозии, которая обычно (при кислородной деполяризации) препятствует коррозии включений uAla, а следовательно, и развитию межкристаллитной коррозии. Первоначальными очагами выделения водорода и возникновения межкристаллитной коррозии являются, по данным С. Е. Павлова и С. М. Амбарцумяна, межкристаллитные микропоры на поверхности сплава. Поэтому в качестве одного из наиболее эффективных путей борьбы с межкристаллитной коррозией алюминиевых сплавов, содержащих медь, рекомендуется уплотнение структуры металла.  [c.420]

Высокой коррозионной стойкостью в атмосферных условиях обладают алюминиевые сплавы. Несмотря на то, что коррозия алюминиевых сплавов, как правило, развивается с образованием питтингов, постоянная смена участков активащ1и и репассиващш на поверхности металла приводит к почти равномерной коррозии. Однако необходимо учесть влияние структурных составляющих, которые могут облегчить возникновение межкристаллитной, расслаивающей коррозии и коррозионного растрескивания. Анодные включения преимущественно растворяются, и если они расположены в виде цепочки по границам зерен, то коррозия  [c.12]

Присутствие активирующих солей ускоряет коррозию стали за счет увеличения проводимости и затруднения образования защитных пленок. Степень агрессивности буровых растворов в присутствии активирующих ионов (С1 , Вг", J-) зависит от их концентрации. В слабощелочном растворе 1 н. Na l наблюдается увеличение в 10—15 раз скорости коррозии алюминиевых сплавов, чем в таком же растворе без ионов хлора. При этом возрастают склонность сплавов к точечной коррозии, развитие усталостных трещин, межкристаллитной коррозии. По отношению к стали как в статических условиях, так и в условиях циклического нагружения наибольшей активностью обладают буровые растворы, содержащие 3% Na l.  [c.108]


Зашита от коррозии алюминиевого сплава АА7075 в водных растворах хлоридов ингибиторами катионного типа 36 271  [c.37]

По данным Р. Мирса [76], алюминиевые сплавы в теплой и влажной чистой атмосфере стойки даже при значительном скоплении влаги. Алюминиевые сплавы в контакте с большинством металлов и сплавов являются анодами и поэтому сильно разрушаются, в особенности при соприкосновении с медью и медными сплавами. Контакт алюминиевых сплавов с обычной сталью более опасен, чем с нержавеющей. Контактная коррозия алюминиевых сплавов проявляется сильнее всего в приморской атмосфере и в морской воде. В минеральных водах Цхалтубо алюминиевые детали в контакте с обыкновенной сталью выходят из строя через 2—3 месяца [77].  [c.73]

Сопоставление полученных кривых скоростей коррозии алюминиевые сплавов при испытании зимой и осенью показывает, что в январе наблю дается скачкообразное изменение скорости коррозии. При испытаниях, которые были начаты осенью, установлено, что максимум изменений KOpo ri  [c.74]

Проведенные опыты в одно и то же время на территории Батумского машиностроительного завода (промышленная морская атмосфера) и на атмосферной площадке Батумской коррозионной станции (приморская атмосфера) показали, что алюминиевые сплавы АМг2 и АМг5В в контакте с медью подвергаются разрушению по-разному. Скорость коррозии алюминиевых сплавов в течение 30 сут в промышленно-морской атмосфере равна  [c.83]

Контакты алюминиевых сплавов со сталью, в морской воде и в морской атмосфере вызывают сильную коррозию алюминиевых сплавов [81]. Контакты алюминия с алюминиевыми сплавами, содержащими медь, приводят J приморской атмосфере к коррозионному разрушению алюминия. По дан- ым ряда авторов, даже оксидирование алюминия не дает положительных >езультатов при его защите от контактной коррозии. Некоторые исследова- ели считают контакт алюминиевых сплавов с другими металлами допустимым при условии их предварительной защиты цинком, алюминием или кад-1ием, но не рекомендуют применять алюминий в паре с медью и медными плавами, с никелем и никелевыми сплавами. В последнем случае рекомен-  [c.83]

Скорость коррозии алюминиевых сплавов в изопропиловом спирте, этиленгликоле, диэтилеигликоле, антифризах, этилцел-люлозе, циклогексаноне и толуоле не превышает 0,005 мм/год, но в фенилэтиловом спирте и аммиачной воде они мало устойчивы.  [c.130]

Наиболее опасными видами коррозии алюминиевых сплавов являются межкристаллитная коррозия и коррозионное растрескивание. Более высокой стойкостью обладают сплавы, не содержащие в своем составе медь. Промышленный алюминий марок АД и АД1, сплавы с марганцем АМц, сплавы с магнием АМг2, АМгЗ обладают высокой коррозионной стойкостью и могут применяться в морских и тропических условиях. Методы производства полуфабрикатов не оказывают влияния на их коррозионную стойкость. Сварные соединения из этих сплавов по коррозионным свойствам близки к основному металлу.  [c.74]

Питтинговая коррозия. Алюминиевые сплавы склонны к питтингу в морской воде. Присутствие хлор-ионов значительно усиливает этот вид локального разрушения. Локализация питтингов часто определяется металлургическими факторами, например они могут располагаться вдоль границ зерен [89]. В принципе можно было бы ом идать, что повышение концентрации растворенного кислорода в морской воде уменьшает скорость роста питтингов, однако на практике это может не проявляться из-за наличия других эффектов. Как показал Рейнхарт [90], в Тихом океане питтинговая коррозия определяется в основном именно содержанием в воде кислорода и в меньшей степени глубиной. В этих экспериментах наименьшая питтинговая коррозия нескольких алюминиевомагниевых сплавов серии 5000, испытанных при трех различных концентрациях кислорода, наблюдалась в условиях минимальной концентрации (рис. 66).  [c.136]

Данные о питтпнговой коррозии алюминиевых сплавов трудно сравнивать из-за большого разброса результатов, получаемых для разных пластинок одного и того же сплава. Однажды возникнув, питтинг может сначала очень быстро расти, после чего рост может замедлиться или даже совсем прекратиться. Тем не менее при длительной экспозиции мол Но установить некоторые закономерности коррозионного поведения различных сплавов или одного сплава в разных состояниях термообработки. Например, как видно из табл. 54, сплав 6061 в состоянии термообработки Т4 обладает более высокой стойкостью к питтингу, чем  [c.138]

Рис. 68. Пнттингоная коррозия алюминиевых сплавов (Тихий океан вблизи Порт-Хьюнема Калифорния, США, если не указано другое место) [1]. Глубина ниг-тинга Рис. 68. Пнттингоная коррозия алюминиевых сплавов (Тихий океан вблизи Порт-Хьюнема Калифорния, США, если не указано другое место) [1]. Глубина ниг-тинга
ЩЕЛЕВАЯ КОРРОЗИЯ АЛЮМИНИЕВЫХ СПЛАВОВ ПРИ 12-мес ЭКСПОЗИЦИИ В МОРСКОЙ ВОДЕ В КИ-УЭСТЕ (ФЛОРИДА, США) [911  [c.139]

КОРРОЗИЯ АЛЮМИНИЕВЫХ СПЛАВОВ ПРИ 368-ДНЕВНОЙ ЭКСПОЗИЦИИ В морской ВОДЕ (КИ-УЭСТ, ФЛОРИДА. США) [91]  [c.142]

Рис. 69. Общая и питтинговая коррозия алюминиевых сплавов серии 1000 в морской воде и в иле (Тихий океан к западу от Порт-Хьюиема, Калифорния, США) [90] Рис. 69. Общая и питтинговая коррозия алюминиевых сплавов серии 1000 в <a href="/info/39699">морской воде</a> и в иле (Тихий океан к западу от Порт-Хьюиема, Калифорния, США) [90]

Рис. 77. Влияние катодной защиты на коррозию алюминиевых сплавов серий 3000 н 5000 при 368-дневной экспозиции в морской воде (Ки-Уэст, Флорида, США) [91] Рис. 77. Влияние <a href="/info/6573">катодной защиты</a> на коррозию алюминиевых сплавов серий 3000 н 5000 при 368-дневной экспозиции в <a href="/info/39699">морской воде</a> (Ки-Уэст, Флорида, США) [91]
ПИТТИНГОВАЯ КОРРОЗИЯ АЛЮМИНИЕВЫХ СПЛАВОВ ПРИ Ш-ЛЕТНЕИ ЭКСПОЗИЦИИ В ЗОНЕ ПРИЛИВА И ПРИ ПОЛНОМ ПОГРУЖЕНИИ [185]  [c.189]

В одной из лабораторий компании Ве1Ь было исследовано коррозионное поведение ряда высококачественных кораблестроительных материалов в потоке морской воды [192]. С помощью гидротурбины имитировалось движение со скоростью до 90 узлов (46,3 м/с). Скорости общей коррозии алюминиевых сплавов 5086-Н117 и 5456-Н117 в неподвижной морской воде были <2,5 мкм/год, а при скорости 90 узлов возрастали до 3 мкм/год. Для сплавов Инконель 625, Ti — 6А1 — 4V и нержавеющей стали 17—4РН скорости коррозии возрастали от <2,5 мкм/год в неподвижной воде до 13—38 мкм/год при скорости потока 90 узлов. Скорости гальванической коррозии алюминиевых сплавов возрастали от <15 мкм/год до 1,5 мм/год, причем контакт со сплавом Ti —6А1 —4V оказывал меньшее влияние, чем контакт со сталью 17—4РП или сплавом Инконель 625.  [c.190]

Коррозия алюминиевых сплавов в морской воде — обычно питтинго-вая или щелевая. Образование питтингов начинается с пробоя защитной пленки в ее слабых местах или на неоднородностях, затем образуется электролитическая ячейка анодом в ней является небольшая по площади поверхность активного металла, а катодом — большая поверхность пассивного металла. Большая разность потенциалов этого активно-пассивного элемента вызывает существенный ток с сопровождающим его быстрым развитием коррозии на маленьком аноде (питтинге).  [c.356]

Эти проявления локальной коррозии сопровождаются малыми потерями массы и низкими скоростями коррозии. Таким образом, целостность конструкции из алюминиевого сплава будет находиться под угрозой, если ее рассчитывать на основе скоростей коррозии, вычисленных по потерям массы, а не по измерениям глубин питтингов и глубин щелевой коррозии. Питтинговая и щелевая коррозия может поражать и действительно быстро поражает алюминиевые сплавы, находящиеся в морской воде, выводя их из строя за короткое время. Поэтому, чтобы представить полную картину коррозии алюминиевых сплавов, мы привели в табл1щах скорости коррозии, выраженные величиной проникновения в микрометрах в год, вычисленные как по потерям массы, так и по максимальным глубинам питтингов, максимальным глубинам щелевой коррозии и других типов коррозии (мм).  [c.357]

На практике встретился необычный тип коррозии алюминиевого сплава. Это произошло с буями из алюминиевого сплава 7178-Т6, которые применялись для укрепления установки для коррозионных испытаний. Во время подъема конструкции УКИ-3 после 123 дней экспозиции оказалось, что буй, находившийся на глубине 90 м под морской поверхностью, прокорродировал. Белые продукты коррозии на нижней полусфере буя покрывали места, где плакирующий сплав прокорродировал до основного металла. Верхняя полусфера была покрыта пузырями, которые достигали 5 см в диаметре и около 2 см по высоте с дыркой на верхушке каждого пузыря. Дырка на верхушке пузыря указывает на происхождение повреждения вначале в плакирующем сплаве существовало точечное отверстие, через которое морская вода получила доступ к поверхности раздела менсду плакирующим и осиов-  [c.381]

С более электроположительными металлами усиливает коррозию алюминиевых сплавов. Анодирование не устраняет вредного действия катодных контактоп.  [c.74]


Смотреть страницы где упоминается термин Коррозия алюминиевых сплавов : [c.344]    [c.116]    [c.26]    [c.57]    [c.86]    [c.31]    [c.152]    [c.195]   
Смотреть главы в:

Морская коррозия  -> Коррозия алюминиевых сплавов


Конструкционные материалы Энциклопедия (1965) -- [ c.408 ]



ПОИСК



Алюминиевые коррозия

Защита алюминиевых сплавов от коррозии

Коррозия и сплавы

Коррозия под напряжением алюминиевых сплавов

Межкристаллитная коррозия алюминиевых сплавов

Сплавы алюминиевые — Коэффициент коррозии



© 2025 Mash-xxl.info Реклама на сайте